1
|
Foor SD, Brangulis K, Shakya AK, Rana VS, Bista S, Kitsou C, Ronzetti M, Alreja AB, Linden SB, Altieri AS, Baljinnyam B, Akopjana I, Nelson DC, Simeonov A, Herzberg O, Caimano MJ, Pal U. A unique borrelial protein facilitates microbial immune evasion. mBio 2023; 14:e0213523. [PMID: 37830812 PMCID: PMC10653885 DOI: 10.1128/mbio.02135-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Lyme disease is a major tick-borne infection caused by a bacterial pathogen called Borrelia burgdorferi, which is transmitted by ticks and affects hundreds of thousands of people every year. These bacterial pathogens are distinct from other genera of microbes because of their distinct features and ability to transmit a multi-system infection to a range of vertebrates, including humans. Progress in understanding the infection biology of Lyme disease, and thus advancements towards its prevention, are hindered by an incomplete understanding of the microbiology of B. burgdorferi, partly due to the occurrence of many unique borrelial proteins that are structurally unrelated to proteins of known functions yet are indispensable for pathogen survival. We herein report the use of diverse technologies to examine the structure and function of a unique B. burgdorferi protein, annotated as BB0238-an essential virulence determinant. We show that the protein is structurally organized into two distinct domains, is involved in multiplex protein-protein interactions, and facilitates tick-to-mouse pathogen transmission by aiding microbial evasion of early host cellular immunity. We believe that our findings will further enrich our understanding of the microbiology of B. burgdorferi, potentially impacting the future development of novel prevention strategies against a widespread tick-transmitted infection.
Collapse
Affiliation(s)
- Shelby D. Foor
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Kalvis Brangulis
- Latvian Biomedical Research and Study Centre, Riga, Latvia
- Department of Human Physiology and Biochemistry, Riga Stradins University, Riga, Latvia
| | - Anil K. Shakya
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Vipin S. Rana
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Sandhya Bista
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Michael Ronzetti
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Adit B. Alreja
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Sara B. Linden
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Amanda S. Altieri
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Bolormaa Baljinnyam
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Inara Akopjana
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Daniel C. Nelson
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Osnat Herzberg
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Melissa J. Caimano
- Departments of Medicine, Pediatrics, and Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
- Virginia-Maryland College of Veterinary Medicine, College Park, Maryland, USA
| |
Collapse
|
2
|
Sanchez AM, Garg A, Shuman S, Schwer B. Genetic interactions and transcriptomics implicate fission yeast CTD prolyl isomerase Pin1 as an agent of RNA 3' processing and transcription termination that functions via its effects on CTD phosphatase Ssu72. Nucleic Acids Res 2020; 48:4811-4826. [PMID: 32282918 PMCID: PMC7229847 DOI: 10.1093/nar/gkaa212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 01/05/2023] Open
Abstract
The phosphorylation pattern of Pol2 CTD Y1S2P3T4S5P6S7 repeats comprises an informational code coordinating transcription and RNA processing. cis-trans isomerization of CTD prolines expands the scope of the code in ways that are not well understood. Here we address this issue via analysis of fission yeast peptidyl-prolyl isomerase Pin1. A pin1Δ allele that does not affect growth per se is lethal in the absence of cleavage-polyadenylation factor (CPF) subunits Ppn1 and Swd22 and elicits growth defects absent CPF subunits Ctf1 and Dis2 and termination factor Rhn1. Whereas CTD S2A, T4A, and S7A mutants thrive in combination with pin1Δ, a Y1F mutant does not, nor do CTD mutants in which half the Pro3 or Pro6 residues are replaced by alanine. Phosphate-acquisition genes pho1, pho84 and tgp1 are repressed by upstream lncRNAs and are sensitive to changes in lncRNA 3' processing/termination. pin1Δ hyper-represses PHO gene expression and erases the de-repressive effect of CTD-S7A. Transcriptional profiling delineated sets of 56 and 22 protein-coding genes that are down-regulated and up-regulated in pin1Δ cells, respectively, 77% and 100% of which are downregulated/upregulated when the cis-proline-dependent Ssu72 CTD phosphatase is inactivated. Our results implicate Pin1 as a positive effector of 3' processing/termination that acts via Ssu72.
Collapse
Affiliation(s)
- Ana M Sanchez
- Dept. of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Angad Garg
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
- To whom correspondence should be addressed. Tel: +1 212 639 7145;
| | - Beate Schwer
- Dept. of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
- Correspondence may also be addressed to Beate Schwer. Tel: +1 212 746 6518;
| |
Collapse
|
3
|
Born A, Henen MA, Vögeli B. Activity and Affinity of Pin1 Variants. MOLECULES (BASEL, SWITZERLAND) 2019; 25:molecules25010036. [PMID: 31861908 PMCID: PMC6983177 DOI: 10.3390/molecules25010036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/07/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022]
Abstract
Pin1 is a peptidyl-prolyl isomerase responsible for isomerizing phosphorylated S/T-P motifs. Pin1 has two domains that each have a distinct ligand binding site, but only its PPIase domain has catalytic activity. Vast evidence supports interdomain allostery of Pin1, with binding of a ligand to its regulatory WW domain impacting activity in the PPIase domain. Many diverse studies have made mutations in Pin1 in order to elucidate interactions that are responsible for ligand binding, isomerase activity, and interdomain allostery. Here, we summarize these mutations and their impact on Pin1′s structure and function.
Collapse
Affiliation(s)
- Alexandra Born
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA; (A.B.); (M.A.H.)
| | - Morkos A. Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA; (A.B.); (M.A.H.)
- Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA; (A.B.); (M.A.H.)
- Correspondence: ; Tel.: +1-303-724-1627
| |
Collapse
|
4
|
Sacquin-Mora S. Coarse-grain simulations on NMR conformational ensembles highlight functional residues in proteins. J R Soc Interface 2019; 16:20190075. [PMID: 31288649 DOI: 10.1098/rsif.2019.0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dynamics are a key feature of protein function, and this is especially true of gating residues, which occupy cavity or tunnel lining positions in the protein structure, and will reversibly switch between open and closed conformations in order to control the diffusion of small molecules within a protein's internal matrix. Earlier work on globins and hydrogenases have shown that these gating residues can be detected using a multiscale scheme combining all-atom classic molecular dynamics simulations and coarse-grain calculations of the resulting conformational ensemble mechanical properties. Here, we show that the structural variations observed in the conformational ensembles produced by NMR spectroscopy experiments are sufficient to induce noticeable mechanical changes in a protein, which in turn can be used to identify residues important for function and forming a mechanical nucleus in the protein core. This new approach, which combines experimental data and rapid coarse-grain calculations and no longer needs to resort to time-consuming all-atom simulations, was successfully applied to five different protein families.
Collapse
Affiliation(s)
- Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique , 13 rue Pierre et Marie Curie, 75005 Paris , France
| |
Collapse
|
5
|
Wang W, Xi L, Xiong X, Li X, Zhang Q, Yang W, Du L. Insight into the structural stability of wild-type and histidine mutants in Pin1 by experimental and computational methods. Sci Rep 2019; 9:8413. [PMID: 31182777 PMCID: PMC6557836 DOI: 10.1038/s41598-019-44926-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/28/2019] [Indexed: 01/21/2023] Open
Abstract
Pin1, a polypeptide proline isomerase parvulin, plays a key role in Alzheimer's disease (AD), common tumors and cancers. Two conservative histidine residues, His59 and His157, are important for maintaining the stability of the PPIase domain. Hence multiple spectral and computational techniques were performed to investigate the potential mechanism of two histidine residues. Thermal denaturation indicated that both residues His59 and His157 are not sensitive to the lower temperatures, while residue His59 is more sensitive to the higher temperatures than residue His157. Acidic denaturation suggested that influences of both residues His59 and His157 to acidic stability were the difference from Pin1-WT. ANS and RLS spectra hinted that there was no significant effect on hydrophobic change and aggregation by histidine mutations. The GndHCl-induced denaturation implied that residues His59 and His157 contributed the most to the chemical stability. MD simulations revealed that residues His59 and His157 mutations resulted in that the hydrogen bond network of the dual histidine motif was destroyed wholly. In summary, these histidine residues play an important role in maintaining the structural stability of the PPIase domain.
Collapse
Affiliation(s)
- Wang Wang
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Lei Xi
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Xiuhong Xiong
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Xue Li
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Qingyan Zhang
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Wentao Yang
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Linfang Du
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China.
| |
Collapse
|
6
|
Fine-tuning the extent and dynamics of binding cleft opening as a potential general regulatory mechanism in parvulin-type peptidyl prolyl isomerases. Sci Rep 2017; 7:44504. [PMID: 28300139 PMCID: PMC5353683 DOI: 10.1038/srep44504] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/06/2017] [Indexed: 11/23/2022] Open
Abstract
Parvulins or rotamases form a distinct group within peptidyl prolyl cis-trans isomerases. Their exact mode of action as well as the role of conserved residues in the family are still not unambiguously resolved. Using backbone S2 order parameters and NOEs as restraints, we have generated dynamic structural ensembles of three distinct parvulins, SaPrsA, TbPin1 and CsPinA. The resulting ensembles are in good agreement with the experimental data but reveal important differences between the three enzymes. The largest difference can be attributed to the extent of the opening of the substrate binding cleft, along which motional mode the three molecules occupy distinct regions. Comparison with a wide range of other available parvulin structures highlights structural divergence along the bottom of the binding cleft acting as a hinge during the opening-closing motion. In the prototype WW-domain containing parvulin, Pin1, this region is also important in forming contacts with the WW domain known to modulate enzymatic activity of the catalytic domain. We hypothesize that modulation of the extent and dynamics of the identified ‘breathing motion’ might be one of the factors responsible for functional differences in the distinct parvulin subfamilies.
Collapse
|
7
|
Ikolo F, Zhang M, Harrington DJ, Robinson C, Waller AS, Sutcliffe IC, Black GW. Characterisation of SEQ0694 (PrsA/PrtM) of Streptococcus equi as a functional peptidyl-prolyl isomerase affecting multiple secreted protein substrates. MOLECULAR BIOSYSTEMS 2016; 11:3279-86. [PMID: 26466087 DOI: 10.1039/c5mb00543d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peptidyl-prolyl isomerase (PPIase) lipoproteins have been shown to influence the virulence of a number of Gram-positive bacterial human and animal pathogens, most likely through facilitating the folding of cell envelope and secreted virulence factors. Here, we used a proteomic approach to demonstrate that the Streptococcus equi PPIase SEQ0694 alters the production of multiple secreted proteins, including at least two putative virulence factors (FNE and IdeE2). We demonstrate also that, despite some unusual sequence features, recombinant SEQ0694 and its central parvulin domain are functional PPIases. These data add to our knowledge of the mechanisms by which lipoprotein PPIases contribute to the virulence of streptococcal pathogens.
Collapse
Affiliation(s)
- Felicia Ikolo
- Department of Applied Sciences, Faculty of Health & Life Sciences, University of Northumbria at Newcastle, Newcastle upon Tyne, NE1 8ST, UK. and Department of Biochemistry, School of Medicine, St. George's University, True Blue, St. George's, Grenada
| | - Meng Zhang
- Department of Applied Sciences, Faculty of Health & Life Sciences, University of Northumbria at Newcastle, Newcastle upon Tyne, NE1 8ST, UK.
| | - Dean J Harrington
- Division of Biomedical Science, School of Life Sciences, University of Bradford, West Yorkshire, BD7 1DP, UK
| | - Carl Robinson
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK
| | - Andrew S Waller
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK
| | - Iain C Sutcliffe
- Department of Applied Sciences, Faculty of Health & Life Sciences, University of Northumbria at Newcastle, Newcastle upon Tyne, NE1 8ST, UK.
| | - Gary W Black
- Department of Applied Sciences, Faculty of Health & Life Sciences, University of Northumbria at Newcastle, Newcastle upon Tyne, NE1 8ST, UK.
| |
Collapse
|
8
|
Hoppstock L, Trusch F, Lederer C, van West P, Koenneke M, Bayer P. NmPin from the marine thaumarchaeote Nitrosopumilus maritimus is an active membrane associated prolyl isomerase. BMC Biol 2016; 14:53. [PMID: 27349962 PMCID: PMC4922055 DOI: 10.1186/s12915-016-0274-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/14/2016] [Indexed: 12/01/2022] Open
Abstract
Background Peptidyl-prolyl isomerases (PPIases) are present in all forms of life and play a crucial role in protein folding and regulation. They catalyze the cis-trans isomerization of the peptide bond that precedes proline residues in numerous proteins. The parvulins, which is one family of PPIases, have been extensively investigated in several eukaryotes. However, nothing is known about their expression, function and localization in archaea. Results Here, we describe the endogenous expression, molecular structure, function and cellular localization of NmPin, a single-domain parvulin-type PPIase from Nitrosopumilus maritimus. This marine chemolithoautotrophic archaeon belongs to the globally abundant phylum Thaumarchaeota. Using high resolution NMR spectroscopy we demonstrate that the 3D structure of NmPin adopts a parvulin fold and confirmed its peptidyl-prolyl isomerase activity by protease-coupled assays and mutagenesis studies. A detailed topological analysis revealed a positively charged lysine-rich patch on the protein surface, which is conserved in all known parvulin sequences of thaumarchaeotes and targets NmPin to lipids in vitro. Immunofluorescence microscopy confirms that the protein is attached to the outer archaeal cell membrane in vivo. Transmission electron microscopy uncovered that NmPin has a uniform distribution at the membrane surface, which is correlated with a native cell shape of the prokaryote. Conclusion We present a novel solution structure of a catalytically active thaumarchaeal parvulin. Our results reveal that a lysine-rich patch in NmPin mediates membrane localization. These findings provide a model whereby NmPin is located between the archaeal membrane and the surface layer and hence suggest proteins of the S-layer as the key target substrates of this parvulin. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0274-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lukas Hoppstock
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology, University of Duisburg-Essen, Universitätsstr. 1-4, 45141, Essen, Germany
| | - Franziska Trusch
- Aberdeen Oomycetes Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, AB25 2ZD, Aberdeen, UK
| | - Christoph Lederer
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology, University of Duisburg-Essen, Universitätsstr. 1-4, 45141, Essen, Germany
| | - Pieter van West
- Aberdeen Oomycetes Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, AB25 2ZD, Aberdeen, UK
| | - Martin Koenneke
- Organic Geochemistry Group, MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Str. MARUM, 28359, Bremen, Germany
| | - Peter Bayer
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology, University of Duisburg-Essen, Universitätsstr. 1-4, 45141, Essen, Germany.
| |
Collapse
|
9
|
Heinisch JJ, Brandt R. Signaling pathways and posttranslational modifications of tau in Alzheimer's disease: the humanization of yeast cells. MICROBIAL CELL 2016; 3:135-146. [PMID: 28357346 DOI: 10.15698/mic2016.04.489] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In the past decade, yeast have been frequently employed to study the molecular mechanisms of human neurodegenerative diseases, generally by means of heterologous expression of genes encoding the relevant hallmark proteins. However, it has become evident that substantial posttranslational modifications of many of these proteins are required for the development and progression of potentially disease relevant changes. This is exemplified by the neuronal tau proteins, which are critically involved in a class of neuro-degenerative diseases collectively called tauopathies and which includes Alz-heimer's disease (AD) as its most common representative. In the course of the disease, tau changes its phosphorylation state and becomes hyperphosphory-lated, gets truncated by proteolytic cleavage, is subject to O-glycosylation, sumoylation, ubiquitinylation, acetylation and some other modifications. This poses the important question, which of these posttranslational modifications are naturally occurring in the yeast model or can be reconstituted by heterol-ogous gene expression. Here, we present an overview on common modifica-tions as they occur in tau during AD, summarize their potential relevance with respect to disease mechanisms and refer to the native yeast enzyme orthologs capable to perform these modifications. We will also discuss potential approaches to humanize yeast in order to create modification patterns resembling the situation in mammalian cells, which could enhance the value of Saccharomyces cerevisiae and Kluyveromyces lactis as disease models.
Collapse
Affiliation(s)
- Jürgen J Heinisch
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, Barbarastr. 11, D-49076 Osnabrück, Germany
| | - Roland Brandt
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Neurobiologie, Barbarastr. 11, D-49076 Osnabrück, Germany
| |
Collapse
|
10
|
Heinisch JJ, Brandt R. Signaling pathways and posttranslational modifications of tau in Alzheimer's disease: the humanization of yeast cells. MICROBIAL CELL 2016. [PMID: 28357346 DOI: 10.15698/mic2016.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the past decade, yeast have been frequently employed to study the molecular mechanisms of human neurodegenerative diseases, generally by means of heterologous expression of genes encoding the relevant hallmark proteins. However, it has become evident that substantial posttranslational modifications of many of these proteins are required for the development and progression of potentially disease relevant changes. This is exemplified by the neuronal tau proteins, which are critically involved in a class of neuro-degenerative diseases collectively called tauopathies and which includes Alz-heimer's disease (AD) as its most common representative. In the course of the disease, tau changes its phosphorylation state and becomes hyperphosphory-lated, gets truncated by proteolytic cleavage, is subject to O-glycosylation, sumoylation, ubiquitinylation, acetylation and some other modifications. This poses the important question, which of these posttranslational modifications are naturally occurring in the yeast model or can be reconstituted by heterol-ogous gene expression. Here, we present an overview on common modifica-tions as they occur in tau during AD, summarize their potential relevance with respect to disease mechanisms and refer to the native yeast enzyme orthologs capable to perform these modifications. We will also discuss potential approaches to humanize yeast in order to create modification patterns resembling the situation in mammalian cells, which could enhance the value of Saccharomyces cerevisiae and Kluyveromyces lactis as disease models.
Collapse
Affiliation(s)
- Jürgen J Heinisch
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, Barbarastr. 11, D-49076 Osnabrück, Germany
| | - Roland Brandt
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Neurobiologie, Barbarastr. 11, D-49076 Osnabrück, Germany
| |
Collapse
|
11
|
The structural and functional role of the three tryptophan residues in Pin1. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 146:58-67. [DOI: 10.1016/j.jphotobiol.2015.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/25/2015] [Accepted: 03/12/2015] [Indexed: 11/23/2022]
|
12
|
Sowole MA, Innes BT, Amunugama M, Litchfield DW, Brandl CJ, Shilton BH, Konermann L. Noncovalent binding of a cyclic peptide inhibitor to the peptidyl-prolyl isomerase Pin1, explored by hydrogen exchange mass spectrometry. CAN J CHEM 2015. [DOI: 10.1139/cjc-2014-0230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pin1 is a peptidyl-prolyl isomerase (PPIase) that plays a central role in eukaryotic cell cycle regulation, making this protein an interesting target for cancer therapy. Pin1 exhibits high specificity for substrates where proline is preceded by phosphoserine or phosphothreonine. The protein comprises an N-terminal WW (tryptophan–tryptophan) domain and a C-terminal PPIase domain. The cyclic peptide [CRYPEVEIC] (square brackets are used to denote the cyclic structure) represents a lead compound for a new class of nonphosphorylated Pin1 inhibitors. Unfortunately, it has not been possible thus far to characterize the Pin1–[CRYPEVEIC] complex by X-ray crystallography. Thus, the exact binding mode remains unknown. The current work employs hydrogen/deuterium exchange mass spectrometry for gaining insights into the Pin1–[CRYPEVEIC] interactions. The WW domain shows extensive conformational dynamics, both in the presence and in the absence of ligand. In contrast, profound changes in deuteration kinetics are observed in the PPIase domain after the addition of [CRYPEVEIC]. The secondary structure elements β2, α3, and α4 exhibit markedly reduced deuteration, consistent with their postulated involvement in ligand binding. Unexpectedly, [CRYPEVEIC] destabilizes the range of residues 61–86, a segment that comprises basic side chains that normally interact with the substrate phosphate. This destabilization is likely caused by steric clashes with Y3 or E5 of the inhibitor. Ligand-induced destabilization has previously been reported for a few other proteins, but effects of this type are not very common. Our findings suggest that future crystallization trials on Pin1 variants deleted for residues in the 61–86 range might provide a path towards high-resolution X-ray structures of Pin1 bound to cyclic peptide inhibitors.
Collapse
Affiliation(s)
- Modupeola A. Sowole
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Brendan T. Innes
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Mahasilu Amunugama
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - David W. Litchfield
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Christopher J. Brandl
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Brian H. Shilton
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
13
|
Xu N, Tochio N, Wang J, Tamari Y, Uewaki JI, Utsunomiya-Tate N, Igarashi K, Shiraki T, Kobayashi N, Tate SI. The C113D mutation in human Pin1 causes allosteric structural changes in the phosphate binding pocket of the PPIase domain through the tug of war in the dual-histidine motif. Biochemistry 2014; 53:5568-78. [PMID: 25100325 DOI: 10.1021/bi5007817] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Pin1 peptidyl-prolyl isomerase (PPIase) catalyzes specifically the pSer/pThr-Pro motif. The cis-trans isomerization mechanism has been studied by various approaches, including X-ray crystallography, site-directed mutagenesis, and the kinetic isotope effect on isomerization. However, a complete picture of the reaction mechanism remains elusive. On the basis of the X-ray structure of Pin1, residue C113 was proposed to play a nucleophile attacker to catalyze the isomerization. The controversial result that the C113D Pin1 mutant retains the activity, albeit at a reduced level, challenges the importance of C113 as a catalyst. To facilitate our understanding of the Pin1 isomerization process, we compared the structures and dynamics of the wild type with those of the C113D mutant Pin1 PPIase domains (residues 51-163). We found the C113D mutation disturbed the hydrogen bonds between the conserved histidine residues, H59 and H157 ("dual-histidine motif"); H59 imidazole forms a stable hydrogen bond to H157 in the wild type, whereas it has a strong hydrogen bond to D113 with weakened bonding to H157 in the C113D mutant. The C113D mutation unbalanced the hydrogen bonding tug of war for H59 between C113/D113 and H157 and destabilized the catalytic site structure, which eventually resulted in an altered conformation of the basic triad (K63, R68, and R69) that binds to the phosphate group in a substrate. The change in the basic triad structure could explain the severely weakened substrate binding ability of the C113D mutant. Overall, this work demonstrated that C113 plays a role in keeping the catalytic site in an active fold, which has never before been described.
Collapse
Affiliation(s)
- Ning Xu
- Department of Mathematical and Life Sciences, School of Science, Hiroshima University , 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Vöhringer-Martinez E, Verstraelen T, Ayers PW. The Influence of Ser-154, Cys-113, and the Phosphorylated Threonine Residue on the Catalytic Reaction Mechanism of Pin1. J Phys Chem B 2014; 118:9871-80. [DOI: 10.1021/jp505638w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Esteban Vöhringer-Martinez
- Departamento
de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, 4030000 Concepción, Chile
| | - Toon Verstraelen
- Center
for Molecular Modeling (CMM), Ghent University, 9000 Ghent, Belgium (Member of the QCMM Ghent−Brussels
Alliance)
| | - Paul W. Ayers
- Department
of Chemistry, McMaster University, 1280 Main Street West, Hamilton, Ontario L8 S4L8, Canada
| |
Collapse
|
15
|
Barman A, Hamelberg D. Cysteine-mediated dynamic hydrogen-bonding network in the active site of Pin1. Biochemistry 2014; 53:3839-50. [PMID: 24840168 DOI: 10.1021/bi5000977] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Enzymes catalyze a plethora of chemical reactions that are tightly regulated and intricately coupled in biology. Catalysis of phosphorylation-dependent cis-trans isomerization of peptidyl-prolyl bonds, which act as conformational switches in regulating many post-phosphorylation processes, is considered to be one of the most critical. Pin1 is a cis-trans isomerase of peptidyl-prolyl(ω-) bonds of phosphorylated-Ser/Thr-Pro motifs and has been implicated in many diseases. Structural and experimental studies are still unable to resolve the mechanistic role and protonation states of two adjacent histidines (His59 and His157) and a cysteine (Cys113) in the active site of Pin1. Here, we show that the protonation state of Cys113 mediates a dynamic hydrogen-bonding network in the active site of Pin1, involving the two adjacent histidines and several other residues that are highly conserved and necessary for catalysis. We have used detailed free energy calculations and molecular dynamics simulations, complementing previous experiments, to resolve the ambiguities in the orientations of the histidines and protonation states of these key active site residues, details that are critical for fully understanding the mechanism of Pin1 and necessary for developing potent inhibitors. Importantly, Cys113 is shown to alternate between the unprotonated and neutral states, unprotonated in free Pin1 and neutral in substrate-bound Pin1. Our results are consistent with experiments and provide an explanation for the chemical reactivity of free Pin1 that is suggested to be necessary for the regulation of the enzyme.
Collapse
Affiliation(s)
- Arghya Barman
- Department of Chemistry and the Center for Biotechnology and Drug Design, Georgia State University , Atlanta, Georgia 30302-4098, United States
| | | |
Collapse
|
16
|
The Ess1 prolyl isomerase: traffic cop of the RNA polymerase II transcription cycle. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:316-33. [PMID: 24530645 DOI: 10.1016/j.bbagrm.2014.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/01/2014] [Accepted: 02/03/2014] [Indexed: 11/23/2022]
Abstract
Ess1 is a prolyl isomerase that regulates the structure and function of eukaryotic RNA polymerase II. Ess1 works by catalyzing the cis/trans conversion of pSer5-Pro6 bonds, and to a lesser extent pSer2-Pro3 bonds, within the carboxy-terminal domain (CTD) of Rpb1, the largest subunit of RNA pol II. Ess1 is conserved in organisms ranging from yeast to humans. In budding yeast, Ess1 is essential for growth and is required for efficient transcription initiation and termination, RNA processing, and suppression of cryptic transcription. In mammals, Ess1 (called Pin1) functions in a variety of pathways, including transcription, but it is not essential. Recent work has shown that Ess1 coordinates the binding and release of CTD-binding proteins that function as co-factors in the RNA pol II complex. In this way, Ess1 plays an integral role in writing (and reading) the so-called CTD code to promote production of mature RNA pol II transcripts including non-coding RNAs and mRNAs.
Collapse
|
17
|
Wang JZ, Li SR, Li YL, Zhang YZ, Zhang T, Zhao CX, Yao CX, Du LF. Could Pin1 help us conquer essential hypertension at an earlier stage? A promising early-diagnostic biomarker and its therapeutic implications for the disease. Med Hypotheses 2013; 81:931-5. [DOI: 10.1016/j.mehy.2013.08.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 08/07/2013] [Accepted: 08/22/2013] [Indexed: 10/26/2022]
|
18
|
Velazquez HA, Hamelberg D. Conformation-Directed Catalysis and Coupled Enzyme–Substrate Dynamics in Pin1 Phosphorylation-Dependent Cis–Trans Isomerase. J Phys Chem B 2013; 117:11509-17. [DOI: 10.1021/jp405271s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hector A. Velazquez
- Department
of Chemistry and
the Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-4098, United States
| | - Donald Hamelberg
- Department
of Chemistry and
the Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-4098, United States
| |
Collapse
|
19
|
Aluminum(III) interferes with the structure and the activity of the peptidyl-prolyl cis-trans isomerase (Pin1): A new mechanism contributing to the pathogenesis of Alzheimer's disease and cancers? J Inorg Biochem 2013; 126:111-7. [DOI: 10.1016/j.jinorgbio.2013.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 12/25/2022]
|
20
|
Focusing on the structure and the function of Pin1: New insights into the opposite effects of fever on cancers and Alzheimer’s disease. Med Hypotheses 2013; 81:282-4. [DOI: 10.1016/j.mehy.2013.04.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 04/11/2013] [Accepted: 04/16/2013] [Indexed: 12/22/2022]
|
21
|
Innes BT, Bailey ML, Brandl CJ, Shilton BH, Litchfield DW. Non-catalytic participation of the Pin1 peptidyl-prolyl isomerase domain in target binding. Front Physiol 2013; 4:18. [PMID: 23407864 PMCID: PMC3571201 DOI: 10.3389/fphys.2013.00018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 01/24/2013] [Indexed: 01/19/2023] Open
Abstract
Pin1 is a phosphorylation-dependent peptidyl-prolyl isomerase (PPIase) that has the potential to add an additional level of regulation within protein kinase mediated signaling pathways. Furthermore, there is a mounting body of evidence implicating Pin1 in the emergence of pathological phenotypes in neurodegeneration and cancer through the isomerization of a wide variety of substrates at peptidyl-prolyl bonds where the residue preceding proline is a phosphorylated serine or threonine residue (i.e., pS/T-P motifs). A key step in this regulatory process is the interaction of Pin-1 with its substrates. This is a complex process since Pin1 is composed of two domains, the catalytic PPIase domain, and a type IV WW domain, both of which recognize pS/T-P motifs. The observation that the WW domain exhibits considerably higher binding affinity for pS/T-P motifs has led to predictions that the two domains may have distinct roles in mediating the actions of Pin1 on its substrates. To evaluate the participation of its individual domains in target binding, we performed GST pulldowns to monitor interactions between various forms of Pin1 and mitotic phospho-proteins that revealed two classes of Pin-1 interacting proteins, differing in their requirement for residues within the PPIase domain. From these observations, we consider models for Pin1-substrate interactions and the potential functions of the different classes of Pin1 interacting proteins. We also compare sequences that are recognized by Pin1 within its individual interaction partners to investigate the underlying basis for its different types of interactions.
Collapse
Affiliation(s)
- Brendan T Innes
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada
| | | | | | | | | |
Collapse
|
22
|
Wang JZ, Xi L, Zhu GF, Han YG, Luo Y, Wang M, Du LF. The acidic pH-induced structural changes in Pin1 as revealed by spectral methodologies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 98:199-206. [PMID: 22986147 DOI: 10.1016/j.saa.2012.07.105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/27/2012] [Accepted: 07/27/2012] [Indexed: 06/01/2023]
Abstract
Pin1 is closely associated with the pathogenesis of cancers and Alzheimer's disease (AD). Previously, we have shown the characteristics of the thermal denaturation of Pin1. Herein, the acid-induced denaturation of Pin1 was determined by means of fluorescence emission, synchronous fluorescence, far-UV CD, ANS fluorescence and RLS spectroscopies. The fluorescence emission spectra and the synchronous fluorescence spectra suggested the partially reversible unfolding (approximately from pH 7.0 to 4.0) and refolding (approximately from pH 4.0 to 1.0) of the structures around the chromophores in Pin1, apparently with an intermediate state at about pH 4.0-4.5. The far-UV CD spectra indicated that acidic pH (below pH 4.0) induced the structural transition from α-helix and random coils to β-sheet in Pin1. The ANS fluorescence and the RLS spectra further suggested the exposure of the hydrophobic side-chains of Pin1 and the aggregation of it especially below pH 2.3, and the aggregation possibly resulted in the formation of extra intermolecular β-sheet. The present work primarily shows that acidic pH can induce kinds of irreversible structural changes in Pin1, such as the exposure of the hydrophobic side-chains, the transition from α-helix to β-sheet and the aggregation of Pin1, and also explains why Pin1 loses most of its activity below pH 5.0. The results emphasize the important role of decreased pH in the pathogenesis of some Pin1-related diseases, and support the therapeutic approach for them by targeting acidosis and modifying the intracellular pH gradients.
Collapse
Affiliation(s)
- Jing-Zhang Wang
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | | | | | | | | | | | | |
Collapse
|
23
|
Vöhringer-Martinez E, Duarte F, Toro-Labbé A. How Does Pin1 Catalyze the Cis–Trans Prolyl Peptide Bond Isomerization? A QM/MM and Mean Reaction Force Study. J Phys Chem B 2012; 116:12972-9. [DOI: 10.1021/jp307946h] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Fernanda Duarte
- Laboratorio de Química
Teórica Computacional (QTC), Facultad de Química, Pontificia Universidad Católica de Chile, Santiago,
Chile
| | - Alejandro Toro-Labbé
- Laboratorio de Química
Teórica Computacional (QTC), Facultad de Química, Pontificia Universidad Católica de Chile, Santiago,
Chile
| |
Collapse
|
24
|
Sun L, Wu X, Peng Y, Goh JY, Liou YC, Lin D, Zhao Y. Solution structural analysis of the single-domain parvulin TbPin1. PLoS One 2012; 7:e43017. [PMID: 22900083 PMCID: PMC3416822 DOI: 10.1371/journal.pone.0043017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 07/16/2012] [Indexed: 12/24/2022] Open
Abstract
Background Pin1-type parvulins are phosphorylation-dependent peptidyl-prolyl cis-trans isomerases. Their functions have been widely reported to be involved in a variety of cellular responses or processes, such as cell division, transcription, and apoptosis, as well as in human diseases including Alzheimer's disease and cancers. TbPin1 was identified as a novel class of Pin1-type parvulins from Trypanosoma brucei, containing a unique PPIase domain, which can catalyze the isomerization of phosphorylated Ser/Thr-Pro peptide bond. Methodology/Principal Findings We determined the solution structure of TbPin1 and performed 15N relaxation measurements to analyze its backbone dynamics using multi-dimensional heteronuclear NMR spectroscopy. The average RMSD values of the 20 lowest energy structures are 0.50±0.05 Å for backbone heavy atoms and 0.85±0.08 Å for all heavy atoms. TbPin1 adopts the typical catalytic tertiary structure of Pin1-type parvulins, which comprises a globular fold with a four-stranded anti-parallel β-sheet core surrounded by three α-helices and one 310-helix. The global structure of TbPin1 is relatively rigid except the active site. The 2D EXSY spectra illustrate that TbPin1 possesses a phosphorylation-dependent PPIase activity. The binding sites of TbPin1 for a phosphorylated peptide substrate {SSYFSG[p]TPLEDDSD} were determined by the chemical shift perturbation approach. Residues Ser15, Arg18, Asn19, Val21, Ser22, Val32, Gly66, Ser67, Met83, Asp105 and Gly107 are involved in substantial contact with the substrate. Conclusions/Significance The solution structure of TbPin1 and the binding sites of the phosphorylated peptide substrate on TbPin1 were determined. The work is helpful for further understanding the molecular basis of the substrate specificity for Pin1-type parvulin family and enzyme catalysis.
Collapse
Affiliation(s)
- Lifang Sun
- The Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Xueji Wu
- The Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Yu Peng
- NMR Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jian Yuan Goh
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Yih-Cherng Liou
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Donghai Lin
- The Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
- * E-mail: (DL); (YZ)
| | - Yufen Zhao
- The Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
- * E-mail: (DL); (YZ)
| |
Collapse
|
25
|
Mueller JW, Link NM, Matena A, Hoppstock L, Rüppel A, Bayer P, Blankenfeldt W. Crystallographic Proof for an Extended Hydrogen-Bonding Network in Small Prolyl Isomerases. J Am Chem Soc 2011; 133:20096-9. [DOI: 10.1021/ja2086195] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jonathan W. Mueller
- Institute for Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Nina M. Link
- Institute for Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Anja Matena
- Institute for Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Lukas Hoppstock
- Institute for Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Alma Rüppel
- Institute for Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Peter Bayer
- Institute for Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Wulf Blankenfeldt
- University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| |
Collapse
|
26
|
Duncan KE, Dempsey BR, Killip LE, Adams J, Bailey ML, Lajoie GA, Litchfield DW, Brandl CJ, Shaw GS, Shilton BH. Discovery and Characterization of a Nonphosphorylated Cyclic Peptide Inhibitor of the Peptidylprolyl Isomerase, Pin1. J Med Chem 2011; 54:3854-65. [DOI: 10.1021/jm200156c] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kelly E. Duncan
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Brian R. Dempsey
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Lauren E. Killip
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Jarrett Adams
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Melanie L. Bailey
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Gilles A. Lajoie
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - David W. Litchfield
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Christopher J. Brandl
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Gary S. Shaw
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Brian H. Shilton
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
27
|
Wang JZ, Lin T, Teng T, Xie SS, Zhu GF, Du LF. Spectroscopic studies on the irreversible heat-induced structural transition of Pin1. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 78:142-147. [PMID: 20934373 DOI: 10.1016/j.saa.2010.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 08/31/2010] [Accepted: 09/08/2010] [Indexed: 05/30/2023]
Abstract
Previously, the mechanism of the thermal unfolding of Pin1 (on-line measurements) was studied, revealing that Pin1 has a relatively high thermal stability. However, it is still questionable whether the unfolding of Pin1 is reversible. In the present work, intrinsic tryptophan fluorescence, ANS fluorescence, RLS, FTIR and CD spectroscopies are used to evaluate the reversibility of the thermal unfolding of Pin1. Intrinsic tryptophan fluorescence studies indicate that structural changes around tryptophan motifs in Pin1 are possibly reversible after heat treatment (even above 98°C), for no significant change in the intensity or λ(max) of the spectra was observed. ANS fluorescence measurements indicate the irreversible exposure of the hydrophobic clusters in Pin1 after heat treatment at 98°C, with increase in the fluorescence intensity and blue shift in λmax. Also, RLS signals of the Pin1-ANS system increased after heat treatment, possibly implying both the unfolding and the aggregation of Pin1. In addition, FTIR and CD results confirmed the irreversible unfolding of the secondary structure in Pin1 after heat treatment above 90°C, showing decreases in both α-helix and β-sheet. In summary, the present work mainly suggests that heat treatment, especially above 90°C, has an important impact on the structural stability of Pin1, and the structural unfolding induced by heat was proved to be irreversible.
Collapse
Affiliation(s)
- Jing-Zhang Wang
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | | | | | | | | | | |
Collapse
|
28
|
Malešević M, Poehlmann A, Hernandez Alvarez B, Diessner A, Träger M, Rahfeld JU, Jahreis G, Liebscher S, Bordusa F, Fischer G, Lücke C. The Protein-Free IANUS Peptide Array Uncovers Interaction Sites between Escherichia coli Parvulin 10 and Alkyl Hydroperoxide Reductase. Biochemistry 2010; 49:8626-35. [DOI: 10.1021/bi101015p] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Miroslav Malešević
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle/Saale, Germany
| | - Angela Poehlmann
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle/Saale, Germany
| | - Birte Hernandez Alvarez
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle/Saale, Germany
| | - André Diessner
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straβe 3, 06120 Halle/Saale, Germany
| | - Mario Träger
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle/Saale, Germany
| | - Jens-Ulrich Rahfeld
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle/Saale, Germany
| | - Günther Jahreis
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle/Saale, Germany
| | - Sandra Liebscher
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straβe 3, 06120 Halle/Saale, Germany
| | - Frank Bordusa
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straβe 3, 06120 Halle/Saale, Germany
| | - Gunter Fischer
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle/Saale, Germany
| | - Christian Lücke
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle/Saale, Germany
| |
Collapse
|
29
|
Wang JZ, Lin T, Zhu GF, Du LF. Stability of Pin1 as revealed by thermal and spectroscopic studies. J Mol Struct 2010. [DOI: 10.1016/j.molstruc.2010.04.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
Weininger U, Jakob RP, Kovermann M, Balbach J, Schmid FX. The prolyl isomerase domain of PpiD from Escherichia coli shows a parvulin fold but is devoid of catalytic activity. Protein Sci 2010; 19:6-18. [PMID: 19866485 DOI: 10.1002/pro.277] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PpiD is a periplasmic folding helper protein of Escherichia coli. It consists of an N-terminal helix that anchors PpiD in the inner membrane near the SecYEG translocon, followed by three periplasmic domains. The second domain (residues 264-357) shows homology to parvulin-like prolyl isomerases. This domain is a well folded, stable protein and follows a simple two-state folding mechanism. In its solution structure, as determined by NMR spectroscopy, it resembles most closely the first parvulin domain of the SurA protein, which resides in the periplasm of E. coli as well. A previously reported prolyl isomerase activity of PpiD could not be reproduced when using improved protease-free peptide assays or assays with refolding proteins as substrates. The parvulin domain of PpiD interacts, however, with a proline-containing tetrapeptide, and the binding site, as identified by NMR resonance shift analysis, colocalized with the catalytic sites of other parvulins. In its structure, the parvulin domain of PpiD resembles most closely the inactive first parvulin domain of SurA, which is part of the chaperone unit of this protein and presumably involved in substrate recognition.
Collapse
Affiliation(s)
- Ulrich Weininger
- Institut für Physik, Biophysik, and Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine (MZP), Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle(Saale), Germany
| | | | | | | | | |
Collapse
|
31
|
Heikkinen O, Seppala R, Tossavainen H, Heikkinen S, Koskela H, Permi P, Kilpeläinen I. Solution structure of the parvulin-type PPIase domain of Staphylococcus aureus PrsA--implications for the catalytic mechanism of parvulins. BMC STRUCTURAL BIOLOGY 2009; 9:17. [PMID: 19309529 PMCID: PMC2678132 DOI: 10.1186/1472-6807-9-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 03/24/2009] [Indexed: 11/16/2022]
Abstract
Background Staphylococcus aureus is a Gram-positive pathogenic bacterium causing many kinds of infections from mild respiratory tract infections to life-threatening states as sepsis. Recent emergence of S. aureus strains resistant to numerous antibiotics has created a need for new antimicrobial agents and novel drug targets. S. aureus PrsA is a membrane associated extra-cytoplasmic lipoprotein which contains a parvulin-type peptidyl-prolyl cis-trans isomerase domain. PrsA is known to act as an essential folding factor for secreted proteins in Gram-positive bacteria and thus it is a potential target for antimicrobial drugs against S. aureus. Results We have solved a high-resolution solution structure of the parvulin-type peptidyl-prolyl cis-trans isomerase domain of S. aureus PrsA (PrsA-PPIase). The results of substrate peptide titrations pinpoint the active site and demonstrate the substrate preference of the enzyme. With detailed NMR spectroscopic investigation of the orientation and tautomeric state of the active site histidines we are able to give further insight into the structure of the catalytic site. NMR relaxation analysis gives information on the dynamic behaviour of PrsA-PPIase. Conclusion Detailed structural description of the S. aureus PrsA-PPIase lays the foundation for structure-based design of enzyme inhibitors. The structure resembles hPin1-type parvulins both structurally and regarding substrate preference. Even though a wealth of structural data is available on parvulins, the catalytic mechanism has yet to be resolved. The structure of S. aureus PrsA-PPIase and our findings on the role of the conserved active site histidines help in designing further experiments to solve the detailed catalytic mechanism.
Collapse
Affiliation(s)
- Outi Heikkinen
- Department of Chemistry, University of Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|