1
|
Nguyen RC, Stagliano C, Liu A. Structural insights into the half-of-sites reactivity in homodimeric and homotetrameric metalloenzymes. Curr Opin Chem Biol 2023; 75:102332. [PMID: 37269676 PMCID: PMC10528533 DOI: 10.1016/j.cbpa.2023.102332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 04/24/2023] [Accepted: 04/29/2023] [Indexed: 06/05/2023]
Abstract
Half-of-sites reactivity in many homodimeric and homotetrameric metalloenzymes has been known for half a century, yet its benefit remains poorly understood. A recently reported cryo-electron microscopy structure has given some clues on the less optimized reactivity of Escherichia coli ribonucleotide reductase with an asymmetric association of α2β2 subunits during catalysis. Moreover, nonequivalence of enzyme active sites has been reported in many other enzymes, possibly as a means of regulation. They are often induced by substrate binding or caused by a critical component introduced from a neighboring subunit in response to substrate loadings, such as in prostaglandin endoperoxide H synthase, cytidine triphosphate synthase, glyoxalase, tryptophan dioxygenase, and several decarboxylases or dehydrogenases. Overall, half-of-sites reactivity is likely not an act of wasting resources but rather a method devised in nature to accommodate catalytic or regulatory needs.
Collapse
Affiliation(s)
- Romie C Nguyen
- Department of Chemistry, University of Texas, San Antonio, TX, 78249, USA
| | - Cassadee Stagliano
- Department of Chemistry, University of Texas, San Antonio, TX, 78249, USA
| | - Aimin Liu
- Department of Chemistry, University of Texas, San Antonio, TX, 78249, USA.
| |
Collapse
|
2
|
Preliminary Characterization of a Ni2+-Activated and Mycothiol-Dependent Glyoxalase I Enzyme from Streptomyces coelicolor. INORGANICS 2019. [DOI: 10.3390/inorganics7080099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The glyoxalase system consists of two enzymes, glyoxalase I (Glo1) and glyoxalase II (Glo2), and converts a hemithioacetal substrate formed between a cytotoxic alpha-ketoaldehyde, such as methylglyoxal (MG), and an intracellular thiol, such as glutathione, to a non-toxic alpha-hydroxy acid, such as d-lactate, and the regenerated thiol. Two classes of Glo1 have been identified. The first is a Zn2+-activated class and is exemplified by the Homo sapiens Glo1. The second class is a Ni2+-activated enzyme and is exemplified by the Escherichia coli Glo1. Glutathione is the intracellular thiol employed by Glo1 from both these sources. However, many organisms employ other intracellular thiols. These include trypanothione, bacillithiol, and mycothiol. The trypanothione-dependent Glo1 from Leishmania major has been shown to be Ni2+-activated. Genetic studies on Bacillus subtilis and Corynebacterium glutamicum focused on MG resistance have indicated the likely existence of Glo1 enzymes employing bacillithiol or mycothiol respectively, although no protein characterizations have been reported. The current investigation provides a preliminary characterization of an isolated mycothiol-dependent Glo1 from Streptomyces coelicolor. The enzyme has been determined to display a Ni2+-activation profile and indicates that Ni2+-activated Glo1 are indeed widespread in nature regardless of the intracellular thiol employed by an organism.
Collapse
|
3
|
Raje S, Mani K, Kandasamy P, Butcher RJ, Angamuthu R. Bioinspired Oxidative Cleavage of Aliphatic C–C Bonds Utilizing Aerial Oxygen by Nickel Acireductone Dioxygenase Mimics. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sakthi Raje
- Laboratory of Inorganic Synthesis and Bioinspired Catalysis (LISBIC) Department of Chemistry Indian Institute of Technology Kanpur 208016 Kanpur India
| | - Kalaikodikumaran Mani
- Laboratory of Inorganic Synthesis and Bioinspired Catalysis (LISBIC) Department of Chemistry Indian Institute of Technology Kanpur 208016 Kanpur India
| | - Parameswaran Kandasamy
- Laboratory of Inorganic Synthesis and Bioinspired Catalysis (LISBIC) Department of Chemistry Indian Institute of Technology Kanpur 208016 Kanpur India
| | - Ray J. Butcher
- Department of Chemistry Howard University 20059 Washington, D.C. United States
| | - Raja Angamuthu
- Laboratory of Inorganic Synthesis and Bioinspired Catalysis (LISBIC) Department of Chemistry Indian Institute of Technology Kanpur 208016 Kanpur India
| |
Collapse
|
4
|
González JM, Agostini RB, Alvarez CE, Klinke S, Andreo CS, Campos-Bermudez VA. Deciphering the number and location of active sites in the monomeric glyoxalase I of Zea mays. FEBS J 2019; 286:3255-3271. [PMID: 30993890 DOI: 10.1111/febs.14855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 11/26/2022]
Abstract
Detoxification of methylglyoxal, a toxic by-product of central sugar metabolism, is a major issue for all forms of life. The glyoxalase pathway evolved to effectively convert methylglyoxal into d-lactate via a glutathione hemithioacetal intermediate. Recently, we have shown that the monomeric glyoxalase I from maize exhibits a symmetric fold with two cavities, potentially harboring two active sites, in analogy with homodimeric enzyme surrogates. Here we confirm that only one of the two cavities exhibits glyoxalase I activity and show that it adopts a tunnel-shaped structure upon substrate binding. Such conformational change gives rise to independent binding sites for glutathione and methylglyoxal in the same active site, with important implications for the molecular reaction mechanism, which has been a matter of debate for several decades. DATABASE: Structural data are available in The Protein Data Bank database under the accession numbers 6BNN, 6BNX, and 6BNZ.
Collapse
Affiliation(s)
- Javier M González
- Instituto de Bionanotecnología del NOA (INBIONATEC-CONICET), Universidad Nacional de Santiago del Estero (UNSE), Argentina
| | - Romina B Agostini
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Argentina
| | - Clarisa E Alvarez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Argentina
| | - Sebastián Klinke
- Fundación Instituto Leloir, IIBBA-CONICET, Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Buenos Aires, Argentina
| | - Carlos S Andreo
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Argentina
| | - Valeria A Campos-Bermudez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Argentina
| |
Collapse
|
5
|
Kaur C, Sharma S, Hasan MR, Pareek A, Singla-Pareek SL, Sopory SK. Characteristic Variations and Similarities in Biochemical, Molecular, and Functional Properties of Glyoxalases across Prokaryotes and Eukaryotes. Int J Mol Sci 2017; 18:ijms18040250. [PMID: 28358304 PMCID: PMC5412262 DOI: 10.3390/ijms18040250] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/14/2017] [Accepted: 01/18/2017] [Indexed: 11/16/2022] Open
Abstract
The glyoxalase system is the ubiquitous pathway for the detoxification of methylglyoxal (MG) in the biological systems. It comprises two enzymes, glyoxalase I (GLYI) and glyoxalase II (GLYII), which act sequentially to convert MG into d-lactate, thereby helping living systems get rid of this otherwise cytotoxic byproduct of metabolism. In addition, a glutathione-independent GLYIII enzyme activity also exists in the biological systems that can directly convert MG to d-lactate. Humans and Escherichia coli possess a single copy of GLYI (encoding either the Ni- or Zn-dependent form) and GLYII genes, which through MG detoxification provide protection against various pathological and disease conditions. By contrast, the plant genome possesses multiple GLYI and GLYII genes with a role in abiotic stress tolerance. Plants possess both Ni2+- and Zn2+-dependent forms of GLYI, and studies on plant glyoxalases reveal the various unique features of these enzymes distinguishing them from prokaryotic and other eukaryotic glyoxalases. Through this review, we provide an overview of the plant glyoxalase family along with a comparative analysis of glyoxalases across various species, highlighting similarities as well as differences in the biochemical, molecular, and physiological properties of these enzymes. We believe that the evolution of multiple glyoxalases isoforms in plants is an important component of their robust defense strategies.
Collapse
Affiliation(s)
- Charanpreet Kaur
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Shweta Sharma
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
- Department of Plant Molecular Biology, University of Delhi South campus, New Delhi 110021, India.
| | - Mohammad Rokebul Hasan
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Sneh L Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Sudhir K Sopory
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| |
Collapse
|
6
|
Kaur C, Tripathi AK, Nutan KK, Sharma S, Ghosh A, Tripathi JK, Pareek A, Singla-Pareek SL, Sopory SK. A nuclear-localized rice glyoxalase I enzyme, OsGLYI-8, functions in the detoxification of methylglyoxal in the nucleus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:565-576. [PMID: 27797431 DOI: 10.1111/tpj.13407] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 10/14/2016] [Accepted: 10/18/2016] [Indexed: 05/07/2023]
Abstract
The cellular levels of methylglyoxal (MG), a toxic byproduct of glycolysis, rise under various abiotic stresses in plants. Detoxification of MG is primarily through the glyoxalase pathway. The first enzyme of the pathway, glyoxalase I (GLYI), is a cytosolic metalloenzyme requiring either Ni2+ or Zn2+ for its activity. Plants possess multiple GLYI genes, of which only some have been partially characterized; hence, the precise molecular mechanism, subcellular localization and physiological relevance of these diverse isoforms remain enigmatic. Here, we report the biochemical properties and physiological role of a putative chloroplast-localized GLYI enzyme, OsGLYI-8, from rice, which is strikingly different from all hitherto studied GLYI enzymes in terms of its intracellular localization, metal dependency and kinetics. In contrast to its predicted localization, OsGLYI-8 was found to localize in the nucleus along with its substrate, MG. Further, OsGLYI-8 does not show a strict requirement for metal ions for its activity, is functional as a dimer and exhibits unusual biphasic steady-state kinetics with a low-affinity and a high-affinity substrate-binding component. Loss of AtGLYI-2, the closest Arabidopsis ortholog of OsGLYI-8, results in severe germination defects in the presence of MG and growth retardation under salinity stress conditions. These defects were rescued upon complementation with AtGLYI-2 or OsGLYI-8. Our findings thus provide evidence for the presence of a GLYI enzyme and MG detoxification in the nucleus.
Collapse
Affiliation(s)
- Charanpreet Kaur
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Amit K Tripathi
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kamlesh K Nutan
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shweta Sharma
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ajit Ghosh
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jayant K Tripathi
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ashwani Pareek
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sudhir K Sopory
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
7
|
Suttisansanee U, Ran Y, Mullings KY, Sukdeo N, Honek JF. Modulating glyoxalase I metal selectivity by deletional mutagenesis: underlying structural factors contributing to nickel activation profiles. Metallomics 2016; 7:605-12. [PMID: 25557363 DOI: 10.1039/c4mt00299g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metabolically produced methylglyoxal is a cytotoxic compound that can lead to covalent modification of cellular DNA, RNA and protein. One pathway to detoxify this compound is via the glyoxalase enzyme system. The first enzyme of this detoxification system, glyoxalase I (GlxI), can be divided into two classes according to its metal activation profile, a Zn(2+)-activated class and a Ni(2+)-activated class. In order to elucidate some of the key structural features required for selective metal activation by these two classes of GlxI, deletional mutagenesis was utilized to remove, in a step-wise fashion, a key α-helix (residues 73-87) and two small loop regions (residues 99-103 and 111-114) from the Zn(2+)-activated Pseudomonas aeruginosa GlxI (GloA3) in order to mimic the smaller Ni(2+)-activated GlxI (GloA2) from the same organism. This approach was observed to clearly shift the metal activation profile of a Zn(2+)-activated class GlxI into a Ni(2+)-activated class GlxI enzyme. The α-helix structural component was found to contribute significantly toward GlxI metal specificity, while the two small loop regions were observed to play a more crucial role in the magnitude of the enzymatic activity. The current study should provide additional information on the fundamental relationship of protein structure to metal selectivity in these metalloenzymes.
Collapse
Affiliation(s)
- Uthaiwan Suttisansanee
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| | | | | | | | | |
Collapse
|
8
|
Myers CL, Kuiper EG, Grant PC, Hernandez J, Conn GL, Honek JF. Functional roles in S-adenosyl-L-methionine binding and catalysis for active site residues of the thiostrepton resistance methyltransferase. FEBS Lett 2015; 589:3263-70. [PMID: 26450779 DOI: 10.1016/j.febslet.2015.09.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/28/2015] [Accepted: 09/28/2015] [Indexed: 11/17/2022]
Abstract
Resistance to the antibiotic thiostrepton, in producing Streptomycetes, is conferred by the S-adenosyl-L-methionine (SAM)-dependent SPOUT methyltransferase Tsr. For this and related enzymes, the roles of active site amino acids have been inadequately described. Herein, we have probed SAM interactions in the Tsr active site by investigating the catalytic activity and the thermodynamics of SAM binding by site-directed Tsr mutants. Two arginine residues were demonstrated to be critical for binding, one of which appears to participate in the catalytic reaction. Additionally, evidence consistent with the involvement of an asparagine in the structural organization of the SAM binding site is presented.
Collapse
Affiliation(s)
- Cullen L Myers
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Emily G Kuiper
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Pei C Grant
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Jennifer Hernandez
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - John F Honek
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
9
|
Turra GL, Agostini RB, Fauguel CM, Presello DA, Andreo CS, González JM, Campos-Bermudez VA. Structure of the novel monomeric glyoxalase I from Zea mays. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:2009-20. [PMID: 26457425 PMCID: PMC4601366 DOI: 10.1107/s1399004715015205] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/14/2015] [Indexed: 11/10/2022]
Abstract
The glyoxalase system is ubiquitous among all forms of life owing to its central role in relieving the cell from the accumulation of methylglyoxal, a toxic metabolic byproduct. In higher plants, this system is upregulated under diverse metabolic stress conditions, such as in the defence response to infection by pathogenic microorganisms. Despite their proven fundamental role in metabolic stresses, plant glyoxalases have been poorly studied. In this work, glyoxalase I from Zea mays has been characterized both biochemically and structurally, thus reporting the first atomic model of a glyoxalase I available from plants. The results indicate that this enzyme comprises a single polypeptide with two structurally similar domains, giving rise to two lateral concavities, one of which harbours a functional nickel(II)-binding active site. The putative function of the remaining cryptic active site remains to be determined.
Collapse
Affiliation(s)
- Gino L. Turra
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI–CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Romina B. Agostini
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI–CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Carolina M. Fauguel
- Instituto Nacional de Tecnología Agropecuaria (INTA), CC 31, B2700KXC Pergamino, Argentina
| | - Daniel A. Presello
- Instituto Nacional de Tecnología Agropecuaria (INTA), CC 31, B2700KXC Pergamino, Argentina
| | - Carlos S. Andreo
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI–CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Javier M. González
- Protein Crystallography Station, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Valeria A. Campos-Bermudez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI–CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| |
Collapse
|
10
|
Abstract
A number of bacterial glyoxalase I enzymes are maximally activated by Ni2+ and Co2+ ions, but are inactive in the presence of Zn2+, yet these enzymes will also bind this metal ion. The structure-activity relationships between these two classes of glyoxalase I serve as important clues as to how the molecular structures of these proteins control metal-activation profiles.
Collapse
|
11
|
Bythell-Douglas R, Suttisansanee U, Flematti GR, Challenor M, Lee M, Panjikar S, Honek JF, Bond CS. The Crystal Structure of a HomodimericPseudomonasGlyoxalase I Enzyme Reveals Asymmetric Metallation Commensurate with Half-of-Sites Activity. Chemistry 2014; 21:541-4. [DOI: 10.1002/chem.201405402] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Indexed: 01/11/2023]
|
12
|
Abstract
Our current knowledge of the isomerase glyoxalase I and the thioesterase glyoxalase II is based on a variety of prokaryotic and eukaryotic (model) systems with an emphasis on human glyoxalases. During the last decade, important insights on glyoxalase catalysis and structure–function relationships have also been obtained from parasitic protists. These organisms, including kinetoplastid and apicomplexan parasites, are particularly interesting, both because of their relevance as pathogens and because of their phylogenetic diversity and host–parasite co-evolution which has led to specialized organellar and metabolic adaptations. Accordingly, the glyoxalase repertoire and properties vary significantly among parasitic protists of different major eukaryotic lineages (and even between closely related organisms). For example, several protists have an insular or non-canonical glyoxalase. Furthermore, the structures and the substrate specificities of glyoxalases display drastic variations. The aim of the present review is to highlight such differences as well as similarities between the glyoxalases of parasitic protists and to emphasize the power of comparative studies for gaining insights into fundamental principles and alternative glyoxalase functions.
Collapse
|
13
|
Affiliation(s)
- Michael J Maroney
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | | |
Collapse
|
14
|
Deponte M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta Gen Subj 2013; 1830:3217-66. [DOI: 10.1016/j.bbagen.2012.09.018] [Citation(s) in RCA: 625] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 09/25/2012] [Indexed: 12/12/2022]
|
15
|
He P, Moran GR. Structural and mechanistic comparisons of the metal-binding members of the vicinal oxygen chelate (VOC) superfamily. J Inorg Biochem 2011; 105:1259-72. [DOI: 10.1016/j.jinorgbio.2011.06.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 06/21/2011] [Accepted: 06/24/2011] [Indexed: 11/30/2022]
|
16
|
Suttisansanee U, Honek JF. Bacterial glyoxalase enzymes. Semin Cell Dev Biol 2011; 22:285-92. [DOI: 10.1016/j.semcdb.2011.02.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 02/02/2011] [Indexed: 11/24/2022]
|
17
|
Urscher M, Alisch R, Deponte M. The glyoxalase system of malaria parasites—Implications for cell biology and general glyoxalase research. Semin Cell Dev Biol 2011; 22:262-70. [DOI: 10.1016/j.semcdb.2011.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 02/02/2011] [Indexed: 12/14/2022]
|