1
|
Qin C, Graf LG, Striska K, Janetzky M, Geist N, Specht R, Schulze S, Palm GJ, Girbardt B, Dörre B, Berndt L, Kemnitz S, Doerr M, Bornscheuer UT, Delcea M, Lammers M. Acetyl-CoA synthetase activity is enzymatically regulated by lysine acetylation using acetyl-CoA or acetyl-phosphate as donor molecule. Nat Commun 2024; 15:6002. [PMID: 39019872 PMCID: PMC11255334 DOI: 10.1038/s41467-024-49952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/24/2024] [Indexed: 07/19/2024] Open
Abstract
The AMP-forming acetyl-CoA synthetase is regulated by lysine acetylation both in bacteria and eukaryotes. However, the underlying mechanism is poorly understood. The Bacillus subtilis acetyltransferase AcuA and the AMP-forming acetyl-CoA synthetase AcsA form an AcuA•AcsA complex, dissociating upon lysine acetylation of AcsA by AcuA. Crystal structures of AcsA from Chloroflexota bacterium in the apo form and in complex with acetyl-adenosine-5'-monophosphate (acetyl-AMP) support the flexible C-terminal domain adopting different conformations. AlphaFold2 predictions suggest binding of AcuA stabilizes AcsA in an undescribed conformation. We show the AcuA•AcsA complex dissociates upon acetyl-coenzyme A (acetyl-CoA) dependent acetylation of AcsA by AcuA. We discover an intrinsic phosphotransacetylase activity enabling AcuA•AcsA generating acetyl-CoA from acetyl-phosphate (AcP) and coenzyme A (CoA) used by AcuA to acetylate and inactivate AcsA. Here, we provide mechanistic insights into the regulation of AMP-forming acetyl-CoA synthetases by lysine acetylation and discover an intrinsic phosphotransacetylase allowing modulation of its activity based on AcP and CoA levels.
Collapse
Affiliation(s)
- Chuan Qin
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Leonie G Graf
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Kilian Striska
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Markus Janetzky
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Norman Geist
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Robin Specht
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Sabrina Schulze
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Gottfried J Palm
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Britta Girbardt
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Babett Dörre
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Leona Berndt
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Stefan Kemnitz
- Department for High Performance Computing, University Computing Center, University of Greifswald, 17489, Greifswald, Germany
| | - Mark Doerr
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Mihaela Delcea
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Michael Lammers
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany.
| |
Collapse
|
2
|
Heard SC, Winter JM. Structural, biochemical and bioinformatic analyses of nonribosomal peptide synthetase adenylation domains. Nat Prod Rep 2024; 41:1180-1205. [PMID: 38488017 PMCID: PMC11253843 DOI: 10.1039/d3np00064h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Indexed: 07/18/2024]
Abstract
Covering: 1997 to July 2023The adenylation reaction has been a subject of scientific intrigue since it was first recognized as essential to many biological processes, including the homeostasis and pathogenicity of some bacteria and the activation of amino acids for protein synthesis in mammals. Several foundational studies on adenylation (A) domains have facilitated an improved understanding of their molecular structures and biochemical properties, in particular work on nonribosomal peptide synthetases (NRPSs). In NRPS pathways, A domains activate their respective acyl substrates for incorporation into a growing peptidyl chain, and many nonribosomal peptides are bioactive. From a natural product drug discovery perspective, improving existing bioinformatics platforms to predict unique NRPS products more accurately from genomic data is desirable. Here, we summarize characterization efforts of A domains primarily from NRPS pathways from July 1997 up to July 2023, covering protein structure elucidation, in vitro assay development, and in silico tools for improved predictions.
Collapse
Affiliation(s)
- Stephanie C Heard
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jaclyn M Winter
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
3
|
Patel KD, MacDonald MR, Ahmed SF, Singh J, Gulick AM. Structural advances toward understanding the catalytic activity and conformational dynamics of modular nonribosomal peptide synthetases. Nat Prod Rep 2023; 40:1550-1582. [PMID: 37114973 PMCID: PMC10510592 DOI: 10.1039/d3np00003f] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Indexed: 04/29/2023]
Abstract
Covering: up to fall 2022.Nonribosomal peptide synthetases (NRPSs) are a family of modular, multidomain enzymes that catalyze the biosynthesis of important peptide natural products, including antibiotics, siderophores, and molecules with other biological activity. The NRPS architecture involves an assembly line strategy that tethers amino acid building blocks and the growing peptides to integrated carrier protein domains that migrate between different catalytic domains for peptide bond formation and other chemical modifications. Examination of the structures of individual domains and larger multidomain proteins has identified conserved conformational states within a single module that are adopted by NRPS modules to carry out a coordinated biosynthetic strategy that is shared by diverse systems. In contrast, interactions between modules are much more dynamic and do not yet suggest conserved conformational states between modules. Here we describe the structures of NRPS protein domains and modules and discuss the implications for future natural product discovery.
Collapse
Affiliation(s)
- Ketan D Patel
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Monica R MacDonald
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Syed Fardin Ahmed
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Jitendra Singh
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Andrew M Gulick
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| |
Collapse
|
4
|
Chen IH, Cheng T, Wang YL, Huang SJ, Hsiao YH, Lai YT, Toh SI, Chu J, Rudolf JD, Chang CY. Characterization and Structural Determination of CmnG-A, the Adenylation Domain That Activates the Nonproteinogenic Amino Acid Capreomycidine in Capreomycin Biosynthesis. Chembiochem 2022; 23:e202200563. [PMID: 36278314 DOI: 10.1002/cbic.202200563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/23/2022] [Indexed: 01/25/2023]
Abstract
Capreomycidine (Cap) is a nonproteinogenic amino acid and building block of nonribosomal peptide (NRP) natural products. We report the formation and activation of Cap in capreomycin biosynthesis. CmnC and CmnD catalyzed hydroxylation and cyclization, respectively, of l-Arg to form l-Cap. l-Cap is then adenylated by CmnG-A before being incorporated into the nonribosomal peptide. The co-crystal structures of CmnG-A with l-Cap and adenosine nucleotides provide insights into the specificity and engineering opportunities of this unique adenylation domain.
Collapse
Affiliation(s)
- I-Hsuan Chen
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC.,Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - Ting Cheng
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - Yung-Lin Wang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan ROC
| | - Szu-Jo Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - Yu-Hsuan Hsiao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - Yi-Ting Lai
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - Shu-Ing Toh
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - John Chu
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan, ROC
| | - Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611-7011, USA
| | - Chin-Yuan Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC.,Center for Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan ROC.,Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan ROC
| |
Collapse
|
5
|
Han P, Chen Z, Liu Y, Ma A, Li S, Jia Y. An accurate strategy for pointing the key biocatalytic sites of bre2691A protein for modification of the brevilaterin from Brevibacillus laterosporus. Microb Cell Fact 2022; 21:196. [PMID: 36123650 PMCID: PMC9484153 DOI: 10.1186/s12934-022-01918-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brevilaterin A-E, a novel class of multi-component cationic antimicrobial lipopeptides, were biosynthesized by a non-ribosomal peptides synthetase (NRPS) in Brevibacillus laterosporus. However, the antimicrobial abilities of different brevilaterin components varied greatly, and this multi-component form was impeding the scale production of the excellent component, and a little information about the brevilaterin biosynthesis mechanism was available to apply in brevilaterin design modification. In this study, we used an accurate strategy that revealed the reason for producing multi-component was the substrate selectivity of bre2691A protein being not enough specific and pinpointed the key design sites to make the specificity of bre2691A enhanced. RESULTS Bioinformatic analysis revealed that the biocatalytic site of bre2691A, which was an adenylation domain catalyzed and recognized methionine, leucine, valine and isoleucine and thus introduced them into brevilaterins and caused different components (brevilaterin A-E), was consisted of A1 ~ A10 residues named specificity-conferring code. Coupling molecular docking simulations with mutation studies identified A2 and A7 as critical residues, where determined substrate-specificity and impacted activity. The in virto activity assay showed that the A2 mutant (G193A) would lose activity against methionine and have no effect on the other three amino acids, the A7 mutant (G285C) would enhance the catalytic activity against four substrates, especially against leucine at almost a double activity. When the A2 and A7 residues were synchronously mutated, this mutant would be more focused on recognizing leucine. CONCLUSIONS An accurate strategy that combined with bioinformatics and site-directed mutation techniques revealed the pivotal site A2 and A7 positions of bre2691A protein that could be used to design and modify brevilaterins, thus further providing a reasonable direction of genetic engineering for Brevibacillus laterosporus. A deeper understanding of the function of crucial residues in the adenylation domain would make it get more accurate and highly efficient design and more fully utilized. Furthermore, it would contribute to biotechnological applications, namely for the large centralized synthesis of antimicrobial peptides, or for the optimization of their production.
Collapse
Affiliation(s)
- Panpan Han
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Zhou Chen
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Yangliu Liu
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Aijin Ma
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Siting Li
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Yingmin Jia
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing, 100048, China.
| |
Collapse
|
6
|
Nikolopoulos N, Matos RC, Courtin P, Ayala I, Akherraz H, Simorre JP, Chapot-Chartier MP, Leulier F, Ravaud S, Grangeasse C. DltC acts as an interaction hub for AcpS, DltA and DltB in the teichoic acid D-alanylation pathway of Lactiplantibacillus plantarum. Sci Rep 2022; 12:13133. [PMID: 35907949 PMCID: PMC9338922 DOI: 10.1038/s41598-022-17434-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Teichoic acids (TA) are crucial for the homeostasis of the bacterial cell wall as well as their developmental behavior and interplay with the environment. TA can be decorated by different modifications, modulating thus their biochemical properties. One major modification consists in the esterification of TA by d-alanine, a process known as d-alanylation. TA d-alanylation is performed by the Dlt pathway, which starts in the cytoplasm and continues extracellularly after d-Ala transportation through the membrane. In this study, we combined structural biology and in vivo approaches to dissect the cytoplasmic steps of this pathway in Lactiplantibacillus plantarum, a bacterial species conferring health benefits to its animal host. After establishing that AcpS, DltB, DltC1 and DltA are required for the promotion of Drosophila juvenile growth under chronic undernutrition, we solved their crystal structure and/or used NMR and molecular modeling to study their interactions. Our work demonstrates that the suite of interactions between these proteins is ordered with a conserved surface of DltC1 docking sequentially AcpS, DltA and eventually DltB. Altogether, we conclude that DltC1 acts as an interaction hub for all the successive cytoplasmic steps of the TA d-alanylation pathway.
Collapse
Affiliation(s)
- Nikos Nikolopoulos
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université Claude Bernard Lyon 1, Lyon, France
| | - Renata C Matos
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, Lyon, France
| | - Pascal Courtin
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Isabel Ayala
- Institut de Biologie Structurale, CEA, CNRS UMR 5075, Université Grenoble Alpes, 3800, Grenoble, France
| | - Houssam Akherraz
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, Lyon, France
| | - Jean-Pierre Simorre
- Institut de Biologie Structurale, CEA, CNRS UMR 5075, Université Grenoble Alpes, 3800, Grenoble, France
| | | | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, Lyon, France
| | - Stéphanie Ravaud
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université Claude Bernard Lyon 1, Lyon, France.
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
7
|
Han P, Chen Z, Liu Y, Ma A, Li S, Jia Y. Structural Organization of Brevilaterin Biosynthesis in Brevibacillus laterosporus S62-9: A Novel MbtH-Independent Cationic Antimicrobial Peptide Synthetase System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7471-7478. [PMID: 35675382 DOI: 10.1021/acs.jafc.2c01143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cationic antimicrobial peptides, produced by nonribosomal peptide synthetases (NRPSs), have received great attention in different applications, including as biocontrol and antimicrobial agents against foodborne pathogenic bacteria. Also, Brevibacillus spp. is a competent microorganism to produce cationic antimicrobial peptides yet has received little attention. Herein, Brevibacillus laterosporus S62-9 genome mining revealed an integrated cationic antimicrobial peptide synthetase system that synthesized brevilaterin. Combining biochemical analysis with bioinformatics elucidated that the A domain from this system was the MbtH-independent enzyme and showed activity against the same amino acid in the structure of brevilaterin. Moreover, the creations of the first three and position 12 residues in the sequence were targeted to bre261, bre270, bre2691A, and bre2662, respectively. Further analysis of the specificity-conferring code of the A domain suggested that a tiny difference would make the activity of the A domain very diverse and the range of substrate selection would be enlarged or narrowed by changing some residues in the code. The dissection of this biosynthesis mechanism would contribute to the successful realization of reasonable artificial design and the modification of bioactive peptides, and this capable organism also would be more fully utilized.
Collapse
Affiliation(s)
- Panpan Han
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing 100048, China
| | - Zhou Chen
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing 100048, China
| | - Yangliu Liu
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing 100048, China
| | - Aijin Ma
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing 100048, China
| | - Siting Li
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing 100048, China
| | - Yingmin Jia
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing 100048, China
| |
Collapse
|
8
|
Lee IG, Song C, Yang S, Jeon H, Park J, Yoon HJ, Im H, Kang SM, Eun HJ, Lee BJ. Structural and functional analysis of the D-alanyl carrier protein ligase DltA from Staphylococcus aureus Mu50. Acta Crystallogr D Struct Biol 2022; 78:424-434. [PMID: 35362466 PMCID: PMC8972799 DOI: 10.1107/s2059798322000547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/16/2022] [Indexed: 11/10/2022] Open
Abstract
D-Alanylation of the teichoic acids of the Gram-positive bacterial cell wall plays crucial roles in bacterial physiology and virulence. Deprivation of D-alanine from the teichoic acids of Staphylococcus aureus impairs biofilm and colony formation, induces autolysis and ultimately renders methicillin-resistant S. aureus highly susceptible to antimicrobial agents and host defense peptides. Hence, the D-alanylation pathway has emerged as a promising antibacterial target against drug-resistant S. aureus. D-Alanylation of teichoic acids is mediated via the action of four proteins encoded by the dlt operon, DltABCD, all four of which are essential for the process. In order to develop novel antimicrobial agents against S. aureus, the D-alanyl carrier protein ligase DltA, which is the first protein in the D-alanylation pathway, was focused on. Here, the crystal structure of DltA from the methicillin-resistant S. aureus strain Mu50 is presented, which reveals the unique molecular details of the catalytic center and the role of the P-loop. Kinetic analysis shows that the enantioselectivity of S. aureus DltA is much higher than that of DltA from other species. In the presence of DltC, the enzymatic activity of DltA is increased by an order of magnitude, suggesting a new exploitable binding pocket. This discovery may pave the way for a new generation of treatments for drug-resistant S. aureus.
Collapse
|
9
|
Structural, molecular docking computational studies and in-vitro evidence for antibacterial activity of mixed ligand complexes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130481] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Gulick AM, Aldrich CC. Trapping interactions between catalytic domains and carrier proteins of modular biosynthetic enzymes with chemical probes. Nat Prod Rep 2019; 35:1156-1184. [PMID: 30046790 DOI: 10.1039/c8np00044a] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to early 2018 The Nonribosomal Peptide Synthetases (NRPSs) and Polyketide Synthases (PKSs) are families of modular enzymes that produce a tremendous diversity of natural products, with antibacterial, antifungal, immunosuppressive, and anticancer activities. Both enzymes utilize a fascinating modular architecture in which the synthetic intermediates are covalently attached to a peptidyl- or acyl-carrier protein that is delivered to catalytic domains for natural product elongation, modification, and termination. An investigation of the structural mechanism therefore requires trapping the often transient interactions between the carrier and catalytic domains. Many novel chemical probes have been produced to enable the structural and functional investigation of multidomain NRPS and PKS structures. This review will describe the design and implementation of the chemical tools that have proven to be useful in biochemical and biophysical studies of these natural product biosynthetic enzymes.
Collapse
Affiliation(s)
- Andrew M Gulick
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 955 Main St, Buffalo, NY 14203, USA.
| | | |
Collapse
|
11
|
Qiao Y, Leng C, Liu G, Zhang Y, Lv X, Chen H, Sun J, Feng Z. Transcriptomic and proteomic profiling revealed global changes in Streptococcus thermophilus during pH-controlled batch fermentations. J Microbiol 2019; 57:769-780. [PMID: 31201725 DOI: 10.1007/s12275-019-8604-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/11/2019] [Accepted: 04/19/2019] [Indexed: 12/26/2022]
Abstract
Understanding global changes of physiological processes at the molecular level during the growth of Streptococcus thermophilus is essential for the rational design of cultivation media and the optimization of bioprocesses. Transcriptomics and proteomics were combined to investigate the global changes at the transcript and protein level during the growth of S. thermophilus. The expression of 1396 genes (FDR ≤ 0.001) and 876 proteins (P < 0.05) changed significantly over time. The most remarkable growth phase dependent changes occurred in the late-lag phase and were related to heterofermentation, glycolysis, peptidoglycan biosynthesis, conversion between amino acids and stress response. The present results could provide theoretical guidance for high-cell-density culture, help design cultivation media, and help attain a high biomass of S. thermophilus.
Collapse
Affiliation(s)
- Yali Qiao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, P. R. China
| | - Cong Leng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, P. R. China
| | - Gefei Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, P. R. China
| | - Yanjiao Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, P. R. China
| | - Xuepeng Lv
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, P. R. China
| | - Hongyu Chen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, P. R. China
| | - Jiahui Sun
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, P. R. China
| | - Zhen Feng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, P. R. China.
| |
Collapse
|
12
|
Cieślak J, Miyanaga A, Takaishi M, Kudo F, Eguchi T. Functional and structural characterization of IdnL7, an adenylation enzyme involved in incednine biosynthesis. Acta Crystallogr F Struct Biol Commun 2019; 75:299-306. [PMID: 30950831 PMCID: PMC6450520 DOI: 10.1107/s2053230x19002863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/25/2019] [Indexed: 12/28/2022] Open
Abstract
Adenylation enzymes play an important role in the selective incorporation of the cognate carboxylate substrates in natural product biosynthesis. Here, the biochemical and structural characterization of the adenylation enzyme IdnL7, which is involved in the biosynthesis of the macrolactam polyketide antibiotic incednine, is reported. Biochemical analysis showed that IdnL7 selects and activates several small amino acids. The structure of IdnL7 in complex with an L-alanyl-adenylate intermediate mimic, 5'-O-[N-(L-alanyl)sulfamoyl]adenosine, was determined at 2.1 Å resolution. The structure of IdnL7 explains the broad substrate specificity of IdnL7 towards small L-amino acids.
Collapse
Affiliation(s)
- Jolanta Cieślak
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Makoto Takaishi
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
13
|
Degen A, Mayerthaler F, Mootz HD, Di Ventura B. Context-dependent activity of A domains in the tyrocidine synthetase. Sci Rep 2019; 9:5119. [PMID: 30914767 PMCID: PMC6435693 DOI: 10.1038/s41598-019-41492-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/08/2019] [Indexed: 01/08/2023] Open
Abstract
Non-ribosomal peptide synthetases (NRPSs) are large, modular enzymes that produce bioactive peptides of tremendous structural and chemical diversity, due to the incorporation, alongside the canonical 20 amino acids, of non-proteinogenic amino acids, fatty acids, sugars and heterocyclic rings. For linear NRPSs, the size and composition of the peptide product is dictated by the number, order and specificity of the individual modules, each made of several domains. Given the size and complexity of NRPSs, most in vitro studies have focused on individual domains, di-domains or single modules extracted from the full-length proteins. However, intermodular interactions could play a critical role and regulate the activity of the domains and modules in unpredictable ways. Here we investigate in vitro substrate activation by three A domains of the tyrocidine synthetase TycC enzyme, systematically comparing their activity when alone (with the respective PCP domain), in pairs (di-modular constructs) or all together (tri-modular construct). Furthermore, we study the impact of mutations in the A or PCP domains in these various constructs. Our results suggest that substrate adenylation and effects of mutations largely depend on the context in which the domains/modules are. Therefore, generalizing properties observed for domains or modules in isolation should be done with caution.
Collapse
Affiliation(s)
- Anna Degen
- German Cancer Research Center DKFZ and Faculty of Biosciences, University of Heidelberg, 69120, Heidelberg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Florian Mayerthaler
- Department of Chemistry and Pharmacy, Institute of Biochemistry, University of Münster, 48149, Münster, Germany
| | - Henning D Mootz
- Department of Chemistry and Pharmacy, Institute of Biochemistry, University of Münster, 48149, Münster, Germany
| | - Barbara Di Ventura
- Institute of Biology II, University of Freiburg, 79104, Freiburg, Germany.
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
14
|
Structural basis of the nonribosomal codes for nonproteinogenic amino acid selective adenylation enzymes in the biosynthesis of natural products. ACTA ACUST UNITED AC 2019; 46:515-536. [DOI: 10.1007/s10295-018-2084-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/25/2018] [Indexed: 01/09/2023]
Abstract
Abstract
Nonproteinogenic amino acids are the unique building blocks of nonribosomal peptides (NRPs) and hybrid nonribosomal peptide–polyketides (NRP–PKs) and contribute to their diversity of chemical structures and biological activities. In the biosynthesis of NRPs and NRP–PKs, adenylation enzymes select and activate an amino acid substrate as an aminoacyl adenylate, which reacts with the thiol of the holo form of the carrier protein to afford an aminoacyl thioester as the electrophile for the condensation reaction. Therefore, the substrate specificity of adenylation enzymes is a key determinant of the structure of NRPs and NRP–PKs. Here, we focus on nonproteinogenic amino acid selective adenylation enzymes, because understanding their unique selection mechanisms will lead to accurate functional predictions and protein engineering toward the rational biosynthesis of designed molecules containing amino acids. Based on recent progress in the structural analysis of adenylation enzymes, we discuss the nonribosomal codes of nonproteinogenic amino acid selective adenylation enzymes.
Collapse
|
15
|
Abou-Dobara MI, Omar NF, Diab MA, El-Sonbati AZ, Morgan SM, El-Mogazy MA. Allyl rhodanine azo dye derivatives: Potential antimicrobials target d-alanyl carrier protein ligase and nucleoside diphosphate kinase. J Cell Biochem 2019; 120:1667-1678. [PMID: 30187946 DOI: 10.1002/jcb.27473] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 07/18/2018] [Indexed: 01/24/2023]
Abstract
3-Allyl-5-(4-arylazo)-2-thioxothiazolidine-4-one (HLn ) ligands (where n = 1 to 3) were hypothesized to have antimicrobial activities mediated through inhibition of new antimicrobial targets. The ligands (HLn ) were synthesized and characterized by infrared (IR) and 1 H nuclear magnetic resonance (1 H NMR) spectra. The ligands (HLn ) were in silico screened to their potential inhibition to models of d-alanyl carrier protein ligase (DltA) (from Bacillus cereus, PDB code 3FCE) and nucleoside diphosphate kinase (NDK) (from Staphylococcus aureus; PDB code 3Q8U). HL3 ligand has the best energy and mode of binding to both NDK and DltA, even though its binding to DltA was stronger than that to NDK. In antimicrobial activity of HL3 ligand, morphological and cytological changes in HL3 -treated bacteria agreed with the in silico results. The HL3 ligand showed significant antimicrobial activity against B. cereus, S. aureus, and Fusarium oxysporium. The HL3 -treated bacterial cells appeared malformed and incompletely separated. Its cell walls appeared electron-lucent and ruptured. They contained more mesosomes than normal cells. It was found that the HL3 ligand represented as a bactericide against B. cereus and S. aureusby blocking target DltA, and may target NDK.
Collapse
Affiliation(s)
- Mohamed I Abou-Dobara
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Noha F Omar
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Mostafa A Diab
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Adel Z El-Sonbati
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Shaimaa M Morgan
- Environmental Monitoring Laboratory, Ministry of Health, Port Said, Egypt
| | | |
Collapse
|
16
|
Wood BM, Santa Maria JP, Matano LM, Vickery CR, Walker S. A partial reconstitution implicates DltD in catalyzing lipoteichoic acid d-alanylation. J Biol Chem 2018; 293:17985-17996. [PMID: 30237166 PMCID: PMC6240853 DOI: 10.1074/jbc.ra118.004561] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/27/2018] [Indexed: 12/19/2022] Open
Abstract
Modifications to the Gram-positive bacterial cell wall play important roles in antibiotic resistance and pathogenesis, but the pathway for the d-alanylation of teichoic acids (DLT pathway), a ubiquitous modification, is poorly understood. The d-alanylation machinery includes two membrane proteins of unclear function, DltB and DltD, which are somehow involved in transfer of d-alanine from a carrier protein inside the cell to teichoic acids on the cell surface. Here, we probed the role of DltD in the human pathogen Staphylococcus aureus using both cell-based and biochemical assays. We first exploited a known synthetic lethal interaction to establish the essentiality of each gene in the DLT pathway for d-alanylation of lipoteichoic acid (LTA) and confirmed this by directly detecting radiolabeled d-Ala-LTA both in cells and in vesicles prepared from mutant strains of S. aureus We developed a partial reconstitution of the pathway by using cell-derived vesicles containing DltB, but no other components of the d-alanylation pathway, and showed that d-alanylation of previously formed lipoteichoic acid in the DltB vesicles requires the presence of purified and reconstituted DltA, DltC, and DltD, but not of the LTA synthase LtaS. Finally, based on the activity of DltD mutants in cells and in our reconstituted system, we determined that Ser-70 and His-361 are essential for d-alanylation activity, and we propose that DltD uses a catalytic dyad to transfer d-alanine to LTA. In summary, we have developed a suite of assays for investigating the bacterial DLT pathway and uncovered a role for DltD in LTA d-alanylation.
Collapse
Affiliation(s)
- B McKay Wood
- From the Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115
| | - John P Santa Maria
- From the Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Leigh M Matano
- From the Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Christopher R Vickery
- From the Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Suzanne Walker
- From the Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
17
|
Qiao Y, Liu G, Leng C, Zhang Y, Lv X, Chen H, Sun J, Feng Z. Metabolic profiles of cysteine, methionine, glutamate, glutamine, arginine, aspartate, asparagine, alanine and glutathione in Streptococcus thermophilus during pH-controlled batch fermentations. Sci Rep 2018; 8:12441. [PMID: 30127376 PMCID: PMC6102215 DOI: 10.1038/s41598-018-30272-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/27/2018] [Indexed: 11/26/2022] Open
Abstract
Elucidating the amino acid (AA) metabolism patterns of Streptococcus thermophilus has important effects on the precise design of nitrogen sources for high-cell-density culture. Transcriptomics and metabolomics were combined to reveal the cysteine, methionine, glutamate, glutamine, arginine, aspartate, asparagine and alanine metabolic pathways in S. thermophilus MN-ZLW-002, including glutathione. The changes in the synthesis, consumption and concentration of AAs and their metabolites, as well as regulatory genes with time were revealed. The metabolism of L-cysteine, L-glutamate, L-aspartate and L-alanine generated some potential functional metabolites. The metabolism of methionine and glutamate generated potential harmful metabolites. S. thermophilus MN-ZLW-002 can synthesize glutathione. Some potential functional metabolites have similar biological functions, indicating that S. thermophilus can resist environmental stresses through multiple mechanisms. The expression of some key genes in synthesis pathway of AA indicated that cysteine, methionine, asparagine, aspartate, arginine and lysine were insufficient or imbalance between nutrient components. The accumulation of large amounts of AA metabolites might be the primary cause of the overconsumption of AAs and influence the growth of S. thermophilus. The present study revealed the metabolic profiles of abovementioned AAs as well as those of regulatory genes and metabolites. These results were beneficial to the precise design of nitrogen sources and regulation of functional metabolites for the high-cell-density culture of S. thermophilus.
Collapse
Affiliation(s)
- Yali Qiao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin, 150030, China
| | - Gefei Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin, 150030, China
| | - Cong Leng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin, 150030, China
| | - Yanjiao Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin, 150030, China
| | - Xuepeng Lv
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin, 150030, China
| | - Hongyu Chen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin, 150030, China
| | - Jiahui Sun
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin, 150030, China
| | - Zhen Feng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin, 150030, China.
| |
Collapse
|
18
|
Reimer JM, Haque AS, Tarry MJ, Schmeing TM. Piecing together nonribosomal peptide synthesis. Curr Opin Struct Biol 2018; 49:104-113. [DOI: 10.1016/j.sbi.2018.01.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/08/2018] [Accepted: 01/22/2018] [Indexed: 10/18/2022]
|
19
|
Scaglione A, Fullone MR, Montemiglio LC, Parisi G, Zamparelli C, Vallone B, Savino C, Grgurina I. Structure of the adenylation domain Thr1 involved in the biosynthesis of 4-chlorothreonine in Streptomyces sp. OH-5093-protein flexibility and molecular bases of substrate specificity. FEBS J 2017; 284:2981-2999. [PMID: 28704585 DOI: 10.1111/febs.14163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 05/19/2017] [Accepted: 07/10/2017] [Indexed: 12/13/2022]
Abstract
We determined the crystal structure of Thr1, the self-standing adenylation domain involved in the nonribosomal-like biosynthesis of free 4-chlorothreonine in Streptomyces sp. OH-5093. Thr1 shows two monomers in the crystallographic asymmetric unit with different relative orientations of the C- and N-terminal subdomains both in the presence of substrates and in the unliganded form. Cocrystallization with substrates, adenosine 5'-triphosphate and l-threonine, yielded one monomer containing the two substrates and the other in complex with l-threonine adenylate, locked in a postadenylation state. Steady-state kinetics showed that Thr1 activates l-Thr and its stereoisomers, as well as d-Ala, l- and d-Ser, albeit with lower efficiency. Modeling of these substrates in the active site highlighted the molecular bases of substrate discrimination. This work provides the first crystal structure of a threonine-activating adenylation enzyme, a contribution to the studies on conformational rearrangement in adenylation domains and on substrate recognition in nonribosomal biosynthesis. DATABASE Structural data are available in the Protein Data Bank under the accession number 5N9W and 5N9X.
Collapse
Affiliation(s)
- Antonella Scaglione
- Department of Biochemical Sciences "A. Rossi Fanelli", Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy.,Institute of Molecular Biology and Pathology, CNR - National Research Council of Italy, Rome, Italy
| | - Maria Rosaria Fullone
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Italy
| | - Linda Celeste Montemiglio
- Department of Biochemical Sciences "A. Rossi Fanelli", Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy.,Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Italy
| | - Giacomo Parisi
- Department of Biochemical Sciences "A. Rossi Fanelli", Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy.,Institute of Molecular Biology and Pathology, CNR - National Research Council of Italy, Rome, Italy
| | - Carlotta Zamparelli
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Italy
| | - Beatrice Vallone
- Department of Biochemical Sciences "A. Rossi Fanelli", Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy.,Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Italy
| | - Carmelinda Savino
- Institute of Molecular Biology and Pathology, CNR - National Research Council of Italy, Rome, Italy
| | - Ingeborg Grgurina
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Italy
| |
Collapse
|
20
|
Chen Y, Li TL, Lin X, Li X, Li XD, Guo Z. Crystal structure of the thioesterification conformation of Bacillus subtilis o-succinylbenzoyl-CoA synthetase reveals a distinct substrate-binding mode. J Biol Chem 2017; 292:12296-12310. [PMID: 28559280 DOI: 10.1074/jbc.m117.790410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/25/2017] [Indexed: 02/03/2023] Open
Abstract
o-Succinylbenzoyl-CoA (OSB-CoA) synthetase (MenE) is an essential enzyme in bacterial vitamin K biosynthesis and an important target in the development of new antibiotics. It is a member of the adenylating enzymes (ANL) family, which reconfigure their active site in two different active conformations, one for the adenylation half-reaction and the other for a thioesterification half-reaction, in a domain-alternation catalytic mechanism. Although several aspects of the adenylating mechanism in MenE have recently been uncovered, its thioesterification conformation remains elusive. Here, using a catalytically competent Bacillus subtilis mutant protein complexed with an OSB-CoA analogue, we determined MenE high-resolution structures to 1.76 and 1.90 Å resolution in a thioester-forming conformation. By comparison with the adenylation conformation, we found that MenE's C-domain rotates around the Ser-384 hinge by 139.5° during domain-alternation catalysis. The structures also revealed a thioesterification active site specifically conserved among MenE orthologues and a substrate-binding mode distinct from those of many other acyl/aryl-CoA synthetases. Of note, using site-directed mutagenesis, we identified several residues that specifically contribute to the thioesterification half-reaction without affecting the adenylation half-reaction. Moreover, we observed a substantial movement of the activated succinyl group in the thioesterification half-reaction. These findings provide new insights into the domain-alternation catalysis of a bacterial enzyme essential for vitamin K biosynthesis and of its adenylating homologues in the ANL enzyme family.
Collapse
Affiliation(s)
- Yaozong Chen
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Tin Lok Li
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xingbang Lin
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xin Li
- Department of Chemistry, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xiang David Li
- Department of Chemistry, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Zhihong Guo
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
21
|
Bloudoff K, Schmeing TM. Structural and functional aspects of the nonribosomal peptide synthetase condensation domain superfamily: discovery, dissection and diversity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1587-1604. [PMID: 28526268 DOI: 10.1016/j.bbapap.2017.05.010] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/05/2017] [Accepted: 05/12/2017] [Indexed: 01/23/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) are incredible macromolecular machines that produce a wide range of biologically- and therapeutically-relevant molecules. During synthesis, peptide elongation is performed by the condensation (C) domain, as it catalyzes amide bond formation between the nascent peptide and the amino acid it adds to the chain. Since their discovery more than two decades ago, C domains have been subject to extensive biochemical, bioinformatic, mutagenic, and structural analyses. They are composed of two lobes, each with homology to chloramphenicol acetyltransferase, have two binding sites for their two peptidyl carrier protein-bound ligands, and have an active site with conserved motif HHxxxDG located between the two lobes. This review discusses some of the important insights into the structure, catalytic mechanism, specificity, and gatekeeping functions of C domains revealed since their discovery. In addition, C domains are the archetypal members of the C domain superfamily, which includes several other members that also function as NRPS domains. The other family members can replace the C domain in NRP synthesis, can work in concert with a C domain, or can fulfill diverse and novel functions. These domains include the epimerization (E) domain, the heterocyclization (Cy) domain, the ester-bond forming C domain, the fungal NRPS terminal C domain (CT), the β-lactam ring forming C domain, and the X domain. We also discuss structural and function insight into C, E, Cy, CT and X domains, to present a holistic overview of historical and current knowledge of the C domain superfamily. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
Affiliation(s)
- Kristjan Bloudoff
- Department of Biochemistry, McGill University, Montréal, QC H3G 0B1, Canada
| | - T Martin Schmeing
- Department of Biochemistry, McGill University, Montréal, QC H3G 0B1, Canada.
| |
Collapse
|
22
|
Cieślak J, Miyanaga A, Takaku R, Takaishi M, Amagai K, Kudo F, Eguchi T. Biochemical characterization and structural insight into aliphatic β-amino acid adenylation enzymes IdnL1 and CmiS6. Proteins 2017; 85:1238-1247. [DOI: 10.1002/prot.25284] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/01/2017] [Accepted: 03/08/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Jolanta Cieślak
- Department of Chemistry and Materials Science; Tokyo Institute of Technology; O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Akimasa Miyanaga
- Department of Chemistry; Tokyo Institute of Technology; O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Ryoma Takaku
- Department of Chemistry and Materials Science; Tokyo Institute of Technology; O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Makoto Takaishi
- Department of Chemistry and Materials Science; Tokyo Institute of Technology; O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Keita Amagai
- Department of Chemistry and Materials Science; Tokyo Institute of Technology; O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Fumitaka Kudo
- Department of Chemistry; Tokyo Institute of Technology; O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Tadashi Eguchi
- Department of Chemistry and Materials Science; Tokyo Institute of Technology; O-okayama Meguro-ku Tokyo 152-8551 Japan
- Department of Chemistry; Tokyo Institute of Technology; O-okayama Meguro-ku Tokyo 152-8551 Japan
| |
Collapse
|
23
|
Chen Y, Jiang Y, Guo Z. Mechanistic Insights from the Crystal Structure of Bacillus subtilis o-Succinylbenzoyl-CoA Synthetase Complexed with the Adenylate Intermediate. Biochemistry 2016; 55:6685-6695. [PMID: 27933791 DOI: 10.1021/acs.biochem.6b00889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
o-Succinylbenzoyl-CoA (OSB-CoA) synthetase, or MenE, catalyzes an essential step in vitamin K biosynthesis and is a valuable drug target. Like many other adenylating enzymes, it changes its structure to accommodate substrate binding, catalysis, and product release along the path of a domain alternation catalytic mechanism. We have determined the crystal structure of its complex with the adenylation product, o-succinylbenzoyl-adenosine monophosphate (OSB-AMP), and captured a new postadenylation state. This structure presents unique features such as a strained conformation for the bound adenylate intermediate to indicate that it represents the enzyme state after completion of the adenylation reaction but before release of the C domain in its transition to the thioesterification conformation. By comparison to the ATP-bound preadenylation conformation, structural changes are identified in both the reactants and the active site to allow inference about how these changes accommodate and facilitate the adenylation reaction and to directly support an in-line backside attack nucleophilic substitution mechanism for the first half-reaction. Mutational analysis suggests that the conserved His196 plays an important role in desolvation of the active site rather than stabilizing the transition state of the adenylation reaction. In addition, comparison of the new structure with a previously determined OSB-AMP-bound structure of the same enzyme allows us to propose a release mechanism of the C domain in its alteration to form the thioesterification conformation. These findings allow us to better understand the domain alternation catalytic mechanism of MenE as well as many other adenylating enzymes.
Collapse
Affiliation(s)
- Yaozong Chen
- Department of Chemistry, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yiping Jiang
- Department of Chemistry, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhihong Guo
- Department of Chemistry, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
24
|
Kittilä T, Schoppet M, Cryle MJ. Online Pyrophosphate Assay for Analyzing Adenylation Domains of Nonribosomal Peptide Synthetases. Chembiochem 2016; 17:576-84. [PMID: 26751610 DOI: 10.1002/cbic.201500555] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 12/12/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) produce many important and structurally complex natural products. Because of their architectures, reprogramming NRPSs has long been attempted to access new bioactive compounds. However, detailed characterization of NRPS catalysis and substrate selectivity by adenylation (A) domains is needed to support such efforts. We present a simple coupled NADH/pyrophosphate (PPi ) detection assay for analyzing A domain catalysis in vitro. PPi formation is coupled to the consumption of NADH by four enzymatic steps and is detected spectroscopically (λ=340 nm) for simple analysis. We demonstrate the effectiveness of this assay with several adenylation domains, including a stand-alone A domain (DltA, cell wall biosynthesis) and an embedded A domain (Tcp10, teicoplanin biosynthesis). Substrate acceptance of the Tcp10 A domain was explored for the first time, thus demonstrating the applicability of the assay for complex, multi-domain NRPSs.
Collapse
Affiliation(s)
- Tiia Kittilä
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Melanie Schoppet
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Max J Cryle
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany. .,EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia. .,The Department of Biochemistry and Molecular Biology and, ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, 15 Innovation Walk, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
25
|
Abstract
Lipoteichoic acid is a major lipid-anchored polymer in Gram-positive bacteria such as
Bacillus subtilis. This polymer typically consists of repeating phosphate-containing units and therefore has a predominant negative charge. The repeating units are attached to a glycolipid anchor which has a diacylglycerol (DAG) moiety attached to a dihexopyranose head group. D-alanylation is known as the major modification of type I and type IV lipoteichoic acids, which partially neutralizes the polymer and plays important roles in bacterial survival and resistance to the host immune system. The biosynthesis pathways of the glycolipid anchor and lipoteichoic acid have been fully characterized. However, the exact mechanism of D-alanyl transfer from the cytosol to cell surface lipoteichoic acid remains unclear. Here I report the use of mass spectrometry in the identification of possible intermediate species in the biosynthesis and D-alanylation of lipoteichoic acid: the glycolipid anchor, nascent lipoteichoic acid primer with one phosphoglycerol unit, as well as mono- and di-alanylated forms of the lipoteichoic acid primer. Monitoring these species as well as the recently reported D-alanyl-phosphatidyl glycerol should aid in shedding light on the mechanism of the D-alanylation pathway of lipoteichoic acid.
Collapse
Affiliation(s)
- Yu Luo
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
26
|
Abstract
Lipoteichoic acid is a major lipid-anchored polymer in Gram-positive bacteria such as Bacillus subtilis. This polymer typically consists of repeating phosphate-containing units and therefore has a predominant negative charge. The repeating units are attached to a glycolipid anchor which has a diacylglycerol (DAG) moiety attached to a dihexopyranose head group. D-alanylation is known as the major modification of type I and type IV lipoteichoic acids, which partially neutralizes the polymer and plays important roles in bacterial survival and resistance to the host immune system. The biosynthesis pathways of the glycolipid anchor and lipoteichoic acid have been fully characterized. However, the exact mechanism of D-alanyl transfer from the cytosol to cell surface lipoteichoic acid remains unclear. Here I report the use of mass spectrometry in the identification of possible intermediate species in the biosynthesis and D-alanylation of lipoteichoic acid: the glycolipid anchor, nascent lipoteichoic acid primer with one phosphoglycerol unit, as well as mono- and di-alanylated forms of the lipoteichoic acid primer. Monitoring these species as well as the recently reported D-alanyl-phosphatidyl glycerol should aid in shedding light on the mechanism of the D-alanylation pathway of lipoteichoic acid.
Collapse
Affiliation(s)
- Yu Luo
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
27
|
Miyanaga A, Hayakawa Y, Numakura M, Hashimoto J, Teruya K, Hirano T, Shin-Ya K, Kudo F, Eguchi T. Identification of the Fluvirucin B2 (Sch 38518) Biosynthetic Gene Cluster from Actinomadura fulva subsp. indica ATCC 53714: substrate Specificity of the β-Amino Acid Selective Adenylating Enzyme FlvN. Biosci Biotechnol Biochem 2016; 80:935-41. [PMID: 26818633 DOI: 10.1080/09168451.2015.1132155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fluvirucins are 14-membered macrolactam polyketides that show antifungal and antivirus activities. Fluvirucins have the β-alanine starter unit at their polyketide skeletons. To understand the construction mechanism of the β-alanine moiety in fluvirucin biosyntheses, we have identified the biosynthetic cluster of fluvirucin B2 produced from Actinomadura fulva subsp. indica ATCC 53714. The identified gene cluster contains three polyketide synthases, four characteristic β-amino acid-carrying enzymes, one decarboxylase, and one amidohydrolase. We next investigated the activity of the adenylation enzyme FlvN, which is a key enzyme for the selective incorporation of a β-amino acid substrate. FlvN showed strong preference for l-aspartate over other amino acids such as β-alanine. Based on these results, we propose a biosynthetic pathway for fluvirucin B2.
Collapse
Affiliation(s)
- Akimasa Miyanaga
- a Department of Chemistry , Tokyo Institute of Technology , Tokyo , Japan
| | - Yuki Hayakawa
- b Department of Chemistry and Materials Science , Tokyo Institute of Technology , Tokyo , Japan
| | - Mario Numakura
- a Department of Chemistry , Tokyo Institute of Technology , Tokyo , Japan
| | | | - Kuniko Teruya
- d Okinawa Biotechnology Business Support Center , Okinawa Institute of Advanced Sciences , Uruma , Japan
| | - Takashi Hirano
- d Okinawa Biotechnology Business Support Center , Okinawa Institute of Advanced Sciences , Uruma , Japan.,e Okinawa Biotechnology Business Support Center , Okinawa Science and Technology Promotion Center , Uruma , Japan
| | - Kazuo Shin-Ya
- f National Institute of Advanced Industrial Science and Technology , Tokyo , Japan
| | - Fumitaka Kudo
- a Department of Chemistry , Tokyo Institute of Technology , Tokyo , Japan
| | - Tadashi Eguchi
- b Department of Chemistry and Materials Science , Tokyo Institute of Technology , Tokyo , Japan
| |
Collapse
|
28
|
Abstract
The nonribosomal peptide synthetases are modular enzymes that catalyze synthesis of important peptide products from a variety of standard and non-proteinogenic amino acid substrates. Within a single module are multiple catalytic domains that are responsible for incorporation of a single residue. After the amino acid is activated and covalently attached to an integrated carrier protein domain, the substrates and intermediates are delivered to neighboring catalytic domains for peptide bond formation or, in some modules, chemical modification. In the final module, the peptide is delivered to a terminal thioesterase domain that catalyzes release of the peptide product. This multi-domain modular architecture raises questions about the structural features that enable this assembly line synthesis in an efficient manner. The structures of the core component domains have been determined and demonstrate insights into the catalytic activity. More recently, multi-domain structures have been determined and are providing clues to the features of these enzyme systems that govern the functional interaction between multiple domains. This chapter describes the structures of NRPS proteins and the strategies that are being used to assist structural studies of these dynamic proteins, including careful consideration of domain boundaries for generation of truncated proteins and the use of mechanism-based inhibitors that trap interactions between the catalytic and carrier protein domains.
Collapse
|
29
|
Li Z, Nair SK. Structural Basis for Specificity and Flexibility in a Plant 4-Coumarate:CoA Ligase. Structure 2015; 23:2032-42. [PMID: 26412334 DOI: 10.1016/j.str.2015.08.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/28/2015] [Accepted: 08/07/2015] [Indexed: 10/23/2022]
Abstract
Plant 4-coumarate:CoA ligase (4CL) serves as a central catalyst in the phenylpropanoid pathway that provides precursors for numerous metabolites and regulates carbon flow. Here, we present several high-resolution crystal structures of Nicotiana tabacum 4CL isoform 2 (Nt4CL2) in complex with Mg(2+) and ATP, with AMP and coenzyme A (CoA), and with three different hydroxycinnamate-AMP intermediates: 4-coumaroyl-AMP, caffeoyl-AMP, and feruloyl-AMP. The Nt4CL2-Mg(2+)-ATP structure is captured in the adenylate-forming conformation, whereas the other structures are in the thioester-forming conformation. These structures represent a rare example of an ANL enzyme visualized in both conformations, and also reveal the binding determinants for both CoA and the hydroxycinnamate substrate. Kinetic studies of structure-based variants were used to identify residues crucial to catalysis, ATP binding, and hydroxycinnamate specificity. Lastly, we characterize a deletion mutant of Nt4CL2 that possesses the unusual sinapinate-utilizing activity. These studies establish a molecular framework for the engineering of this versatile biocatalyst.
Collapse
Affiliation(s)
- Zhi Li
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Satish K Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Computational Biology, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
30
|
Thornburg CK, Wortas-Strom S, Nosrati M, Geiger JH, Walker KD. Kinetically and Crystallographically Guided Mutations of a Benzoate CoA Ligase (BadA) Elucidate Mechanism and Expand Substrate Permissivity. Biochemistry 2015; 54:6230-42. [PMID: 26378464 DOI: 10.1021/acs.biochem.5b00899] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A benzoate CoA ligase (BadA), isolated from the bacterium Rhodopseudomonas palustris, catalyzes the conversion of benzoate to benzoyl CoA on the catabolic pathway of aromatic carboxylic acids. Herein, apparent Michaelis constants K(app)cat and K(app)M were determined for an expanded array of 31 substrates chosen to systematically probe the active site architecture of the enzyme and provide a baseline for expansion of wild-type substrate specificity. Acyl CoA products were observed for 25 of the 31 substrates; in general, BadA converted ortho-substituted substrates better than the corresponding meta and para regioisomers, and the turnover number was more affected by steric rather than electronic effects. The kinetic data are interpreted in relation to six crystal structures of BadA in complex with several substrates and a benzoyl-AMP reaction intermediate. In contrast to other known natural substrate-bound benzoate ligase structures, all substrate-bound BadA structures adopted the thiolation conformation instead of the adenylation conformation. We also observed all the aryl carboxylates to be uniquely oriented within the active site, relative to other structures. Together, the kinetics and structural data suggested a mechanism that involves substrate binding in the thiolation conformation, followed by substrate rotation to an active orientation upon the transition to the adenylation conformation. On the basis of this hypothesis and the structural data, sterically demanding active site residues were mutated, and the substrate specificity was expanded substantially versus that of BadA. Novel activities were seen for substrates with larger substituents, including phenyl acetate. Additionally, the mutant Lys427Ala identified this nonconserved residue as essential for the thiolation step of BadA, but not adenylation. These variously acylated CoAs can serve as novel substrates of acyl CoA-dependent acyltransferases in coupled enzyme assays to produce analogues of bioactive natural products.
Collapse
Affiliation(s)
- Chelsea K Thornburg
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| | - Susan Wortas-Strom
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Meisam Nosrati
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - James H Geiger
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Kevin D Walker
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States.,Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
31
|
Lee TV, Johnson RD, Arcus VL, Lott JS. Prediction of the substrate for nonribosomal peptide synthetase (NRPS) adenylation domains by virtual screening. Proteins 2015; 83:2052-66. [PMID: 26358936 DOI: 10.1002/prot.24922] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/19/2015] [Accepted: 08/28/2015] [Indexed: 12/28/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) synthesize a diverse array of bioactive small peptides, many of which are used in medicine. There is considerable interest in predicting NRPS substrate specificity in order to facilitate investigation of the many "cryptic" NRPS genes that have not been linked to any known product. However, the current sequence similarity-based methods are unable to produce reliable predictions when there is a lack of prior specificity data, which is a particular problem for fungal NRPSs. We conducted virtual screening on the specificity-determining domain of NRPSs, the adenylation domain, and found that virtual screening using experimentally determined structures results in good enrichment of the cognate substrate. Our results indicate that the conformation of the adenylation domain and in particular the conformation of a key conserved aromatic residue is important in determining the success of the virtual screening. When homology models of NRPS adenylation domains of known specificity, rather than experimentally determined structures, were built and used for virtual screening, good enrichment of the cognate substrate was also achieved in many cases. However, the accuracy of the models was key to the reliability of the predictions and there was a large variation in the results when different models of the same domain were used. This virtual screening approach is promising and is able to produce enrichment of the cognate substrates in many cases, but improvements in building and assessing homology models are required before the approach can be reliably applied to these models.
Collapse
Affiliation(s)
- T Verne Lee
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Richard D Johnson
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Vickery L Arcus
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
| | - J Shaun Lott
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
32
|
Chen Y, Sun Y, Song H, Guo Z. Structural Basis for the ATP-dependent Configuration of Adenylation Active Site in Bacillus subtilis o-Succinylbenzoyl-CoA Synthetase. J Biol Chem 2015; 290:23971-83. [PMID: 26276389 DOI: 10.1074/jbc.m115.676304] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Indexed: 12/18/2022] Open
Abstract
o-Succinylbenzoyl-CoA synthetase, or MenE, is an essential adenylate-forming enzyme targeted for development of novel antibiotics in the menaquinone biosynthesis. Using its crystal structures in a ligand-free form or in complex with nucleotides, a conserved pattern is identified in the interaction between ATP and adenylating enzymes, including acyl/aryl-CoA synthetases, adenylation domains of nonribosomal peptide synthetases, and luciferases. It involves tight gripping interactions of the phosphate-binding loop (P-loop) with the ATP triphosphate moiety and an open-closed conformational change to form a compact adenylation active site. In MenE catalysis, this ATP-enzyme interaction creates a new binding site for the carboxylate substrate, allowing revelation of the determinants of substrate specificities and in-line alignment of the two substrates for backside nucleophilic substitution reaction by molecular modeling. In addition, the ATP-enzyme interaction is suggested to play a crucial catalytic role by mutation of the P-loop residues hydrogen-bonded to ATP. Moreover, the ATP-enzyme interaction has also clarified the positioning and catalytic role of a conserved lysine residue in stabilization of the transition state. These findings provide new insights into the adenylation half-reaction in the domain alteration catalytic mechanism of the adenylate-forming enzymes.
Collapse
Affiliation(s)
- Yaozong Chen
- From the Department of Chemistry and State Key Laboratory for Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yueru Sun
- From the Department of Chemistry and State Key Laboratory for Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Haigang Song
- From the Department of Chemistry and State Key Laboratory for Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhihong Guo
- From the Department of Chemistry and State Key Laboratory for Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
33
|
Labby KJ, Watsula SG, Garneau-Tsodikova S. Interrupted adenylation domains: unique bifunctional enzymes involved in nonribosomal peptide biosynthesis. Nat Prod Rep 2015; 32:641-53. [PMID: 25622971 DOI: 10.1039/c4np00120f] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nonribosomal peptides (NRPs) account for a large portion of drugs and drug leads currently available in the pharmaceutical industry. They are one of two main families of natural products biosynthesized on megaenzyme assembly-lines composed of multiple modules that are, in general, each comprised of three core domains and on occasion of accompanying auxiliary domains. The core adenylation (A) domains are known to delineate the identity of the specific chemical components to be incorporated into the growing NRPs. Previously believed to be inactive, A domains interrupted by auxiliary enzymes have recently been proven to be active and capable of performing two distinct chemical reactions. This highlight summarizes current knowledge on A domains and presents the various interrupted A domains found in a number of nonribosomal peptide synthetase (NRPS) assembly-lines, their predicted or proven dual functions, and their potential for manipulation and engineering for chemoenzymatic synthesis of new pharmaceutical agents with increased potency.
Collapse
Affiliation(s)
- Kristin J Labby
- Beloit College, Department of Chemistry, 700 College Street, Beloit, WI 53511, USA
| | | | | |
Collapse
|
34
|
Miyanaga A, Cieślak J, Shinohara Y, Kudo F, Eguchi T. The crystal structure of the adenylation enzyme VinN reveals a unique β-amino acid recognition mechanism. J Biol Chem 2014; 289:31448-57. [PMID: 25246523 PMCID: PMC4223343 DOI: 10.1074/jbc.m114.602326] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/17/2014] [Indexed: 12/20/2022] Open
Abstract
Adenylation enzymes play important roles in the biosynthesis and degradation of primary and secondary metabolites. Mechanistic insights into the recognition of α-amino acid substrates have been obtained for α-amino acid adenylation enzymes. The Asp residue is invariant and is essential for the stabilization of the α-amino group of the substrate. In contrast, the β-amino acid recognition mechanism of adenylation enzymes is still unclear despite the importance of β-amino acid activation for the biosynthesis of various natural products. Herein, we report the crystal structure of the stand-alone adenylation enzyme VinN, which specifically activates (2S,3S)-3-methylaspartate (3-MeAsp) in vicenistatin biosynthesis. VinN has an overall structure similar to that of other adenylation enzymes. The structure of the complex with 3-MeAsp revealed that a conserved Asp(230) residue is used in the recognition of the β-amino group of 3-MeAsp similar to α-amino acid adenylation enzymes. A mutational analysis and structural comparison with α-amino acid adenylation enzymes showed that the substrate-binding pocket of VinN has a unique architecture to accommodate 3-MeAsp as a β-amino acid substrate. Thus, the VinN structure allows the first visualization of the interaction of an adenylation enzyme with a β-amino acid and provides new mechanistic insights into the selective recognition of β-amino acids in this family of enzymes.
Collapse
Affiliation(s)
| | - Jolanta Cieślak
- Chemistry and Materials Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Yuji Shinohara
- Chemistry and Materials Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | | | - Tadashi Eguchi
- Chemistry and Materials Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
35
|
Henderson JC, Fage CD, Cannon JR, Brodbelt JS, Keatinge-Clay AT, Trent MS. Antimicrobial peptide resistance of Vibrio cholerae results from an LPS modification pathway related to nonribosomal peptide synthetases. ACS Chem Biol 2014; 9:2382-92. [PMID: 25068415 PMCID: PMC4520716 DOI: 10.1021/cb500438x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
The
current pandemic El Tor biotype of O1 Vibrio cholerae is resistant to polymyxins, whereas the previous pandemic strain
of the classical biotype is polymyxin sensitive. The almEFG operon found in El Tor V. cholerae confers >100-fold
resistance to polymyxins through the glycylation of lipopolysaccharide.
Here, we present the mechanistic determination of initial steps in
the AlmEFG pathway. We verify that AlmF is an aminoacyl carrier protein
and identify AlmE as the enzyme required to activate AlmF as a functional
carrier protein. A combination of structural information and activity
assays was used to identify a pair of active site residues that are
important for mediating AlmE glycine specificity. Overall, the structure
of AlmE in complex with its glycyl-adenylate intermediate reveals
that AlmE is related to Gram-positive d-alanine/d-alanyl carrier protein ligase, while the trio of proteins in the
AlmEFG system forms a chemical pathway that resembles the division
of labor in nonribosomal peptide synthetases.
Collapse
Affiliation(s)
- Jeremy C. Henderson
- Department of Molecular Biosciences, ‡Department of Chemistry, §Institute of Cellular
and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Christopher D. Fage
- Department of Molecular Biosciences, ‡Department of Chemistry, §Institute of Cellular
and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Joe R. Cannon
- Department of Molecular Biosciences, ‡Department of Chemistry, §Institute of Cellular
and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S. Brodbelt
- Department of Molecular Biosciences, ‡Department of Chemistry, §Institute of Cellular
and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Adrian T. Keatinge-Clay
- Department of Molecular Biosciences, ‡Department of Chemistry, §Institute of Cellular
and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, United States
| | - M. Stephen Trent
- Department of Molecular Biosciences, ‡Department of Chemistry, §Institute of Cellular
and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
36
|
Percy MG, Gründling A. Lipoteichoic Acid Synthesis and Function in Gram-Positive Bacteria. Annu Rev Microbiol 2014; 68:81-100. [DOI: 10.1146/annurev-micro-091213-112949] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Matthew G. Percy
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ UK; ,
| | - Angelika Gründling
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ UK; ,
| |
Collapse
|
37
|
Miller BR, Sundlov JA, Drake EJ, Makin TA, Gulick AM. Analysis of the linker region joining the adenylation and carrier protein domains of the modular nonribosomal peptide synthetases. Proteins 2014; 82:2691-702. [PMID: 24975514 DOI: 10.1002/prot.24635] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/06/2014] [Accepted: 06/18/2014] [Indexed: 12/29/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) are multimodular proteins capable of producing important peptide natural products. Using an assembly line process, the amino acid substrate and peptide intermediates are passed between the active sites of different catalytic domains of the NRPS while bound covalently to a peptidyl carrier protein (PCP) domain. Examination of the linker sequences that join the NRPS adenylation and PCP domains identified several conserved proline residues that are not found in standalone adenylation domains. We examined the roles of these proline residues and neighboring conserved sequences through mutagenesis and biochemical analysis of the reaction catalyzed by the adenylation domain and the fully reconstituted NRPS pathway. In particular, we identified a conserved LPxP motif at the start of the adenylation-PCP linker. The LPxP motif interacts with a region on the adenylation domain to stabilize a critical catalytic lysine residue belonging to the A10 motif that immediately precedes the linker. Further, this interaction with the C-terminal subdomain of the adenylation domain may coordinate movement of the PCP with the conformational change of the adenylation domain. Through this work, we extend the conserved A10 motif of the adenylation domain and identify residues that enable proper adenylation domain function.
Collapse
Affiliation(s)
- Bradley R Miller
- Hauptman-Woodward Medical Research Institute and Department of Structural Biology, University at Buffalo, Buffalo, New York, 14203
| | | | | | | | | |
Collapse
|
38
|
Du L, Luo Y. Thiolation-enhanced substrate recognition by D-alanyl carrier protein ligase DltA from Bacillus cereus. F1000Res 2014; 3:106. [PMID: 25285205 PMCID: PMC4176424 DOI: 10.12688/f1000research.4097.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/09/2014] [Indexed: 11/23/2022] Open
Abstract
D-alanylation of the lipoteichoic acid on Gram-positive cell wall is dependent on
dlt gene-encoded proteins DltA, DltB, DltC and DltD. The D-alanyl carrier protein ligase DltA, as a remote homolog of acyl-(coenzyme A) (CoA) synthetase, cycles through two active conformations for the catalysis of adenylation and subsequent thiolation of D-alanine (D-Ala). The crystal structure of DltA in the absence of any substrate was observed to have a noticeably more disordered pocket for ATP which would explain why DltA has relatively low affinity for ATP in the absence of any D-alanyl carrier. We have previously enabled the thiolation of D-alanine in the presence of CoA as the mimic of D-alanyl carrier protein DltC which carries a 4’-phosphopantetheine group on a serine residue. Here we show that the resulting Michaelis constants in the presence of saturating CoA for both ATP and D-alanine were reduced more than 10 fold as compared to the values obtained in the absence of CoA. The presence of CoA also made DltA ~100-fold more selective on D-alanine over L-alanine. The CoA-enhanced substrate recognition further implies that the ATP and D-alanine substrates of the adenylation reaction are incorporated when the DltA enzyme cycles through its thiolation conformation.
Collapse
Affiliation(s)
- Liqin Du
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Yu Luo
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| |
Collapse
|
39
|
Han N, Ran T, Lou X, Gao Y, He J, Tang L, Xu D, Wang W. Expression, crystallization and preliminary crystallographic data analysis of PigI, a putative L-prolyl-AMP ligase from the prodigiosin synthetic pathway in Serratia. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2014; 70:624-7. [PMID: 24817724 DOI: 10.1107/s2053230x14005780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/14/2014] [Indexed: 11/10/2022]
Abstract
Prodigiosin, a member of the prodiginines, is a tripyrrole red pigment synthesized by Serratia and some other microbes. A bifurcated biosynthesis pathway of prodigiosin has been proposed in Serratia in which MBC (4-methoxy-2,2'-bipyrrole-5-carbaldehyde) and MAP (2-methyl-3-N-amyl-pyrrole) are synthesized separately and then condensed by PigC to form prodigiosin. The first step for the synthesis of MBC is the activation of L-proline by PigI, but its catalytic mechanism has remained elusive. To elucidate its mechanism, recombinant PigI was purified and crystallized. Crystals obtained by the sitting-drop method belonged to space group P1 and diffracted to 2.0 Å resolution, with unit-cell parameters a = 51.2, b = 62.8, c = 91.3 Å, α = 105.1, β = 90.1, γ = 92.2°. Matthews coefficient analysis suggested two molecules in the asymmetric unit, with a VM of 2.6 Å(3) Da(-1) and a solvent content of 52.69%.
Collapse
Affiliation(s)
- Ning Han
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Tingting Ran
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xiangdi Lou
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yanyan Gao
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Jianhua He
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Lin Tang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Dongqing Xu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Weiwu Wang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
40
|
Sundlov JA, Gulick AM. Structure determination of the functional domain interaction of a chimeric nonribosomal peptide synthetase from a challenging crystal with noncrystallographic translational symmetry. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1482-92. [PMID: 23897471 PMCID: PMC3727328 DOI: 10.1107/s0907444913009372] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/07/2013] [Indexed: 12/21/2022]
Abstract
The nonribosomal peptide synthetases (NRPSs) are a family of modular proteins that contain multiple catalytic domains joined in a single protein. Together, these domains work to produce chemically diverse peptides, including compounds with antibiotic activity or that play a role in iron acquisition. Understanding the structural mechanisms that govern the domain interactions has been a long-standing goal. During NRPS synthesis, amino-acid substrates are loaded onto integrated carrier protein domains through the activity of NRPS adenylation domains. The structures of two adenylation domain-carrier protein domain complexes have recently been determined in an effort that required the use of a mechanism-based inhibitor to trap the domain interaction. Here, the continued analysis of these proteins is presented, including a higher resolution structure of an engineered di-domain protein containing the EntE adenylation domain fused with the carrier protein domain of its partner EntB. The protein crystallized in a novel space group in which molecular replacement and refinement were challenged by noncrystallographic pseudo-translational symmetry. The structure determination and how the molecular packing impacted the diffraction intensities are reported. Importantly, the structure illustrates that in this new crystal form the functional interface between the adenylation domain and the carrier protein domain remains the same as that observed previously. At a resolution that allows inclusion of water molecules, additional interactions are observed between the two protein domains and between the protein and its ligands. In particular, a highly solvated region that surrounds the carrier protein cofactor is described.
Collapse
Affiliation(s)
- Jesse A. Sundlov
- Hauptman–Woodward Medical Research Institute and Department of Structural Biology, University at Buffalo, 700 Ellicott Street, Buffalo, NY 14203, USA
| | - Andrew M. Gulick
- Hauptman–Woodward Medical Research Institute and Department of Structural Biology, University at Buffalo, 700 Ellicott Street, Buffalo, NY 14203, USA
| |
Collapse
|
41
|
Reichmann NT, Cassona CP, Gründling A. Revised mechanism of D-alanine incorporation into cell wall polymers in Gram-positive bacteria. MICROBIOLOGY-SGM 2013; 159:1868-1877. [PMID: 23858088 PMCID: PMC3783018 DOI: 10.1099/mic.0.069898-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Teichoic acids (TAs) are important for growth, biofilm formation, adhesion and virulence of Gram-positive bacterial pathogens. The chemical structures of the TAs vary between bacteria, though they typically consist of zwitterionic polymers that are anchored to either the peptidoglycan layer as in the case of wall teichoic acid (WTA) or the cell membrane and named lipoteichoic acid (LTA). The polymers are modified with D-alanines and a lack of this decoration leads to increased susceptibility to cationic antimicrobial peptides. Four proteins, DltA-D, are essential for the incorporation of d-alanines into cell wall polymers and it has been established that DltA transfers D-alanines in the cytoplasm of the cell onto the carrier protein DltC. However, two conflicting models have been proposed for the remainder of the mechanism. Using a cellular protein localization and membrane topology analysis, we show here that DltC does not traverse the membrane and that DltD is anchored to the outside of the cell. These data are in agreement with the originally proposed model for D-alanine incorporation through a process that has been proposed to proceed via a D-alanine undecaprenyl phosphate membrane intermediate. Furthermore, we found that WTA isolated from a Staphylococcus aureus strain lacking LTA contains only a small amount of D-alanine, indicating that LTA has a role, either direct or indirect, in the efficient D-alanine incorporation into WTA in living cells.
Collapse
Affiliation(s)
- Nathalie T Reichmann
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Carolina Picarra Cassona
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Angelika Gründling
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
42
|
Davidsen JM, Bartley DM, Townsend CA. Non-ribosomal propeptide precursor in nocardicin A biosynthesis predicted from adenylation domain specificity dependent on the MbtH family protein NocI. J Am Chem Soc 2013; 135:1749-59. [PMID: 23330869 DOI: 10.1021/ja307710d] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Nocardicin A is a monocyclic β-lactam isolated from the actinomycete Nocardia uniformis that shows moderate antibiotic activity against a broad spectrum of gram-negative bacteria. The monobactams are of renewed interest due to emerging gram-negative strains resistant to clinically available penicillins and cephalosporins. Like isopenicillin N, nocardicin A has a tripeptide core of non-ribosomal origin. Paradoxically, the nocardicin A gene cluster encodes two non-ribosomal peptide synthetases (NRPSs), NocA and NocB, predicted to encode five modules pointing to a pentapeptide precursor in nocardicin A biosynthesis, unless module skipping or other nonlinear reactions are occurring. Previous radiochemical incorporation experiments and bioinformatic analyses predict the incorporation of p-hydroxy-L-phenylglycine (L-pHPG) into positions 1, 3, and 5 and L-serine into position 4. No prediction could be made for position 2. Multidomain constructs of each module were heterologous expressed in Escherichia coli for determination of the adenylation domain (A-domain) substrate specificity using the ATP/PPi exchange assay. Three of the five A-domains, from modules 1, 2, and 4, required the addition of stoichiometric amounts of MbtH family protein NocI to detect exchange activity. On the basis of these analyses, the predicted product of the NocA and NocB NRPSs is L-pHPG-L-Arg-D-pHPG-L-Ser-L-pHPG, a pentapeptide. Despite being flanked by non-proteinogenic amino acids, proteolysis of this pentapeptide by trypsin yields two fragments from cleavage at the C terminus of the L-Arg residue. Thus, a proteolytic step is likely involved in the biosynthesis of nocardicin A, a rare but precedented editing event in the formation of non-ribosomal natural products that is supported by the identification of trypsin-encoding genes in N. uniformis.
Collapse
Affiliation(s)
- Jeanne M Davidsen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | | | | |
Collapse
|
43
|
Role of motif III in catalysis by acetyl-CoA synthetase. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2012; 2012:509579. [PMID: 22973162 PMCID: PMC3438747 DOI: 10.1155/2012/509579] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/12/2012] [Accepted: 07/30/2012] [Indexed: 12/03/2022]
Abstract
The acyl-adenylate-forming enzyme superfamily, consisting of acyl- and aryl-CoA synthetases, the adenylation domain of the nonribosomal peptide synthetases, and luciferase, has three signature motifs (I–III) and ten conserved core motifs (A1–A10), some of which overlap the signature motifs. The consensus sequence for signature motif III (core motif A7) in acetyl-CoA synthetase is Y-X-S/T/A-G-D, with an invariant fifth position, highly conserved first and fourth positions, and variable second and third positions. Kinetic studies of enzyme variants revealed that an alteration at any position resulted in a strong decrease in the catalytic rate, although the most deleterious effects were observed when the first or fifth positions were changed. Structural modeling suggests that the highly conserved Tyr in the first position plays a key role in active site architecture through interaction with a highly conserved active-site Gln, and the invariant Asp in the fifth position plays a critical role in ATP binding and catalysis through interaction with the 2′- and 3′-OH groups of the ribose moiety. Interactions between these Asp and ATP are observed in all structures available for members of the superfamily, consistent with a critical role in substrate binding and catalysis for this invariant residue.
Collapse
|
44
|
Hur GH, Vickery CR, Burkart MD. Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology. Nat Prod Rep 2012; 29:1074-98. [PMID: 22802156 DOI: 10.1039/c2np20025b] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Many pharmaceuticals on the market today belong to a large class of natural products called nonribosomal peptides (NRPs). Originating from bacteria and fungi, these peptide-based natural products consist not only of the 20 canonical L-amino acids, but also non-proteinogenic amino acids, heterocyclic rings, sugars, and fatty acids, generating tremendous chemical diversity. As a result, these secondary metabolites exhibit a broad array of bioactivity, ranging from antimicrobial to anticancer. The biosynthesis of these complex compounds is carried out by large multimodular megaenzymes called nonribosomal peptide synthetases (NRPSs). Each module is responsible for incorporation of a monomeric unit into the natural product peptide and is composed of individual domains that perform different catalytic reactions. Biochemical and bioinformatic investigations of these enzymes have uncovered the key principles of NRP synthesis, expanding the pharmaceutical potential of their enzymatic processes. Progress has been made in the manipulation of this biosynthetic machinery to develop new chemoenzymatic approaches for synthesizing novel pharmaceutical agents with increased potency. This review focuses on the recent discoveries and breakthroughs in the structural elucidation, molecular mechanism, and chemical biology underlying the discrete domains within NRPSs.
Collapse
|
45
|
Sundlov JA, Shi C, Wilson DJ, Aldrich CC, Gulick AM. Structural and functional investigation of the intermolecular interaction between NRPS adenylation and carrier protein domains. ACTA ACUST UNITED AC 2012; 19:188-98. [PMID: 22365602 DOI: 10.1016/j.chembiol.2011.11.013] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/17/2011] [Accepted: 11/22/2011] [Indexed: 10/28/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) are modular proteins that produce peptide antibiotics and siderophores. These enzymes act as catalytic assembly lines where substrates, covalently bound to integrated carrier domains, are delivered to adjacent catalytic domains. The carrier domains are initially loaded by adenylation domains, which use two distinct conformations to catalyze sequentially the adenylation of the substrate and the thioesterification of the pantetheine cofactor. We have used a mechanism-based inhibitor to determine the crystal structure of an engineered adenylation-carrier domain protein illustrating the intermolecular interaction between the adenylation and carrier domains. This structure enabled directed mutations to improve the interaction between nonnative partner proteins. Comparison with prior NRPS adenylation domain structures provides insights into the assembly line dynamics of these modular enzymes.
Collapse
Affiliation(s)
- Jesse A Sundlov
- Hauptman-Woodward Institute and Department of Structural Biology, University at Buffalo, Buffalo, NY 14203 USA
| | | | | | | | | |
Collapse
|
46
|
Mitchell CA, Shi C, Aldrich CC, Gulick AM. Structure of PA1221, a nonribosomal peptide synthetase containing adenylation and peptidyl carrier protein domains. Biochemistry 2012; 51:3252-63. [PMID: 22452656 DOI: 10.1021/bi300112e] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many bacteria use large modular enzymes for the synthesis of polyketide and peptide natural products. These multidomain enzymes contain integrated carrier domains that deliver bound substrates to multiple catalytic domains, requiring coordination of these chemical steps. Nonribosomal peptide synthetases (NRPSs) load amino acids onto carrier domains through the activity of an upstream adenylation domain. Our lab recently determined the structure of an engineered two-domain NRPS containing fused adenylation and carrier domains. This structure adopted a domain-swapped dimer that illustrated the interface between these two domains. To continue our investigation, we now examine PA1221, a natural two-domain protein from Pseudomonas aeruginosa. We have determined the amino acid specificity of this new enzyme and used domain specific mutations to demonstrate that loading the downstream carrier domain within a single protein molecule occurs more quickly than loading of a nonfused carrier domain intermolecularly. Finally, we have determined crystal structures of both apo- and holo-PA1221 proteins, the latter using a valine-adenosine vinylsulfonamide inhibitor that traps the adenylation domain-carrier domain interaction. The protein adopts an interface similar to that seen with the prior adenylation domain-carrier protein construct. A comparison of these structures with previous structures of multidomain NRPSs suggests that a large conformational change within the NRPS adenylation domains guides the carrier domain into the active site for thioester formation.
Collapse
Affiliation(s)
- Carter A Mitchell
- Hauptman-Woodward Institute and Department of Structural Biology, University at Buffalo, Buffalo, New York 14203, United States
| | | | | | | |
Collapse
|
47
|
Lu X, Zhou R, Sharma I, Li X, Kumar G, Swaminathan S, Tonge PJ, Tan DS. Stable analogues of OSB-AMP: potent inhibitors of MenE, the o-succinylbenzoate-CoA synthetase from bacterial menaquinone biosynthesis. Chembiochem 2011; 13:129-36. [PMID: 22109989 DOI: 10.1002/cbic.201100585] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Indexed: 12/15/2022]
Abstract
MenE, the o-succinylbenzoate (OSB)-CoA synthetase from bacterial menaquinone biosynthesis, is a promising new antibacterial target. Sulfonyladenosine analogues of the cognate reaction intermediate, OSB-AMP, have been developed as inhibitors of the MenE enzymes from Mycobacterium tuberculosis (mtMenE), Staphylococcus aureus (saMenE) and Escherichia coli (ecMenE). Both a free carboxylate and a ketone moiety on the OSB side chain are required for potent inhibitory activity. OSB-AMS (4) is a competitive inhibitor of mtMenE with respect to ATP (K(i) =5.4±0.1 nM) and a noncompetitive inhibitor with respect to OSB (K(i) =11.2±0.9 nM). These data are consistent with a Bi Uni Uni Bi Ping-Pong kinetic mechanism for these enzymes. In addition, OSB-AMS inhibits saMenE with K(i)(app) =22±8 nM and ecMenE with K(i)(OSB) =128±5 nM. Putative active-site residues, Arg222, which may interact with the OSB aromatic carboxylate, and Ser302, which may bind the OSB ketone oxygen, have been identified through computational docking of OSB-AMP with the unliganded crystal structure of saMenE. A pH-dependent interconversion of the free keto acid and lactol forms of the inhibitors is also described, along with implications for inhibitor design.
Collapse
Affiliation(s)
- Xuequan Lu
- Molecular Pharmacology and Chemistry Program and Tri-Institutional Research Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Law A, Boulanger MJ. Defining a structural and kinetic rationale for paralogous copies of phenylacetate-CoA ligases from the cystic fibrosis pathogen Burkholderia cenocepacia J2315. J Biol Chem 2011; 286:15577-85. [PMID: 21388965 PMCID: PMC3083198 DOI: 10.1074/jbc.m111.219683] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/07/2011] [Indexed: 11/06/2022] Open
Abstract
The phenylacetic acid (PAA) degradation pathway is the sole aerobic route for phenylacetic acid metabolism in bacteria and facilitates degradation of environmental pollutants such as styrene and ethylbenzene. The PAA pathway also is implicated in promoting Burkholderia cenocepacia infections in cystic fibrosis patients. Intriguingly, the first enzyme in the PAA pathway is present in two copies (paaK1 and paaK2), yet each subsequent enzyme is present in only a single copy. Furthermore, sequence divergence indicates that PaaK1 and PaaK2 form a unique subgroup within the adenylate-forming enzyme (AFE) superfamily. To establish a biochemical rationale for the existence of the PaaK paralogs in B. cenocepacia, we present high resolution x-ray crystal structures of a selenomethionine derivative of PaaK1 in complex with ATP and adenylated phenylacetate intermediate complexes of PaaK1 and PaaK2 in distinct conformations. Structural analysis reveals a novel N-terminal microdomain that may serve to recruit subsequent PAA enzymes, whereas a bifunctional role is proposed for the P-loop in stabilizing the C-terminal domain in conformation 2. The potential for different kinetic profiles was suggested by a structurally divergent extension of the aryl substrate pocket in PaaK1 relative to PaaK2. Functional characterization confirmed this prediction, with PaaK1 possessing a lower K(m) for phenylacetic acid and better able to accommodate 3' and 4' substitutions on the phenyl ring. Collectively, these results offer detailed insight into the reaction mechanism of a novel subgroup of the AFE superfamily and provide a clear biochemical rationale for the presence of paralogous copies of PaaK of B. cenocepacia.
Collapse
Affiliation(s)
- Adrienne Law
- From the Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | - Martin J. Boulanger
- From the Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| |
Collapse
|
49
|
Lu X, Olsen SK, Capili AD, Cisar JS, Lima CD, Tan DS. Designed semisynthetic protein inhibitors of Ub/Ubl E1 activating enzymes. J Am Chem Soc 2010; 132:1748-9. [PMID: 20099854 DOI: 10.1021/ja9088549] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Semisynthetic, mechanism-based protein inhibitors of ubiquitin (Ub) and ubiquitin-like modifier (Ubl) activating enzymes (E1s) have been developed to target E1-catalyzed adenylation and thioesterification of the Ub/Ubl C-terminus during the processes of protein SUMOylation and ubiquitination. The inhibitors were generated by intein-mediated expressed protein ligation using a truncated Ub/Ubl protein (SUMO residues 1-94; Ub residues 1-71) with a C-terminal thioester and synthetic tripeptides having a C-terminal adenosine analogue and an N-terminal cysteine residue. SUMO-AMSN (4a) and Ub-AMSN (4b) contain a sulfamide group as a nonhydrolyzable mimic of the phosphate group in the cognate Ub/Ubl-AMP adenylate intermediate in the first half-reaction, and these constructs selectively inhibit SUMO E1 and Ub E1, respectively, in a dose-dependent manner. SUMO-AVSN (5a) and Ub-AVSN (5b) contain an electrophilic vinyl sulfonamide designed to trap the incoming E1 cysteine nucleophile (Uba2 Cys173 in SUMO E1; Uba1 Cys593 in Ub E1) in the second half-reaction, and these constructs selectively, covalently, and stably cross-link to SUMO E1 and Ub E1, respectively, in a cysteine nucleophile-dependent manner. These inhibitors are powerful tools to probe outstanding mechanistic questions in E1 function and can also be used to study the biological functions of E1 enzymes.
Collapse
Affiliation(s)
- Xuequan Lu
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 422, New York, New York 10065, USA
| | | | | | | | | | | |
Collapse
|
50
|
Shah MB, Ingram-Smith C, Cooper LL, Qu J, Meng Y, Smith KS, Gulick AM. The 2.1 A crystal structure of an acyl-CoA synthetase from Methanosarcina acetivorans reveals an alternate acyl-binding pocket for small branched acyl substrates. Proteins 2010; 77:685-98. [PMID: 19544569 DOI: 10.1002/prot.22482] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The acyl-AMP forming family of adenylating enzymes catalyze two-step reactions to activate a carboxylate with the chemical energy derived from ATP hydrolysis. X-ray crystal structures have been determined for multiple members of this family and, together with biochemical studies, provide insights into the active site and catalytic mechanisms used by these enzymes. These studies have shown that the enzymes use a domain rotation of 140 degrees to reconfigure a single active site to catalyze the two partial reactions. We present here the crystal structure of a new medium chain acyl-CoA synthetase from Methanosarcina acetivorans. The binding pocket for the three substrates is analyzed, with many conserved residues present in the AMP binding pocket. The CoA binding pocket is compared to the pockets of both acetyl-CoA synthetase and 4-chlorobenzoate:CoA ligase. Most interestingly, the acyl-binding pocket of the new structure is compared with other acyl- and aryl-CoA synthetases. A comparison of the acyl-binding pocket of the acyl-CoA synthetase from M. acetivorans with other structures identifies a shallow pocket that is used to bind the medium chain carboxylates. These insights emphasize the high sequence and structural diversity among this family in the area of the acyl-binding pocket.
Collapse
Affiliation(s)
- Manish B Shah
- Hauptman-Woodward Medical Research Institute, Buffalo, New York 14203-1102, USA
| | | | | | | | | | | | | |
Collapse
|