1
|
Jin X, Zhang P, Zhang Y, Zhou M, Liu B, Quan D, Jia M, Zhang Z, Guo W, Kong XY, Jiang L. Light-driven proton transmembrane transport enabled by bio-semiconductor 2D membrane: A general peptide-induced WS 2 band shifting strategy. Biosens Bioelectron 2022; 218:114741. [PMID: 36209531 DOI: 10.1016/j.bios.2022.114741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/02/2022]
Abstract
Light-driven proton directional transport is important in living beings as it could subtly realize the light energy conversion for living uses. In the past years, 2D materials-based nanochannels have shown great potential in active ion transport due to controllable properties, including surface charge distribution, wettability, functionalization, electric structure, and external stimuli responsibility, etc. However, to fuse the inorganic materials into bio-membranes still faces several challenges. Here, we proposed peptide-modified WS2 nanosheets via cysteine linkers to realize tunable band structure and, hence, enable light-driven proton transmembrane transport. The modification was achieved through the thiol chemistry of the -SH groups in the cysteine linker and the S vacancy on the WS2 nanosheets. By tuning the amino residues sequences (lysine-rich peptides, denoted as KFC; and aspartate-rich peptides, denoted as DFC), the ζ-potential, surface charge, and band energy of WS2 nanosheets could be rationally regulated. Janus membranes formed by assembling the peptide-modified WS2 nanosheets could realize the proton transmembrane transport under visible light irradiation, driven by a built-in potential due to a type II band alignment between the KFC-WS2 and DFC-WS2. As a result, the proton would be driven across the formed nanochannels. These results demonstrate a general strategy to build bio-semiconductor materials and provide a new way for embedding inorganic materials into biological systems toward the development of bioelectronic devices.
Collapse
Affiliation(s)
- Xiaoyan Jin
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Peikun Zhang
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, Institute for Frontier Science of Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yuhui Zhang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Min Zhou
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Biying Liu
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Di Quan
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meijuan Jia
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhuhua Zhang
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, Institute for Frontier Science of Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Wei Guo
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Ni QZ, Can TV, Daviso E, Belenky M, Griffin RG, Herzfeld J. Primary Transfer Step in the Light-Driven Ion Pump Bacteriorhodopsin: An Irreversible U-Turn Revealed by Dynamic Nuclear Polarization-Enhanced Magic Angle Spinning NMR. J Am Chem Soc 2018; 140:4085-4091. [PMID: 29489362 DOI: 10.1021/jacs.8b00022] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite much attention, the path of the highly consequential primary proton transfer in the light-driven ion pump bacteriorhodopsin (bR) remains mysterious. Here we use DNP-enhanced magic angle spinning (MAS) NMR to study critical elements of the active site just before the Schiff base (SB) deprotonates (in the L intermediate), immediately after the SB has deprotonated and Asp85 has become protonated (in the Mo intermediate), and just after the SB has reprotonated and Asp96 has deprotonated (in the N intermediate). An essential feature that made these experiments possible is the 75-fold signal enhancement through DNP. 15N(SB)-1H correlations reveal that the newly deprotonated SB is accepting a hydrogen bond from an alcohol and 13C-13C correlations show that Asp85 draws close to Thr89 before the primary proton transfer. Concurrently, 15N-13C correlations between the SB and Asp85 show that helices C and G draw closer together just prior to the proton transfer and relax thereafter. Together, these results indicate that Thr89 serves to relay the SB proton to Asp85 and that creating this pathway involves rapprochement between the C and G helices as well as chromophore torsion.
Collapse
Affiliation(s)
- Qing Zhe Ni
- Department of Chemistry and Francis Bitter Magnet Laboratory , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Thach V Can
- Department of Chemistry and Francis Bitter Magnet Laboratory , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Eugenio Daviso
- Department of Chemistry and Francis Bitter Magnet Laboratory , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States.,Department of Chemistry , Brandeis University , Waltham , Massachusetts 02454 , United States
| | - Marina Belenky
- Department of Chemistry , Brandeis University , Waltham , Massachusetts 02454 , United States
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Judith Herzfeld
- Department of Chemistry , Brandeis University , Waltham , Massachusetts 02454 , United States
| |
Collapse
|
4
|
Morgan JE, Vakkasoglu AS, Lanyi JK, Lugtenburg J, Gennis RB, Maeda A. Structure changes upon deprotonation of the proton release group in the bacteriorhodopsin photocycle. Biophys J 2013; 103:444-452. [PMID: 22947860 DOI: 10.1016/j.bpj.2012.06.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 05/19/2012] [Accepted: 06/04/2012] [Indexed: 11/18/2022] Open
Abstract
In the photocycle of bacteriorhodopsin at pH 7, a proton is ejected to the extracellular medium during the protonation of Asp-85 upon formation of the M intermediate. The group that releases the ejected proton does not become reprotonated until the prephotolysis state is restored from the N and O intermediates. In contrast, at acidic pH, this proton release group remains protonated to the end of the cycle. Time-resolved Fourier transform infrared measurements obtained at pH 5 and 7 were fitted to obtain spectra of kinetic intermediates, from which the spectra of M and N/O versus unphotolyzed state were calculated. Vibrational features that appear in both M and N/O spectra at pH 7, but not at pH 5, are attributable to deprotonation from the proton release group and resulting structural alterations. Our results agree with the earlier conclusion that this group is a protonated internal water cluster, and provide a stronger experimental basis for this assignment. A decrease in local polarity at the N-C bond of the side chain of Lys-216 resulting from deprotonation of this water cluster may be responsible for the increase in the proton affinity of Asp-85 through M and N/O, which is crucial for maintaining the directionality of proton pumping.
Collapse
Affiliation(s)
- Joel E Morgan
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Ahmet S Vakkasoglu
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Janos K Lanyi
- Department of Physiology and Biophysics, University of California, Irvine, California
| | - Johan Lugtenburg
- Department of Chemistry, University of Leiden, Leiden, The Netherlands
| | - Robert B Gennis
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Akio Maeda
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
5
|
Morgan JE, Vakkasoglu AS, Lanyi JK, Gennis RB, Maeda A. Coordinating the structural rearrangements associated with unidirectional proton transfer in the bacteriorhodopsin photocycle induced by deprotonation of the proton-release group: a time-resolved difference FTIR spectroscopic study. Biochemistry 2010; 49:3273-81. [PMID: 20232848 DOI: 10.1021/bi901757y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the photocycle of bacteriorhodopsin at pH 7, proton release from the proton releasing group (PRG) to the extracellular medium occurs during formation of the M intermediate. This proton release is inhibited at acidic pH, below the pK(a) of the PRG, approximately 6 in M, and instead occurs later in the cycle as the initial state is restored from the O intermediate. Here, structural changes related to deprotonation of the PRG have been investigated by time-resolved FTIR spectroscopy at 25 degrees C. The vibrational features at 2100-1790, 1730-1685, 1661, and 1130-1045 cm(-1) have greater negative intensity in the pure M-minus-BR spectrum and even in the M-minus-BR spectrum, that is present earlier together with the L-minus-BR spectrum, at pH 7, than in the corresponding M-minus-BR spectra at pH 5 or 4. The D212N mutation abolishes the decreases in the intensities of the broad feature between 1730 and 1685 cm(-1) and the band at 1661 cm(-1). The 1730-1685 cm(-1) feature may arise from transition dipole coupling of the backbone carbonyl groups of Glu204, Phe208, Asp212, and Lys216 interacting with Tyr57 and C(15)-H of the chromophore. The 1661 cm(-1) band, which is insensitive to D(2)O substitution, may arise by interaction of the backbone carbonyl of Asp212 with C(15)-H. The 2100-1790 cm(-1) feature with a trough at 1885 cm(-1) could be due to a water cluster. Depletion of these bands upon deprotonation of the PRG is attributable to disruption of a coordinated structure, held in place by interactions of Asp212. Deprotonation of the PRG is also accompanied by disruption of the interaction of the water molecule near Arg82. The liberated Asp212 may stabilize the protonated state of Asp85 and thus confer unidirectionality to the transport.
Collapse
Affiliation(s)
- Joel E Morgan
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Room 2137, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, USA
| | | | | | | | | |
Collapse
|