1
|
In Silico Identification of Novel Inhibitors Targeting the Homodimeric Interface of Superoxide Dismutase from the Dental Pathogen Streptococcus mutans. Antioxidants (Basel) 2022; 11:antiox11040785. [PMID: 35453470 PMCID: PMC9029323 DOI: 10.3390/antiox11040785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
The microaerophile Streptococcus mutans, the main microaerophile responsible for the development of dental plaque, has a single cambialistic superoxide dismutase (SmSOD) for its protection against reactive oxygen species. In order to discover novel inhibitors of SmSOD, possibly interfering with the biofilm formation by this pathogen, a virtual screening study was realised using the available 3D-structure of SmSOD. Among the selected molecules, compound ALS-31 was capable of inhibiting SmSOD with an IC50 value of 159 µM. Its inhibition power was affected by the Fe/Mn ratio in the active site of SmSOD. Furthermore, ALS-31 also inhibited the activity of other SODs. Gel-filtration of SmSOD in the presence of ALS-31 showed that the compound provoked the dissociation of the SmSOD homodimer in two monomers, thus compromising the catalytic activity of the enzyme. A docking model, showing the binding mode of ALS-31 at the dimer interface of SmSOD, is presented. Cell viability of the fibroblast cell line BJ5-ta was not affected up to 100 µM ALS-31. A preliminary lead optimization program allowed the identification of one derivative, ALS-31-9, endowed with a 2.5-fold improved inhibition power. Interestingly, below this concentration, planktonic growth and biofilm formation of S. mutans cultures were inhibited by ALS-31, and even more by its derivative, thus opening the perspective of future drug design studies to fight against dental caries.
Collapse
|
2
|
Wang S, Dong ZY, Yan YB. Semiholoenzyme optimizes activity and stability of a hyperthermostable iron-superoxide dismutase. Biochem Biophys Res Commun 2019; 519:93-99. [PMID: 31477266 DOI: 10.1016/j.bbrc.2019.08.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/24/2019] [Indexed: 10/26/2022]
Abstract
Metal ion coordination is an essential step for the maturation of metalloenzymes. Generally, the metal coordination sites are thought to be fully occupied to achieve the maximum activity and stability. In this research, we compared the structural features, activity and stability of the apo-, semiholo- and holo-forms of a hyperthermostable tetrameric Fe-superoxide dismutase (SOD). Strikingly, the three forms of enzymes had similar compact tetrameric structures. Removal of iron ions destabilized subunit-subunit interactions during guanidine hydrochloride-induced unfolding. The partially metalized semiholoenzyme possessed most of the activity and identical hyperthermostability of the holoenzyme, but weaker propensity to aggregate. Furthermore, both of the iron content and activity of the semiholoenzyme were unaffected by a 200-fold excess iron ions in solutions, suggesting that conformation of the apo-subunits were forced to the close state by the iron-containing subunits. These observations suggest that fully metalized enzyme is probably nonessential for multimeric metalloenzymes and the semiholoenzyme may be a better choice. The unique properties of semiholoenzyme also provide the organisms a compromised solution to survival under metal deficiency conditions.
Collapse
Affiliation(s)
- Sha Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100081, China
| | - Zhi-Yang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100081, China
| | - Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
3
|
Miller AF, Wang T. A Single Outer-Sphere Mutation Stabilizes apo-Mn Superoxide Dismutase by 35 °C and Disfavors Mn Binding. Biochemistry 2017; 56:3787-3799. [PMID: 28704037 PMCID: PMC6010041 DOI: 10.1021/acs.biochem.7b00175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The catalytic active site of Mn-specific superoxide dismutase (MnSOD) is organized around a redox-active Mn ion. The most highly conserved difference between MnSODs and the homologous FeSODs is the origin of a Gln in the second coordination sphere. In MnSODs it derives from the C-terminal domain whereas in FeSODs it derives from the N-terminal domain, yet its side chain occupies almost superimposable positions in the active sites of these two types of SODs. Mutation of this Gln69 to Glu in Escherichia coli FeSOD increased the Fe3+/2+ reduction midpoint potential by >0.6 V without disrupting the structure or Fe binding [ Yikilmaz, E., Rodgers, D. W., and Miller, A.-F. ( 2006 ) Biochemistry 45 ( 4 ), 1151 - 1161 ]. We now describe the analogous Q146E mutant of MnSOD, explaining its low Mn content in terms increased stability of the apo-Mn protein. In 0.8 M guanidinium HCl, Q146E-apoMnSOD displays an apparent melting midpoint temperature (Tm) 35 °C higher that of wild-type (WT) apoMnSOD, whereas the Tm of WT-holoMnSOD is only 20 °C higher than that of WT-apoMnSOD. In contrast, the Tm attributed to Q146E-holoMnSOD is 40 °C lower than that of Q146E-apoMnSOD. Thus, our data refute the notion that the WT residues optimize the structural stability of the protein and instead are consistent with conservation on the basis of enzyme function and therefore ability to bind metal ion. We propose that the WT-MnSOD protein conserves a destabilizing amino acid at position 146 as part of a strategy to favor metal ion binding.
Collapse
Affiliation(s)
- Anne-Frances Miller
- Department of Chemistry, University of Kentucky, Lexington Kentucky, 40506, United States
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, 741 S. Limestone Street, Lexington, KY. 40536-0509
| | - Ting Wang
- Department of Chemistry, University of Kentucky, Lexington Kentucky, 40506, United States
| |
Collapse
|
4
|
Russo Krauss I, Merlino A, Pica A, Rullo R, Bertoni A, Capasso A, Amato M, Riccitiello F, De Vendittis E, Sica F. Fine tuning of metal-specific activity in the Mn-like group of cambialistic superoxide dismutases. RSC Adv 2015. [DOI: 10.1039/c5ra13559a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Metal-dependent activity and X-ray structures of superoxide dismutase (SOD) fromStreptococcus mutansandStreptococcus thermophilussuggest that they are members of the Mn-like group of cambialistic SODs.
Collapse
Affiliation(s)
- Irene Russo Krauss
- Dipartimento di Scienze Chimiche
- Università degli Studi di Napoli Federico II
- 80126 Napoli
- Italy
- Istituto di Biostrutture e Bioimmagini
| | - Antonello Merlino
- Dipartimento di Scienze Chimiche
- Università degli Studi di Napoli Federico II
- 80126 Napoli
- Italy
- Istituto di Biostrutture e Bioimmagini
| | - Andrea Pica
- Dipartimento di Scienze Chimiche
- Università degli Studi di Napoli Federico II
- 80126 Napoli
- Italy
- Istituto di Biostrutture e Bioimmagini
| | - Rosario Rullo
- Istituto per il Sistema Produzione Animale in Ambiente Mediterraneo
- CNR
- 80147 Napoli
- Italy
| | - Alessandra Bertoni
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche
- Università degli Studi di Napoli Federico II
- 80131 Napoli
- Italy
| | - Alessandra Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche
- Università degli Studi di Napoli Federico II
- 80131 Napoli
- Italy
| | - Massimo Amato
- Dipartimento di Medicina e Chirurgia
- Università di Salerno
- SA
- Italy
| | - Francesco Riccitiello
- Dipartimento di Neuroscienze
- Scienze Riproduttive e Odontostomatologiche
- Università degli Studi di Napoli Federico II
- 80131 Napoli
- Italy
| | - Emmanuele De Vendittis
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche
- Università degli Studi di Napoli Federico II
- 80131 Napoli
- Italy
| | - Filomena Sica
- Dipartimento di Scienze Chimiche
- Università degli Studi di Napoli Federico II
- 80126 Napoli
- Italy
- Istituto di Biostrutture e Bioimmagini
| |
Collapse
|
5
|
Sheng Y, Abreu IA, Cabelli DE, Maroney MJ, Miller AF, Teixeira M, Valentine JS. Superoxide dismutases and superoxide reductases. Chem Rev 2014; 114:3854-918. [PMID: 24684599 PMCID: PMC4317059 DOI: 10.1021/cr4005296] [Citation(s) in RCA: 644] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Yuewei Sheng
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los
Angeles, California 90095, United States
| | - Isabel A. Abreu
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
- Instituto
de Biologia Experimental e Tecnológica, Av. da República,
Qta. do Marquês, Estação Agronómica Nacional,
Edificio IBET/ITQB, 2780-157, Oeiras, Portugal
| | - Diane E. Cabelli
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Michael J. Maroney
- Department
of Chemistry, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Anne-Frances Miller
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Miguel Teixeira
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Joan Selverstone Valentine
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los
Angeles, California 90095, United States
- Department
of Bioinspired Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| |
Collapse
|
6
|
Whittaker MM, Whittaker JW. Expression and purification of recombinant Saccharomyces cerevisiae mitochondrial carrier protein YGR257Cp (Mtm1p). Protein Expr Purif 2013; 93:77-86. [PMID: 24184947 DOI: 10.1016/j.pep.2013.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/11/2013] [Accepted: 10/23/2013] [Indexed: 12/27/2022]
Abstract
The Saccharomyces cerevisiae mitochondrial carrier YGR257Cp (Mtm1p) is an integral membrane protein that plays an essential role in mitochondrial iron homeostasis and respiratory functions, but its carrier substrate has not previously been identified. Large amounts of pure protein are required for biochemical characterization, including substrate screening. Functional complementation of a Saccharomyces knockout by expression of TwinStrep tagged YGR257Cp demonstrates that an affinity tag does not interfere with protein function, but the expression level is very low. Heterologous expression in Pichia pastoris improves the yield but the product is heterogeneous. Expression has been screened in several Escherichia coli hosts, optimizing yield by modifying induction conditions and supplementing with rare tRNAs to overcome codon bias in the eukaryotic gene. Detection of an additional N-terminal truncation product in E. coli reveals the presence of a secondary intracistronic translation initiation site, which can be eliminated by silent mutagenesis of an alternative (Leu) initiation codon, resulting in production of a single, full-length polypeptide (∼30% of the total protein) as insoluble inclusion bodies. Purified inclusion bodies were successfully refolded and affinity purified, yielding approximately 40mg of pure, soluble product per liter of culture. Refolded YGR257Cp binds pyridoxal 5'-phosphate tightly (KD<1μM), supporting a new hypothesis that the mitochondrial carrier YGR237Cp and its homologs function as high affinity PLP transporters in mitochondria, providing the first evidence for this essential transport function in eukaryotes.
Collapse
Affiliation(s)
- Mei M Whittaker
- Institute for Environmental Health, Division of Environmental and Biomolecular Systems, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, United States
| | | |
Collapse
|
7
|
McDougal OM, Granum DM, Swartz M, Rohleder C, Maupin CM. pKa determination of histidine residues in α-conotoxin MII peptides by 1H NMR and constant pH molecular dynamics simulation. J Phys Chem B 2013; 117:2653-61. [PMID: 23336579 DOI: 10.1021/jp3117227] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
α-Conotoxin MII (α-CTxMII) is a potent and selective peptide antagonist of neuronal nicotinic acetylcholine receptors (nAChR's). Studies have shown that His9 and His12 are significant determinants of toxin binding affinity for nAChR, while Glu11 may dictate differential toxin affinity between nAChR isoforms. The protonation state of these histidine residues and therefore the charge on the α-CTx may contribute to the observed differences in binding affinity and selectivity. In this study, we assess the pH dependence of the protonation state of His9 and His12 by (1)H NMR spectroscopy and constant pH molecular dynamics (CpHMD) in α-CTxMII, α-CTxMII[E11A], and the triple mutant, α-CTxMII[N5R:E11A:H12K]. The E11A mutation does not significantly perturb the pKa of His9 or His12, while N5R:E11A:H12K results in a significant decrease in the pKa value of His9. The pKa values predicted by CpHMD simulations are in good agreement with (1)H NMR spectroscopy, with a mean absolute deviation from experiment of 0.3 pKa units. These results support the use of CpHMD as an efficient and inexpensive predictive tool to determine pKa values and structural features of small peptides critical to their function.
Collapse
Affiliation(s)
- Owen M McDougal
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, Idaho 83725-1520, United States.
| | | | | | | | | |
Collapse
|
8
|
Slutskaya ES, Bezsudnova EY, Mardanov AV, Safenkova IV, Kleimenov SY, Chebotareva NA, Gumerov VM, Ravin NV, Skryabin KG, Popov VO. Iron-dependent superoxide dismutase from novel thermoacidophilic crenarchaeon Acidilobus saccharovorans: from gene to active enzyme. BIOCHEMISTRY (MOSCOW) 2012; 77:1368-76. [PMID: 23244732 DOI: 10.1134/s0006297912120048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A gene encoding superoxide dismutase was revealed in the genome of the thermoacidophilic crenarchaeon Acidilobus saccharovorans. A recombinant expression vector was constructed and transformed into E. coli cells. The novel recombinant superoxide dismutase was purified and characterized. The enzyme was shown to be an iron-dependent superoxide dismutase able to bind various bivalent metals in the active site. According to differential scanning calorimetric data, the denaturation temperature of the enzyme is 107.3°C. The maximal activity of the Fe(II) reconstituted enzyme defined by xanthine oxidase assay is 1700 U/mg protein. Study of the thermal stability of the superoxide dismutase samples with various metal contents by tryptophan fluorescence indicated that the thermal stability and activity of the enzyme directly depend on the nature of the reconstituted metal and the degree of saturation of binding sites.
Collapse
Affiliation(s)
- E S Slutskaya
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, 119071 Moscow, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Whittaker MM, Whittaker JW. Metallation state of human manganese superoxide dismutase expressed in Saccharomyces cerevisiae. Arch Biochem Biophys 2012; 523:191-7. [PMID: 22561997 DOI: 10.1016/j.abb.2012.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/30/2012] [Accepted: 04/17/2012] [Indexed: 12/22/2022]
Abstract
Human manganese superoxide dismutase (Sod2p) has been expressed in yeast and the protein purified from isolated yeast mitochondria, yielding both the metallated protein and the less stable apoprotein in a single chromatographic step. At 30 °C growth temperature, more than half of the purified enzyme is apoprotein that can be fully activated following reconstitution, while the remainder contains a mixture of manganese and iron. In contrast, only fully metallated enzyme was isolated from a similarly constructed yeast strain expressing the homologous yeast manganese superoxide dismutase. Both the manganese content and superoxide dismutase activity of the recombinant human enzyme increased with increasing growth temperatures. The dependence of in vivo metallation state on growth temperature resembles the in vitro thermal activation behavior of human manganese superoxide dismutase observed in previous studies. Partially metallated human superoxide dismutase is fully active in protecting yeast against superoxide stress produced by addition of paraquat to the growth medium. However, a splice variant of human manganese superoxide dismutase (isoform B) is expressed as insoluble protein in both Escherichia coli and yeast mitochondria and did not protect yeast against superoxide stress.
Collapse
Affiliation(s)
- Mei M Whittaker
- Institute for Environmental Health, Division of Environmental and Biomolecular Systems, Oregon Health and Science University, 20000 N.W. Walker Road, Beaverton, OR 97006-8921, USA
| | | |
Collapse
|
10
|
Whittaker MM, Lerch TF, Kirillova O, Chapman MS, Whittaker JW. Subunit dissociation and metal binding by Escherichia coli apo-manganese superoxide dismutase. Arch Biochem Biophys 2010; 505:213-25. [PMID: 21044611 DOI: 10.1016/j.abb.2010.10.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 10/24/2010] [Accepted: 10/26/2010] [Indexed: 10/18/2022]
Abstract
Metal binding by apo-manganese superoxide dismutase (apo-MnSOD) is essential for functional maturation of the enzyme. Previous studies have demonstrated that metal binding by apo-MnSOD is conformationally gated, requiring protein reorganization for the metal to bind. We have now solved the X-ray crystal structure of apo-MnSOD at 1.9Å resolution. The organization of active site residues is independent of the presence of the metal cofactor, demonstrating that protein itself templates the unusual metal coordination geometry. Electrophoretic analysis of mixtures of apo- and (Mn₂)-MnSOD, dye-conjugated protein, or C-terminal Strep-tag II fusion protein reveals a dynamic subunit exchange process associated with cooperative metal binding by the two subunits of the dimeric protein. In contrast, (S126C) (SS) apo-MnSOD, which contains an inter-subunit covalent disulfide-crosslink, exhibits anti-cooperative metal binding. The protein concentration dependence of metal uptake kinetics implies that protein dissociation is involved in metal binding by the wild type apo-protein, although other processes may also contribute to gating metal uptake. Protein concentration dependent small-zone size exclusion chromatography is consistent with apo-MnSOD dimer dissociation at low protein concentration (K(D)=1×10⁻⁵ M). Studies on metal uptake by apo-MnSOD in Escherichia coli cells show that the protein exhibits similar behavior in vivo and in vitro.
Collapse
Affiliation(s)
- Mei M Whittaker
- Institute for Environmental Health, Oregon Health and Science University, Beaverton, 97006-8921, USA
| | | | | | | | | |
Collapse
|
11
|
De Vendittis A, Amato M, Mickniewicz A, Parlato G, De Angelis A, Castellano I, Rullo R, Riccitiello F, Rengo S, Masullo M, De Vendittis E. Regulation of the properties of superoxide dismutase from the dental pathogenic microorganism Streptococcus mutans by iron- and manganese-bound co-factor. MOLECULAR BIOSYSTEMS 2010; 6:1973-82. [PMID: 20672178 DOI: 10.1039/c003557b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Streptococcus mutans, the main pathogen involved in the development of dental caries, is an aerotolerant microorganism. The bacterium lacks cytochromes and catalase, but possesses other antioxidant enzymes, such as superoxide dismutase (SmSOD). Previous researches suggested that SmSOD belongs to the 'cambialistic' group, functioning with Fe or Mn in the active site. A recombinant SmSOD (rSmSOD) with a His-tail has been produced and characterised. Studies on metal uptake and exchange proved that rSmSOD binds either Fe or Mn as a metal co-factor, even though with a consistent preference for Fe accommodation. The analysis of several enzyme samples with different values of the Mn/Fe ratio in the active site proved that the type of metal is crucial for the regulation of the activity of rSmSOD. Indeed, differently from the significant preference for Fe displayed by the enzyme in the binding reaction, its Mn-form was 71-fold more active compared to the Fe-form. The rSmSOD was endowed with a significant thermostability, its half-inactivation occurring after 10 min exposure at 71 or 73 degrees C, depending on the bound metal. Moreover, the enthalpic and entropic contribution to the heat inactivation process of rSmSOD were strongly regulated by the Mn content of the enzyme. The effect of typical inhibitors/inactivators has been investigated. rSmSOD was inhibited by sodium azide, and its sensitivity increased in the presence of higher Mn levels. Concerning two physiological inactivators, the enzyme displayed a different behaviour, being quite resistant to hydrogen peroxide and significantly sensitive to sodium peroxynitrite. Furthermore, the Mn co-factor had an amplifying role in the regulation of this different sensitivity. These results confirm the cambialistic nature of SmSOD and prove that its properties are regulated by the different metal content. The adaptative response of S. mutans during its aerobic exposure in the oral cavity could involve a different metal uptake by SmSOD.
Collapse
Affiliation(s)
- Alberto De Vendittis
- Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, Via S. Pansini 5, 80131 Napoli, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Wolfgang Maret
- Department of Preventive Medicine & Community Health, The University of Texas Medical Branch, Galveston, Texas 77555-1109, USA.
| | | |
Collapse
|
13
|
Abreu IA, Cabelli DE. Superoxide dismutases-a review of the metal-associated mechanistic variations. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:263-74. [PMID: 19914406 DOI: 10.1016/j.bbapap.2009.11.005] [Citation(s) in RCA: 348] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 11/04/2009] [Accepted: 11/05/2009] [Indexed: 10/20/2022]
Abstract
Superoxide dismutases are enzymes that function to catalytically convert superoxide radical to oxygen and hydrogen peroxide. These enzymes carry out catalysis at near diffusion controlled rate constants via a general mechanism that involves the sequential reduction and oxidation of the metal center, with the concomitant oxidation and reduction of superoxide radicals. That the catalytically active metal can be copper, iron, manganese or, recently, nickel is one of the fascinating features of this class of enzymes. In this review, we describe these enzymes in terms of the details of their catalytic properties, with an emphasis on the mechanistic differences between the enzymes. The focus here will be concentrated mainly on two of these enzymes, copper, zinc superoxide dismutase and manganese superoxide dismutase, and some relatively subtle variations in the mechanisms by which they function.
Collapse
Affiliation(s)
- Isabel A Abreu
- Plant Genetic Engineering Group, Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa, Quinta do Marquês, 2784-505 Oeiras, Portugal
| | | |
Collapse
|
14
|
Whittaker MM, Whittaker JW. In vitro metal uptake by recombinant human manganese superoxide dismutase. Arch Biochem Biophys 2009; 491:69-74. [PMID: 19755112 DOI: 10.1016/j.abb.2009.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 09/05/2009] [Accepted: 09/09/2009] [Indexed: 01/18/2023]
Abstract
Metal uptake by the antioxidant defense metalloenzyme manganese superoxide dismutase (MnSOD) is an essential step in the functional maturation of the protein that is just beginning to be investigated in detail. We have extended earlier in vitro studies on metal binding by the dimeric Escherichia coli apo-MnSOD to investigate the mechanism of metal uptake by tetrameric human and Thermus thermophilus apo-MnSODs. Like the E. coli apo-MnSOD, these proteins also bind metal ions in vitro in a thermally activated, pH-sensitive process. However, metal uptake by the tetrameric apo-MnSODs exhibits a number of important differences. In particular, there is no indication of conformational gating requirement for metal binding for these proteins, and the reaction is first-order in metal ion. The high concentration of metal ion that is required to achieve physiologically relevant metallation rates for tetrameric human apo-MnSOD in vitro suggests the possibility that co-translational metal binding or chaperone interactions may be required in vivo.
Collapse
Affiliation(s)
- Mei M Whittaker
- Department of Science and Engineering, Division of Environmental and Biomolecular Systems, School of Medicine, Oregon Health and Science University, Beaverton, OR 97006-8921, USA
| | | |
Collapse
|
15
|
Whittaker JW. Metal uptake by manganese superoxide dismutase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:298-307. [PMID: 19699328 DOI: 10.1016/j.bbapap.2009.08.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 08/09/2009] [Accepted: 08/12/2009] [Indexed: 12/15/2022]
Abstract
Manganese superoxide dismutase is an important antioxidant defense metalloenzyme that protects cells from damage by the toxic oxygen metabolite, superoxide free radical, formed as an unavoidable by-product of aerobic metabolism. Many years of research have gone into understanding how the metal cofactor interacts with small molecules in its catalytic role. In contrast, very little is presently known about how the protein acquires its metal cofactor, an important step in the maturation of the protein and one that is absolutely required for its biological function. Recent work is beginning to provide insight into the mechanisms of metal delivery to manganese superoxide dismutase in vivo and in vitro.
Collapse
Affiliation(s)
- James W Whittaker
- Department of Science and Engineering, School of Medicine, Oregon Health and Science University, Beaverton, OR 97006-8921, USA.
| |
Collapse
|
16
|
Strambini GB, Gonnelli M. Acrylamide Quenching of Trp Phosphorescence in Liver Alcohol Dehydrogenase: Evidence of Gated Quencher Penetration. Biochemistry 2009; 48:7482-91. [DOI: 10.1021/bi9009659] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Margherita Gonnelli
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica, 56124 Pisa, Italy
| |
Collapse
|