1
|
Seyrani H, Ramezanpour S, Vaezghaemi A, Kobarfard F. A sequential Ugi–Smiles/transition-metal-free endo-dig Conia–ene cyclization: the selective synthesis of saccharin substituted 2,5-dihydropyrroles. NEW J CHEM 2021. [DOI: 10.1039/d1nj01159f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A convenient, transition-metal-free access to a series of unprecedented saccharin substituted 2,5-dihydropyrroles is reported.
Collapse
Affiliation(s)
- Hassan Seyrani
- Department of Chemistry, K. N. Toosi University of Technology, Tehran, Iran
| | - Sorour Ramezanpour
- Department of Chemistry, K. N. Toosi University of Technology, Tehran, Iran
| | - Aref Vaezghaemi
- Department of Chemistry, K. N. Toosi University of Technology, Tehran, Iran
| | - Farzad Kobarfard
- Department of Medicinal Chemistry, Shahid Beheshti School of Pharmacy Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
2
|
Janero DR, Korde A, Makriyannis A. Ligand-Assisted Protein Structure (LAPS): An Experimental Paradigm for Characterizing Cannabinoid-Receptor Ligand-Binding Domains. Methods Enzymol 2017; 593:217-235. [DOI: 10.1016/bs.mie.2017.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
3
|
Janero DR, Yaddanapudi S, Zvonok N, Subramanian KV, Shukla VG, Stahl E, Zhou L, Hurst D, Wager-Miller J, Bohn LM, Reggio PH, Mackie K, Makriyannis A. Molecular-interaction and signaling profiles of AM3677, a novel covalent agonist selective for the cannabinoid 1 receptor. ACS Chem Neurosci 2015; 6:1400-10. [PMID: 25978068 DOI: 10.1021/acschemneuro.5b00090] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The cannabinoid 1 receptor (CB1R) is one of the most abundant G protein-coupled receptors (GPCRs) in the central nervous system. CB1R involvement in multiple physiological processes, especially neurotransmitter release and synaptic function, has made this GPCR a prime drug discovery target, and pharmacological CB1R activation has been demonstrated to be a tenable therapeutic modality. Accordingly, the design and profiling of novel, drug-like CB1R modulators to inform the receptor's ligand-interaction landscape and molecular pharmacology constitute a prime contemporary research focus. For this purpose, we report utilization of AM3677, a designer endocannabinoid (anandamide) analogue derivatized with a reactive electrophilic isothiocyanate functionality, as a covalent, CB1R-selective chemical probe. The data demonstrate that reaction of AM3677 with a cysteine residue in transmembrane helix 6 of human CB1R (hCB1R), C6.47(355), is a key feature of AM3677's ligand-binding motif. Pharmacologically, AM3677 acts as a high-affinity, low-efficacy CB1R agonist that inhibits forskolin-stimulated cellular cAMP formation and stimulates CB1R coupling to G protein. AM3677 also induces CB1R endocytosis and irreversible receptor internalization. Computational docking suggests the importance of discrete hydrogen bonding and aromatic interactions as determinants of AM3677's topology within the ligand-binding pocket of active-state hCB1R. These results constitute the initial identification and characterization of a potent, high-affinity, hCB1R-selective covalent agonist with utility as a pharmacologically active, orthosteric-site probe for providing insight into structure-function correlates of ligand-induced CB1R activation and the molecular features of that activation by the native ligand, anandamide.
Collapse
Affiliation(s)
- David R. Janero
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Suma Yaddanapudi
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Nikolai Zvonok
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Kumar V. Subramanian
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Vidyanand G. Shukla
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Edward Stahl
- Departments of Molecular Therapeutics and Neuroscience, Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Lei Zhou
- Departments of Molecular Therapeutics and Neuroscience, Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Dow Hurst
- Center for Drug Discovery, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - James Wager-Miller
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, United States
| | - Laura M. Bohn
- Departments of Molecular Therapeutics and Neuroscience, Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Patricia H. Reggio
- Center for Drug Discovery, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, United States
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
4
|
Cohen LS, Fracchiolla KE, Becker J, Naider F. Invited review GPCR structural characterization: Using fragments as building blocks to determine a complete structure. Biopolymers 2014; 102:223-43. [DOI: 10.1002/bip.22490] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/24/2014] [Accepted: 03/27/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Leah S. Cohen
- Department of Chemistry; The College of Staten Island, City University of New York (CUNY); Staten Island NY 10314
| | - Katrina E. Fracchiolla
- Department of Chemistry; The College of Staten Island, City University of New York (CUNY); Staten Island NY 10314
| | - Jeff Becker
- Department of Microbiology; University of Tennessee; Knoxville TN 37996
| | - Fred Naider
- Department of Chemistry; The College of Staten Island, City University of New York (CUNY); Staten Island NY 10314
- Department of Biochemistry; The Graduate Center; CUNY NY 10016-4309
| |
Collapse
|
5
|
Banigan JR, Gayen A, Traaseth NJ. Correlating lipid bilayer fluidity with sensitivity and resolution of polytopic membrane protein spectra by solid-state NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:334-41. [PMID: 24835018 DOI: 10.1016/j.bbamem.2014.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 04/26/2014] [Accepted: 05/04/2014] [Indexed: 11/17/2022]
Abstract
Solid-state NMR spectroscopy has emerged as an excellent tool to study the structure and dynamics of membrane proteins under native-like conditions in lipid bilayers. One of the key considerations in experimental design is the uniaxial rotational diffusion of the protein that can affect the NMR spectral observables. In this regard, temperature plays a fundamental role in modulating the phase properties of the lipids, which directly influences the rotational diffusion rate of the protein in the bilayer. In fact, it is well established that below the main phase transition temperature of the lipid bilayer the protein's motion is significantly slowed while above this critical temperature the rate is increased. In this article, we carried out a systematic comparison of the signal intensity and spectral resolution as a function of temperature using magic-angle-spinning (MAS) solid-state NMR spectroscopy. These observables were directly correlated with the relative fluidity of the lipid bilayer as inferred from differential scanning calorimetry (DSC). We applied our hybrid biophysical approach to two polytopic membrane proteins from the small multidrug resistance family (EmrE and SugE) reconstituted into model membrane lipid bilayers (DMPC-14:0 and DPPC-16:0). From these experiments, we conclude that the rotational diffusion giving optimal spectral resolution occurs at a bilayer fluidity of ~5%, which corresponds to the percentage of lipids in the fluid or liquid-crystalline fraction. At the temperature corresponding to this critical value of fluidity, there is sufficient mobility to reduce inhomogeneous line broadening that occurs at lower temperatures. A greater extent of fluidity leads to faster uniaxial rotational diffusion and a sigmoidal-type reduction in the NMR signal intensity, which stems from intermediate-exchange dynamics where the motion has a similar frequency as the NMR observables (i.e., dipolar couplings and chemical shift anisotropy). These experiments provide insight into the optimal temperature range and corresponding bilayer fluidity to study membrane proteins by solid-state NMR spectroscopy.
Collapse
Affiliation(s)
- James R Banigan
- Department of Chemistry, New York University, New York, NY 10003
| | - Anindita Gayen
- Department of Chemistry, New York University, New York, NY 10003
| | | |
Collapse
|
6
|
Mercier RW, Pei Y, Pandarinathan L, Janero DR, Zhang J, Makriyannis A. hCB2 ligand-interaction landscape: cysteine residues critical to biarylpyrazole antagonist binding motif and receptor modulation. ACTA ACUST UNITED AC 2011; 17:1132-42. [PMID: 21035736 DOI: 10.1016/j.chembiol.2010.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 08/09/2010] [Accepted: 08/12/2010] [Indexed: 11/19/2022]
Abstract
The human cannabinoid 2 GPCR (hCB2) is a prime therapeutic target. To define potential cysteine-related binding motifs critical to hCB2-ligand interaction, a library of hCB2 cysteine-substitution mutants and a novel, high-affinity biarylpyrazole hCB2 antagonist/inverse agonist (AM1336) functionalized to serve as a covalent affinity probe to target cysteine residues within (or in the microenvironment of) its hCB2 binding pocket were generated. The data provide direct experimental demonstration that both hCB2 TMH7 cysteines [i.e., C7.38(284) and C7.42(288)] are critical to optimal hCB2-AM1336 binding interaction and AM1336 pharmacological activity in a cell-based functional assay (cAMP formation). Elongating the AM1336 aliphatic side chain generated another novel hCB2 inverse agonist that binds covalently and selectively to C7.42(288) only. Identification of specific cysteine residues critical to hCB2 ligand interaction and function informs the structure-based design of hCB2-targeted medicines.
Collapse
Affiliation(s)
- Richard W Mercier
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | | | |
Collapse
|
7
|
Tiburu EK, Tyukhtenko S, Zhou H, Janero DR, Struppe J, Makriyannis A. Human cannabinoid 1 GPCR C-terminal domain interacts with bilayer phospholipids to modulate the structure of its membrane environment. AAPS JOURNAL 2011; 13:92-8. [PMID: 21234731 DOI: 10.1208/s12248-010-9244-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 11/21/2010] [Indexed: 02/08/2023]
Abstract
G protein-coupled receptors (GPCRs) play critical physiological and therapeutic roles. The human cannabinoid 1 GPCR (hCB1) is a prime pharmacotherapeutic target for addiction and cardiometabolic disease. Our prior biophysical studies on the structural biology of a synthetic peptide representing the functionally significant hCB1 transmembrane helix 7 (TMH7) and its cytoplasmic extension, helix 8 (H8), [hCB1(TMH7/H8)] demonstrated that the helices are oriented virtually perpendicular to each other in membrane-mimetic environments. We identified several hCB1(TMH7/H8) structure-function determinants, including multiple electrostatic amino-acid interactions and a proline kink involving the highly conserved NPXXY motif. In phospholipid bicelles, TMH7 structure, orientation, and topology relative to H8 are dynamically modulated by the surrounding membrane phospholipid bilayer. These data provide a contextual basis for the present solid-state NMR study to investigate whether intermolecular interactions between hCB1(TMH7/H8) and its phospholipid environment may affect membrane-bilayer structure. For this purpose, we measured (1)H-(13)C heteronuclear dipolar couplings for the choline, glycerol, and acyl-chain regions of dimyristoylphosphocholine in a magnetically aligned hCB1(TMH7/H8) bicelle sample. The results identify discrete regional interactions between hCB1(TMH7/H8) and membrane lipid molecules that increase phospholipid motion and decrease phospholipid order, indicating that the peptide's partial traversal of the bilayer alters membrane structure. These data offer new insight into hCB1(TMH7/H8) properties and support the concept that the membrane bilayer itself may serve as a mechanochemical mediator of hCB1/GPCR signal transduction. Since interaction with its membrane environment has been implicated in hCB1 function and its modulation by small-molecule therapeutics, our work should help inform hCB1 pharmacology and the design of hCB1-targeted drugs.
Collapse
Affiliation(s)
- Elvis K Tiburu
- Center for Drug Discovery and Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, 116 Mugar Hall, Boston, Massachusetts 02115-5000, United States of America
| | | | | | | | | | | |
Collapse
|
8
|
Ramos J, Cruz VL, Martínez-Salazar J, Campillo NE, Páez JA. Dissimilar interaction of CB1/CB2 with lipid bilayers as revealed by molecular dynamics simulation. Phys Chem Chem Phys 2011; 13:3660-8. [DOI: 10.1039/c0cp01456g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Zvonok N, Xu W, Williams J, Janero DR, Krishnan SC, Makriyannis A. Mass spectrometry-based GPCR proteomics: comprehensive characterization of the human cannabinoid 1 receptor. J Proteome Res 2010; 9:1746-53. [PMID: 20131867 DOI: 10.1021/pr900870p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The human cannabinoid 1 receptor (hCB1), a ubiquitous G protein-coupled receptor (GPCR), transmits cannabinergic signals that participate in diverse (patho)physiological processes. Pharmacotherapeutic hCB1 targeting is considered a tractable approach for treating such prevalent diseases as obesity, mood disorders, and drug addiction. The hydrophobic nature of the transmembrane helices of hCB1 presents a formidable difficulty to its direct structural analysis. Comprehensive experimental characterization of functional hCB1 by mass spectrometry (MS) is essential to the targeting of affinity probes that can be used to define directly hCB1 binding domains using a ligand-assisted experimental approach. Such information would greatly facilitate the rational design of hCB1-selective agonists/antagonists with therapeutic potential. We report the first high-coverage MS analysis of the primary sequence of the functional hCB1 receptor, one of the few such comprehensive MS-based analyses of any GPCR. Recombinant C-terminal hexa-histidine-tagged hCB1 (His6-hCB1) was expressed in cultured insect (Spodoptera frugiperda) cells, solubilized by a procedure devised to enhance receptor purity following metal-affinity chromatography, desalted by buffer exchange, and digested in solution with (chymo)trypsin. "Bottom-up" nanoLC-MS/MS of the (chymo)tryptic digests afforded a degree of overall hCB1 coverage (>94%) thus far reported for only two other GPCRs. This MS-compatible procedure devised for His6-hCB1 sample preparation, incorporating in-solution (chymo)trypsin digestion in the presence of a low concentration of CYMAL-5 detergent, may be applicable to the MS-based proteomic characterization of other GPCRs. This work should help enable future ligand-assisted structural characterization of hCB1 binding motifs at the amino-acid level using rationally designed and targeted covalent cannabinergic probes.
Collapse
Affiliation(s)
- Nikolai Zvonok
- Northeastern University, Center for Drug Discovery, 116 Mugar Life Sciences Building, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
10
|
Tyukhtenko S, Tiburu EK, Deshmukh L, Vinogradova O, Janero DR, Makriyannis A. NMR solution structure of human cannabinoid receptor-1 helix 7/8 peptide: candidate electrostatic interactions and microdomain formation. Biochem Biophys Res Commun 2009; 390:441-6. [PMID: 19766594 DOI: 10.1016/j.bbrc.2009.09.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 09/14/2009] [Indexed: 10/20/2022]
Abstract
We report the NMR solution structure of a synthetic 40-mer (T(377)-E(416)) that encompasses human cannabinoid receptor-1 (hCB1) transmembrane helix 7 (TMH7) and helix 8 (H8) [hCB1(TMH7/H8)] in 30% trifluoroethanol/H(2)O. Structural features include, from the peptide's amino terminus, a hydrophobic alpha-helix (TMH7); a loop-like, 11 residue segment featuring a pronounced Pro-kink within the conserved NPxxY motif; a short amphipathic alpha-helix (H8) orthogonal to TMH7 with cationic and hydrophobic amino-acid clusters; and an unstructured C-terminal end. The hCB1(TMH7/H8) NMR solution structure suggests multiple electrostatic amino-acid interactions, including an intrahelical H8 salt bridge and a hydrogen-bond network involving the peptide's loop-like region. Potential cation-pi and cation-phenolic OH interactions between Y(397) in the TMH7 NPxxY motif and R(405) in H8 are identified as candidate structural forces promoting interhelical microdomain formation. This microdomain may function as a flexible molecular hinge during ligand-induced hCB1 conformer transitions.
Collapse
Affiliation(s)
- Sergiy Tyukhtenko
- Department of Chemistry and Chemical Biology, Northeastern University, Center for Drug Discovery, Boston, MA 02115-5000, USA
| | | | | | | | | | | |
Collapse
|