1
|
Mielniczuk S, Hoff K, Baselious F, Li Y, Haupenthal J, Kany AM, Riedner M, Rohde H, Rox K, Hirsch AKH, Krimm I, Sippl W, Holl R. Development of Fragment-Based Inhibitors of the Bacterial Deacetylase LpxC with Low Nanomolar Activity. J Med Chem 2024; 67:17363-17391. [PMID: 39303295 PMCID: PMC11472313 DOI: 10.1021/acs.jmedchem.4c01262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/08/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024]
Abstract
In a fragment-based approach using NMR spectroscopy, benzyloxyacetohydroxamic acid-derived inhibitors of the bacterial deacetylase LpxC bearing a substituent to target the uridine diphosphate-binding site of the enzyme were developed. By appending privileged fragments via a suitable linker, potent LpxC inhibitors with promising antibacterial activities could be obtained, like the one-digit nanomolar LpxC inhibitor (S)-13j [Ki (EcLpxC C63A) = 9.5 nM; Ki (PaLpxC): 5.6 nM]. To rationalize the observed structure-activity relationships, molecular docking and molecular dynamics studies were performed. Initial in vitro absorption-distribution-metabolism-excretion-toxicity (ADMET) studies of the most potent compounds have paved the way for multiparameter optimization of our newly developed isoserine-based amides.
Collapse
Affiliation(s)
- Sebastian Mielniczuk
- Institute
of Organic Chemistry, Universität
Hamburg, Martin-Luther-King-Platz
6, 20146 Hamburg, Germany
- German
Center for Infection Research (DZIF), Partner
Site Hamburg-Lübeck-Borstel-Riems, 20146 Hamburg, Germany
| | - Katharina Hoff
- Institute
of Organic Chemistry, Universität
Hamburg, Martin-Luther-King-Platz
6, 20146 Hamburg, Germany
- German
Center for Infection Research (DZIF), Partner
Site Hamburg-Lübeck-Borstel-Riems, 20146 Hamburg, Germany
| | - Fady Baselious
- Institute
of Pharmacy, Martin-Luther-University of
Halle-Wittenberg, Kurt-Mothes-Straße 3, 06120 Halle (Saale), Germany
| | - Yunqi Li
- Team
“Small Molecules for Biological Targets”, Institut Convergence
Plascan, Centre de Recherche en Cancérologie de Lyon, INSERM
U1052-CNRS UMR5286, Centre Léon Bérard, Université
de Lyon, Université Claude Bernard
Lyon1, 69008 Lyon, France
- Shanghai
Key Laboratory of Regulatory Biology, The Institute of Biomedical
Sciences & School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Jörg Haupenthal
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Andreas M. Kany
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Maria Riedner
- Technology
Platform Mass Spectrometry, Universität
Hamburg, Mittelweg 177, 20148 Hamburg, Germany
| | - Holger Rohde
- German
Center for Infection Research (DZIF), Partner
Site Hamburg-Lübeck-Borstel-Riems, 20146 Hamburg, Germany
- Institute
of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Katharina Rox
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research (HZI), Inhoffenstr. 7, 38124 Braunschweig, Germany
- German
Center for Infection Research (DZIF), Partner
Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Anna K. H. Hirsch
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Helmholtz International Lab for Anti-infectives, Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Isabelle Krimm
- Team
“Small Molecules for Biological Targets”, Institut Convergence
Plascan, Centre de Recherche en Cancérologie de Lyon, INSERM
U1052-CNRS UMR5286, Centre Léon Bérard, Université
de Lyon, Université Claude Bernard
Lyon1, 69008 Lyon, France
| | - Wolfgang Sippl
- Institute
of Pharmacy, Martin-Luther-University of
Halle-Wittenberg, Kurt-Mothes-Straße 3, 06120 Halle (Saale), Germany
| | - Ralph Holl
- Institute
of Organic Chemistry, Universität
Hamburg, Martin-Luther-King-Platz
6, 20146 Hamburg, Germany
- German
Center for Infection Research (DZIF), Partner
Site Hamburg-Lübeck-Borstel-Riems, 20146 Hamburg, Germany
| |
Collapse
|
2
|
Möller AM, Vázquez-Hernández M, Kutscher B, Brysch R, Brückner S, Marino EC, Kleetz J, Senges CHR, Schäkermann S, Bandow JE, Narberhaus F. Common and varied molecular responses of Escherichia coli to five different inhibitors of the lipopolysaccharide biosynthetic enzyme LpxC. J Biol Chem 2024; 300:107143. [PMID: 38458396 PMCID: PMC10998244 DOI: 10.1016/j.jbc.2024.107143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/10/2024] Open
Abstract
A promising yet clinically unexploited antibiotic target in difficult-to-treat Gram-negative bacteria is LpxC, the key enzyme in the biosynthesis of lipopolysaccharides, which are the major constituents of the outer membrane. Despite the development of dozens of chemically diverse LpxC inhibitor molecules, it is essentially unknown how bacteria counteract LpxC inhibition. Our study provides comprehensive insights into the response against five different LpxC inhibitors. All compounds bound to purified LpxC from Escherichia coli. Treatment of E. coli with these compounds changed the cell shape and stabilized LpxC suggesting that FtsH-mediated proteolysis of the inactivated enzyme is impaired. LpxC inhibition sensitized E. coli to vancomycin and rifampin, which poorly cross the outer membrane of intact cells. Four of the five compounds led to an accumulation of lyso-phosphatidylethanolamine, a cleavage product of phosphatidylethanolamine, generated by the phospholipase PldA. The combined results suggested an imbalance in lipopolysaccharides and phospholipid biosynthesis, which was corroborated by the global proteome response to treatment with the LpxC inhibitors. Apart from LpxC itself, FabA and FabB responsible for the biosynthesis of unsaturated fatty acids were consistently induced. Upregulated compound-specific proteins are involved in various functional categories, such as stress reactions, nucleotide, or amino acid metabolism and quorum sensing. Our work shows that antibiotics targeting the same enzyme do not necessarily elicit identical cellular responses. Moreover, we find that the response of E. coli to LpxC inhibition is distinct from the previously reported response in Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Anna-Maria Möller
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | | | - Blanka Kutscher
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Raffael Brysch
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Simon Brückner
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Emily C Marino
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Julia Kleetz
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Christoph H R Senges
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Sina Schäkermann
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Julia E Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Franz Narberhaus
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
3
|
Zhukovets AA, Chernyshov VV, Al’mukhametov AZ, Seregina TA, Revtovich SV, Kasatkina MA, Isakova YE, Kulikova VV, Morozova EA, Cherkasova AI, Mannanov TA, Anashkina AA, Solyev PN, Mitkevich VA, Ivanov RA. Novel Hydroxamic Acids Containing Aryl-Substituted 1,2,4- or 1,3,4-Oxadiazole Backbones and an Investigation of Their Antibiotic Potentiation Activity. Int J Mol Sci 2023; 25:96. [PMID: 38203266 PMCID: PMC10779255 DOI: 10.3390/ijms25010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is a zinc amidase that catalyzes the second step of the biosynthesis of lipid A, which is an outer membrane essential structural component of Gram-negative bacteria. Inhibitors of this enzyme can be attributed to two main categories, non-hydroxamate and hydroxamate inhibitors, with the latter being the most effective given the chelation of Zn2+ in the active site. Compounds containing diacetylene or acetylene tails and the sulfonic head, as well as oxazoline derivatives of hydroxamic acids, are among the LpxC inhibitors with the most profound antibacterial activity. The present article describes the synthesis of novel functional derivatives of hydroxamic acids-bioisosteric to oxazoline inhibitors-containing 1,2,4- and 1,3,4-oxadiazole cores and studies of their cytotoxicity, antibacterial activity, and antibiotic potentiation. Some of the hydroxamic acids we obtained (9c, 9d, 23a, 23c, 30b, 36) showed significant potentiation in nalidixic acid, rifampicin, and kanamycin against the growth of laboratory-strain Escherichia coli MG1655. Two lead compounds (9c, 9d) significantly reduced Pseudomonas aeruginosa ATCC 27853 growth in the presence of nalidixic acid and rifampicin.
Collapse
Affiliation(s)
- Anastasia A. Zhukovets
- Translational Medicine Research Center, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (A.A.Z.); (A.Z.A.); (M.A.K.); (Y.E.I.); (A.I.C.); (T.A.M.); (R.A.I.)
| | - Vladimir V. Chernyshov
- Translational Medicine Research Center, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (A.A.Z.); (A.Z.A.); (M.A.K.); (Y.E.I.); (A.I.C.); (T.A.M.); (R.A.I.)
| | - Aidar Z. Al’mukhametov
- Translational Medicine Research Center, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (A.A.Z.); (A.Z.A.); (M.A.K.); (Y.E.I.); (A.I.C.); (T.A.M.); (R.A.I.)
| | - Tatiana A. Seregina
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., 119991 Moscow, Russia; (T.A.S.); (S.V.R.); (V.V.K.); (E.A.M.); (A.A.A.); (P.N.S.); (V.A.M.)
| | - Svetlana V. Revtovich
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., 119991 Moscow, Russia; (T.A.S.); (S.V.R.); (V.V.K.); (E.A.M.); (A.A.A.); (P.N.S.); (V.A.M.)
| | - Mariia A. Kasatkina
- Translational Medicine Research Center, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (A.A.Z.); (A.Z.A.); (M.A.K.); (Y.E.I.); (A.I.C.); (T.A.M.); (R.A.I.)
| | - Yulia E. Isakova
- Translational Medicine Research Center, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (A.A.Z.); (A.Z.A.); (M.A.K.); (Y.E.I.); (A.I.C.); (T.A.M.); (R.A.I.)
| | - Vitalia V. Kulikova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., 119991 Moscow, Russia; (T.A.S.); (S.V.R.); (V.V.K.); (E.A.M.); (A.A.A.); (P.N.S.); (V.A.M.)
| | - Elena A. Morozova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., 119991 Moscow, Russia; (T.A.S.); (S.V.R.); (V.V.K.); (E.A.M.); (A.A.A.); (P.N.S.); (V.A.M.)
| | - Anastasia I. Cherkasova
- Translational Medicine Research Center, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (A.A.Z.); (A.Z.A.); (M.A.K.); (Y.E.I.); (A.I.C.); (T.A.M.); (R.A.I.)
| | - Timur A. Mannanov
- Translational Medicine Research Center, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (A.A.Z.); (A.Z.A.); (M.A.K.); (Y.E.I.); (A.I.C.); (T.A.M.); (R.A.I.)
| | - Anastasia A. Anashkina
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., 119991 Moscow, Russia; (T.A.S.); (S.V.R.); (V.V.K.); (E.A.M.); (A.A.A.); (P.N.S.); (V.A.M.)
| | - Pavel N. Solyev
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., 119991 Moscow, Russia; (T.A.S.); (S.V.R.); (V.V.K.); (E.A.M.); (A.A.A.); (P.N.S.); (V.A.M.)
| | - Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., 119991 Moscow, Russia; (T.A.S.); (S.V.R.); (V.V.K.); (E.A.M.); (A.A.A.); (P.N.S.); (V.A.M.)
| | - Roman A. Ivanov
- Translational Medicine Research Center, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (A.A.Z.); (A.Z.A.); (M.A.K.); (Y.E.I.); (A.I.C.); (T.A.M.); (R.A.I.)
| |
Collapse
|
4
|
Munia NS, Alanazi MM, El Bakri Y, Alanazi AS, Mukhrish YE, Hasan I, Kawsar SMA. Uridine Derivatives: Synthesis, Biological Evaluation, and In Silico Studies as Antimicrobial and Anticancer Agents. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1107. [PMID: 37374310 DOI: 10.3390/medicina59061107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
Nucleoside analogs are frequently used in the control of viral infections and neoplastic diseases. However, relatively few studies have shown that nucleoside analogs have antibacterial and antifungal activities. In this study, a fused pyrimidine molecule, uridine, was modified with various aliphatic chains and aromatic groups to produce new derivatives as antimicrobial agents. All newly synthesized uridine derivatives were analyzed by spectral (NMR, FTIR, mass spectrometry), elemental, and physicochemical analyses. Prediction of activity spectra for substances (PASS) and in vitro biological evaluation against bacteria and fungi indicated promising antimicrobial capability of these uridine derivatives. The tested compounds were more effective against fungal phytopathogens than bacterial strains, as determined by their in vitro antimicrobial activity. Cytotoxicity testing indicated that the compounds were less toxic. In addition, antiproliferative activity against Ehrlich ascites carcinoma (EAC) cells was investigated, and compound 6 (2',3'-di-O-cinnamoyl-5'-O-palmitoyluridine) demonstrated promising anticancer activity. Their molecular docking against Escherichia coli (1RXF) and Salmonella typhi (3000) revealed notable binding affinities and nonbonding interactions in support of this finding. Stable conformation and binding patterns/energy were found in a stimulating 400 ns molecular dynamics (MD) simulation. Structure-activity relationship (SAR) investigation indicated that acyl chains, CH3(CH2)10CO-, (C6H5)3C-, and C2H5C6H4CO-, combined with deoxyribose, were most effective against the tested bacterial and fungal pathogens. Pharmacokinetic predictions were examined to determine their ADMET characteristics, and the results in silico were intriguing. Finally, the synthesized uridine derivatives demonstrated increased medicinal activity and high potential for future antimicrobial/anticancer agent(s).
Collapse
Affiliation(s)
- Nasrin S Munia
- Laboratory of Carbohydrate and Nucleoside Chemistry (LCNC), Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Youness El Bakri
- Department of Theoretical and Applied Chemistry, South Ural State University, Lenin prospect 76, Chelyabinsk 454080, Russia
| | - Ashwag S Alanazi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Yousef E Mukhrish
- Department of Chemistry, Faculty of Science, Jazan University, P.O. Box 2097, Jazan 45142, Saudi Arabia
| | - Imtiaj Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Sarkar M A Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry (LCNC), Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| |
Collapse
|
5
|
Niu Z, Lei P, Wang Y, Wang J, Yang J, Zhang J. Small molecule LpxC inhibitors against gram-negative bacteria: Advances and future perspectives. Eur J Med Chem 2023; 253:115326. [PMID: 37023679 DOI: 10.1016/j.ejmech.2023.115326] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/18/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Uridine diphosphate-3-O-(hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is a metalloenzyme with zinc ions as cofactors and is a key enzyme in the essential structural outer membrane lipid A synthesis commitment step of gram-negative bacteria. As LpxC is extremely homologous among different Gram-negative bacteria, it is conserved in almost all gram-negative bacteria, which makes LpxC a promising target. LpxC inhibitors have been reported extensively in recent years, such as PF-5081090 and CHIR-090 were found to have broad-spectrum antibiotic activity against P. aeruginosa and E. coli. They are mainly classified into hydroxamate inhibitors and non-hydroxamate inhibitors based on their structure, but no LpxC inhibitors have been marketed due to safety and activity issues. This review, therefore, focuses on small molecule inhibitors of LpxC against gram-negative pathogenic bacteria and covers recent advances in LpxC inhibitors, focusing on their structural optimization process, structure-activity relationships, and future directions, with the aim of providing ideas for the development of LpxC inhibitors and clinical research.
Collapse
|
6
|
Wimmer S, Hoff K, Martin B, Grewer M, Denni L, Lascorz Massanet R, Raimondi MV, Bülbül EF, Melesina J, Hotop SK, Haupenthal J, Rohde H, Heisig P, Hirsch AKH, Brönstrup M, Sippl W, Holl R. Synthesis, biological evaluation, and molecular docking studies of aldotetronic acid-based LpxC inhibitors. Bioorg Chem 2023; 131:106331. [PMID: 36587505 DOI: 10.1016/j.bioorg.2022.106331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
In order to develop novel inhibitors of the bacterial deacetylase LpxC bearing a substituent to target the UDP binding site of the enzyme, a series of aldotetronic acid-based hydroxamic acids was accessed in chiral pool syntheses starting from 4,6-O-benzylidene-d-glucose and l-arabinitol. The synthesized hydroxamic acids were tested for LpxC inhibitory activity in vitro, revealing benzyl ether 17a ((2S,3S)-4-(benzyloxy)-N,3-dihydroxy-2-[(4-{[4-(morpholinomethyl)phenyl]ethynyl}benzyl)oxy]butanamide) as the most potent LpxC inhibitor. This compound was additionally tested for antibacterial activity against a panel of clinically relevant Gram-negative bacteria, bacterial uptake, and susceptibility to efflux pumps. Molecular docking studies were performed to rationalize the observed structure-activity relationships.
Collapse
Affiliation(s)
- Stefan Wimmer
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Katharina Hoff
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Germany
| | - Benedikt Martin
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, 48149 Münster, Germany
| | - Martin Grewer
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, 48149 Münster, Germany
| | - Laura Denni
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Raquel Lascorz Massanet
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Maria Valeria Raimondi
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Emre F Bülbül
- Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Jelena Melesina
- Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Sven-Kevin Hotop
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Holger Rohde
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Germany; Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Heisig
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Bundesstr. 45, 20146 Hamburg, Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany; Helmholtz International Lab for Anti-infectives, Germany; Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124 Braunschweig, Germany; Helmholtz International Lab for Anti-infectives, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Ralph Holl
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Germany.
| |
Collapse
|
7
|
Fan S, Li D, Yan M, Feng X, Lv G, Wu G, Jin Y, Wang Y, Yang Z. The Complex Structure of Protein AaLpxC from Aquifex aeolicus with ACHN-975 Molecule Suggests an Inhibitory Mechanism at Atomic-Level against Gram-Negative Bacteria. Molecules 2021; 26:molecules26051451. [PMID: 33800069 PMCID: PMC7962117 DOI: 10.3390/molecules26051451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 11/16/2022] Open
Abstract
New drugs with novel antibacterial targets for Gram-negative bacterial pathogens are desperately needed. The protein LpxC is a vital enzyme for the biosynthesis of lipid A, an outer membrane component of Gram-negative bacterial pathogens. The ACHN-975 molecule has high enzymatic inhibitory capacity against the infectious diseases, which are caused by multidrug-resistant bacteria, but clinical research was halted because of its inflammatory response in previous studies. In this work, the structure of the recombinant UDP-3-O-(R-3-hydroxymyristol)-N-acetylglucosamine deacetylase from Aquifex aeolicus in complex with ACHN-975 was determined to a resolution at 1.21 Å. According to the solved complex structure, ACHN-975 was docked into the AaLpxC’s active site, which occupied the site of AaLpxC substrate. Hydroxamate group of ACHN-975 forms five-valenced coordination with resides His74, His226, Asp230, and the long chain part of ACHN-975 containing the rigid alkynyl groups docked in further to interact with the hydrophobic area of AaLpxC. We employed isothermal titration calorimetry for the measurement of affinity between AaLpxC mutants and ACHN-975, and the results manifest the key residues (His74, Thr179, Tyr212, His226, Asp230 and His253) for interaction. The determined AaLpxC crystal structure in complex with ACHN-975 is expected to serve as a guidance and basis for the design and optimization of molecular structures of ACHN-975 analogues to develop novel drug candidates against Gram-negative bacteria.
Collapse
Affiliation(s)
- Shuai Fan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (S.F.); (D.L.); (X.F.); (G.L.); (Y.J.)
| | - Danyang Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (S.F.); (D.L.); (X.F.); (G.L.); (Y.J.)
| | - Maocai Yan
- School of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, China;
| | - Xiao Feng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (S.F.); (D.L.); (X.F.); (G.L.); (Y.J.)
| | - Guangxin Lv
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (S.F.); (D.L.); (X.F.); (G.L.); (Y.J.)
| | - Guangteng Wu
- ArNuXon Pharm-Sci Co., Ltd., Beijing 100085, China;
| | - Yuanyuan Jin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (S.F.); (D.L.); (X.F.); (G.L.); (Y.J.)
| | - Yucheng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (S.F.); (D.L.); (X.F.); (G.L.); (Y.J.)
- Correspondence: (Y.W.); (Z.Y.)
| | - Zhaoyong Yang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (S.F.); (D.L.); (X.F.); (G.L.); (Y.J.)
- Correspondence: (Y.W.); (Z.Y.)
| |
Collapse
|
8
|
Propargylglycine-based antimicrobial compounds are targets of TolC-dependent efflux systems in Escherichia coli. Bioorg Med Chem Lett 2020; 30:126875. [DOI: 10.1016/j.bmcl.2019.126875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 11/19/2022]
|
9
|
Pasala C, Katari SK, Nalamolu RM, Bitla AR, Amineni U. Hierarchical-Clustering, Scaffold-Mining Exercises and Dynamics Simulations for Effectual Inhibitors Against Lipid-A Biosynthesis of Helicobacter pylori. Cell Mol Bioeng 2019; 12:255-274. [PMID: 31719913 DOI: 10.1007/s12195-019-00572-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 04/23/2019] [Indexed: 12/19/2022] Open
Abstract
Introduction Treatment failures of standard regimens and new strains egression are due to the augmented drug resistance conundrum. These confounding factors now became the drug designers spotlight to implement therapeutics against Helicobacter pylori strains and to safeguard infected victims with devoid of adverse drug reactions. Thereby, to navigate the chemical space for medicine, paramount vital drug target opting considerations should be imperative. The study is therefore aimed to develop potent therapeutic variants against an insightful extrapolative, common target LpxC as a follow-up to previous studies. Methods We explored the relationships between existing inhibitors and novel leads at the scaffold level in an appropriate conformational plasticity for lead-optimization campaign. Hierarchical-clustering and shape-based screening against an in-house library of > 21 million compounds resulted in panel of 11,000 compounds. Rigid-receptor docking through virtual screening cascade, quantum-polarized-ligand, induced-fit dockings, post-docking processes and system stability assessments were performed. Results After docking experiments, an enrichment performance unveiled seven ranked actives better binding efficiencies with Zinc-binding potency than substrate and in-actives (decoy-set) with ROC (1.0) and area under accumulation curve (0.90) metrics. Physics-based membrane permeability accompanied ADME/T predictions and long-range dynamic simulations of 250 ns chemical time have depicted good passive diffusion with no toxicity of leads and sustained consistency of lead1-LpxC in the physiological milieu respectively. Conclusions In the study, as these static outcomes obtained from this approach competed with the substrate and existing ligands in binding affinity estimations as well as positively correlated from different aspects of predictions, which could facilitate promiscuous new chemical entities against H. pylori.
Collapse
Affiliation(s)
- Chiranjeevi Pasala
- Bioinformatics Centre, Department of Bioinformatics, SVIMS University, Tirupati, 517507 AP India
| | - Sudheer Kumar Katari
- Bioinformatics Centre, Department of Bioinformatics, SVIMS University, Tirupati, 517507 AP India
| | | | - Aparna R Bitla
- Department of Biochemistry, SVIMS University, Tirupati, 517507 AP India
| | - Umamaheswari Amineni
- Bioinformatics Centre, Department of Bioinformatics, SVIMS University, Tirupati, 517507 AP India
| |
Collapse
|
10
|
Galster M, Löppenberg M, Galla F, Börgel F, Agoglitta O, Kirchmair J, Holl R. Phenylethylene glycol-derived LpxC inhibitors with diverse Zn2+-binding groups. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Madec AGE, Schocker NS, Sanchini S, Myratgeldiyev G, Das D, Imperiali B. Facile Solid-Phase Synthesis and Assessment of Nucleoside Analogs as Inhibitors of Bacterial UDP-Sugar Processing Enzymes. ACS Chem Biol 2018; 13:2542-2550. [PMID: 30080379 DOI: 10.1021/acschembio.8b00477] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The privileged uptake of nucleosides into cells has generated interest in the development of nucleoside-analog libraries for mining new inhibitors. Of particular interest are applications in the discovery of substrate mimetic inhibitors for the growing number of identified glycan-processing enzymes in bacterial pathogens. However, the high polarity and the need for appropriate protecting group strategies for nucleosides challenges the development of synthetic approaches. Here, we report an accessible, user-friendly synthesis that branches from a common solid phase-immobilized uridinyl-amine intermediate, which can be used as a starting point for diversity-oriented synthesis. We demonstrate the generation of five series of uridinyl nucleoside analogs for investigating inhibitor structure-activity relationships. This library was screened for inhibition of representative enzymes from three functional families including a phosphoglycosyl transferase, a UDP-aminosugar acetyltransferase, and a glycosyltransferase. These candidates were taken from the Gram-negative bacteria Campylobacter concisus and Campylobacter jejuni and the Gram-positive bacterium Clostridium difficile, respectively. Inhibition studies show that specific compound series preferentially inhibit selected enzymes, with IC50 values ranging from 35 ± 7 μM to 174 ± 21 μM. Insights from the screen provide a strong foundation for further structural elaboration, to improve potency, which will be enabled by the same synthetic strategy. The solid-phase strategy was also used to synthesize pseudouridine analogs of lead compounds. Finally, the compounds were found to be nontoxic to mammalian cells, further supporting the opportunities for future development.
Collapse
Affiliation(s)
- Amaël G. E. Madec
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Nathaniel S. Schocker
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Silvano Sanchini
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Gadam Myratgeldiyev
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Debasis Das
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Ahmad S, Navid A, Akhtar AS, Azam SS, Wadood A, Pérez-Sánchez H. Subtractive Genomics, Molecular Docking and Molecular Dynamics Simulation Revealed LpxC as a Potential Drug Target Against Multi-Drug Resistant Klebsiella pneumoniae. Interdiscip Sci 2018; 11:508-526. [PMID: 29721784 DOI: 10.1007/s12539-018-0299-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/11/2018] [Accepted: 04/24/2018] [Indexed: 12/17/2022]
Abstract
The emergence and dissemination of pan drug resistant clones of Klebsiella pneumoniae are great threat to public health. In this regard new therapeutic targets must be highlighted to pave the path for novel drug discovery and development. Subtractive proteomic pipeline brought forth UDP-3-O-[3-hydroxymyristoyl] N-acetylglucosamine deacetylase (LpxC), a Zn+2 dependent cytoplasmic metalloprotein and catalyze the rate limiting deacetylation step of lipid A biosynthesis pathway. Primary sequence analysis followed by 3-dimensional (3-D) structure elucidation of the protein led to the detection of K. pneumoniae LpxC (KpLpxC) topology distinct from its orthologous counterparts in other bacterial species. Molecular docking study of the protein recognized receptor antagonist compound 106, a uridine-based LpxC inhibitory compound, as a ligand best able to fit the binding pocket with a Gold Score of 67.53. Molecular dynamics simulation of docked KpLpxC revealed an alternate binding pattern of ligand in the active site. The ligand tail exhibited preferred binding to the domain I residues as opposed to the substrate binding hydrophobic channel of subdomain II, usually targeted by inhibitory compounds. Comparison with the undocked KpLpxC system demonstrated ligand induced high conformational changes in the hydrophobic channel of subdomain II in KpLpxC. Hence, ligand exerted its inhibitory potential by rendering the channel unstable for substrate binding.
Collapse
Affiliation(s)
- Sajjad Ahmad
- National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Afifa Navid
- National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Amina Saleem Akhtar
- National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Syed Sikander Azam
- National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University-Mardan, Shankar Campus, Mardan, Khyber Pukhtoonkhwa, Pakistan
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Universidad Católica San Antonio de Murcia (UCAM), Murcia, Spain
| |
Collapse
|
13
|
Žalubovskis R, Winum JY. Inhibitors of Selected Bacterial Metalloenzymes. Curr Med Chem 2018; 26:2690-2714. [PMID: 29611472 DOI: 10.2174/0929867325666180403154018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/14/2018] [Accepted: 03/19/2018] [Indexed: 12/26/2022]
Abstract
The utilization of bacterial metalloenzymes, especially ones not having mammalian (human) counterparts, has drawn attention to develop novel antibacterial agents to overcome drug resistance and especially multidrug resistance. In this review, we focus on the recent achievements on the development of inhibitors of bacterial enzymes peptide deformylase (PDF), metallo-β-lactamase (MBL), methionine aminopeptidase (MetAP) and UDP-3-O-acyl- N-acetylglucosamine deacetylase (LpxC). The state of the art of the design and investigation of inhibitors of bacterial metalloenzymes is presented, and challenges are outlined and discussed.
Collapse
Affiliation(s)
- Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Latvia
| | - Jean-Yves Winum
- Institut des Biomolecules Max Mousseron, Universite de Montpellier, France
| |
Collapse
|
14
|
Zhang J, Chan A, Lippa B, Cross JB, Liu C, Yin N, Romero JAC, Lawrence J, Heney R, Herradura P, Goss J, Clark C, Abel C, Zhang Y, Poutsiaka KM, Epie F, Conrad M, Mahamoon A, Nguyen K, Chavan A, Clark E, Li TC, Cheng RK, Wood M, Andersen OA, Brooks M, Kwong J, Barker J, Parr IB, Gu Y, Ryan MD, Coleman S, Metcalf CA. Structure-based discovery of LpxC inhibitors. Bioorg Med Chem Lett 2017; 27:1670-1680. [DOI: 10.1016/j.bmcl.2017.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 10/20/2022]
|
15
|
Erwin AL. Antibacterial Drug Discovery Targeting the Lipopolysaccharide Biosynthetic Enzyme LpxC. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a025304. [PMID: 27235477 DOI: 10.1101/cshperspect.a025304] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The enzyme LpxC (UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase) is broadly conserved across Gram-negative bacteria and is essential for synthesis of lipid A, the membrane anchor of the lipopolysaccharides (LPSs), which are a major component of the outer membrane in nearly all Gram-negative bacteria. LpxC has been the focus of target-directed antibiotic discovery projects in numerous pharmaceutical and academic groups for more than 20 years. Despite intense effort, no LpxC inhibitor has been approved for therapeutic use, and only one has yet reached human studies. This article will summarize the history of LpxC as a drug target and the parallel history of research on LpxC biology. Both academic and industrial researchers have used LpxC inhibitors as tool compounds, leading to increased understanding of the differing mechanisms for regulation of LPS synthesis in Escherichia coli and Pseudomonas aeruginosa.
Collapse
|
16
|
Tangherlini G, Torregrossa T, Agoglitta O, Köhler J, Melesina J, Sippl W, Holl R. Synthesis and biological evaluation of enantiomerically pure glyceric acid derivatives as LpxC inhibitors. Bioorg Med Chem 2016; 24:1032-44. [DOI: 10.1016/j.bmc.2016.01.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/13/2016] [Accepted: 01/15/2016] [Indexed: 10/22/2022]
|
17
|
References. Antibiotics (Basel) 2015. [DOI: 10.1128/9781555819316.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
18
|
Abstract
Lipopolysaccharide molecules represent a unique family of glycolipids based on a highly conserved lipid moiety known as lipid A. These molecules are produced by most gram-negative bacteria, in which they play important roles in the integrity of the outer-membrane permeability barrier and participate extensively in host-pathogen interplay. Few bacteria contain lipopolysaccharide molecules composed only of lipid A. In most forms, lipid A is glycosylated by addition of the core oligosaccharide that, in some bacteria, provides an attachment site for a long-chain O-antigenic polysaccharide. The complexity of lipopolysaccharide structures is reflected in the processes used for their biosynthesis and export. Rapid growth and cell division depend on the bacterial cell's capacity to synthesize and export lipopolysaccharide efficiently and in large amounts. We review recent advances in those processes, emphasizing the reactions that are essential for viability.
Collapse
Affiliation(s)
- Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada;
| | | |
Collapse
|
19
|
Szermerski M, Melesina J, Wichapong K, Löppenberg M, Jose J, Sippl W, Holl R. Synthesis, biological evaluation and molecular docking studies of benzyloxyacetohydroxamic acids as LpxC inhibitors. Bioorg Med Chem 2014; 22:1016-28. [DOI: 10.1016/j.bmc.2013.12.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/21/2013] [Accepted: 12/18/2013] [Indexed: 11/28/2022]
|
20
|
Pradhan D, Priyadarshini V, Munikumar M, Swargam S, Umamaheswari A, Bitla A. Para-(benzoyl)-phenylalanine as a potential inhibitor against LpxC of Leptospira spp.: homology modeling, docking, and molecular dynamics study. J Biomol Struct Dyn 2013; 32:171-85. [PMID: 23383626 DOI: 10.1080/07391102.2012.758056] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Leptospira interrogans, a Gram-negative bacterial pathogen is the main cause of human leptospirosis. Lipid A is a highly immunoreactive endotoxic center of lipopolysaccharide (LPS) that anchors LPS into the outer membrane of Leptospira. Discovery of compounds inhibiting lipid-A biosynthetic pathway would be promising for dissolving the structural integrity of membrane leading to cell lysis and death of Leptospira. LpxC, a unique enzyme of lipid-A biosynthetic pathway was identified as common drug target of Leptospira. Herein, homology modeling, docking, and molecular dynamics (MD) simulations were employed to discover potential inhibitors of LpxC. A reliable tertiary structure of LpxC in complex with inhibitor BB-78485 was constructed in Modeller 9v8. A data-set of BB-78485 structural analogs were docked with LpxC in Maestro v9.2 virtual screening workflow, which implements three stage Glide docking protocol. Twelve lead molecules with better XP Gscore compared to BB-78485 were proposed as potential inhibitors of LpxC. Para-(benzoyl)-phenylalanine - that showed lowest XP Gscore (-10.35 kcal/mol) - was predicted to have best binding affinity towards LpxC. MD simulations were performed for LpxC and para-(benzoyl)-phenylalanine docking complex in Desmond v3.0. Trajectory analysis showed the docking complex and inter-molecular interactions was stable throughout the entire production part of MD simulations. The results indicate para-(benzoyl)-phenylalanine as a potent drug molecule against leptospirosis. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:10.
Collapse
Affiliation(s)
- Dibyabhaba Pradhan
- a Department of Bioinformatics , SVIMS Bioinformatics Centre, SVIMS University , Tirupati , 517507 , AP , India
| | | | | | | | | | | |
Collapse
|
21
|
McAllister LA, Montgomery JI, Abramite JA, Reilly U, Brown MF, Chen JM, Barham RA, Che Y, Chung SW, Menard CA, Mitton-Fry M, Mullins LM, Noe MC, O'Donnell JP, Oliver RM, Penzien JB, Plummer M, Price LM, Shanmugasundaram V, Tomaras AP, Uccello DP. Heterocyclic methylsulfone hydroxamic acid LpxC inhibitors as Gram-negative antibacterial agents. Bioorg Med Chem Lett 2012; 22:6832-8. [PMID: 23046961 DOI: 10.1016/j.bmcl.2012.09.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/04/2012] [Accepted: 09/17/2012] [Indexed: 11/19/2022]
Abstract
The synthesis and antibacterial activity of heterocyclic methylsulfone hydroxamates is presented. Compounds in this series are potent inhibitors of the LpxC enzyme, a key enzyme involved in the production of lipopolysaccharide (LPS) found in the outer membrane of Gram-negative bacteria. SAR evaluation of compounds in this series revealed analogs with potent antibacterial activity against challenging Gram-negative species such as Pseudomonas aeruginosa and Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Laura A McAllister
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, CT 06340, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Montgomery JI, Brown MF, Reilly U, Price LM, Abramite JA, Arcari J, Barham R, Che Y, Chen JM, Chung SW, Collantes EM, Desbonnet C, Doroski M, Doty J, Engtrakul JJ, Harris TM, Huband M, Knafels JD, Leach KL, Liu S, Marfat A, McAllister L, McElroy E, Menard CA, Mitton-Fry M, Mullins L, Noe MC, O'Donnell J, Oliver R, Penzien J, Plummer M, Shanmugasundaram V, Thoma C, Tomaras AP, Uccello DP, Vaz A, Wishka DG. Pyridone methylsulfone hydroxamate LpxC inhibitors for the treatment of serious gram-negative infections. J Med Chem 2012; 55:1662-70. [PMID: 22257165 DOI: 10.1021/jm2014875] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The synthesis and biological activity of a new series of LpxC inhibitors represented by pyridone methylsulfone hydroxamate 2a is presented. Members of this series have improved solubility and free fraction when compared to compounds in the previously described biphenyl methylsulfone hydroxamate series, and they maintain superior Gram-negative antibacterial activity to comparator agents.
Collapse
Affiliation(s)
- Justin I Montgomery
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Brown MF, Reilly U, Abramite JA, Arcari JT, Oliver R, Barham RA, Che Y, Chen JM, Collantes EM, Chung SW, Desbonnet C, Doty J, Doroski M, Engtrakul JJ, Harris TM, Huband M, Knafels JD, Leach KL, Liu S, Marfat A, Marra A, McElroy E, Melnick M, Menard CA, Montgomery JI, Mullins L, Noe MC, O'Donnell J, Penzien J, Plummer MS, Price LM, Shanmugasundaram V, Thoma C, Uccello DP, Warmus JS, Wishka DG. Potent inhibitors of LpxC for the treatment of Gram-negative infections. J Med Chem 2012; 55:914-23. [PMID: 22175825 DOI: 10.1021/jm2014748] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this paper, we present the synthesis and SAR as well as selectivity, pharmacokinetic, and infection model data for representative analogues of a novel series of potent antibacterial LpxC inhibitors represented by hydroxamic acid.
Collapse
Affiliation(s)
- Matthew F Brown
- Worldwide Medicinal Chemistry, Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Liang X, Lee CJ, Chen X, Chung HS, Zeng D, Raetz CRH, Li Y, Zhou P, Toone EJ. Syntheses, structures and antibiotic activities of LpxC inhibitors based on the diacetylene scaffold. Bioorg Med Chem 2011; 19:852-60. [PMID: 21194954 PMCID: PMC3035996 DOI: 10.1016/j.bmc.2010.12.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/01/2010] [Accepted: 12/02/2010] [Indexed: 11/27/2022]
Abstract
Compounds inhibiting LpxC in the lipid A biosynthetic pathway are promising leads for novel antibiotics against multidrug-resistant Gram-negative pathogens. We report the syntheses and structural and biochemical characterizations of LpxC inhibitors based on a diphenyl-diacetylene (1,4-diphenyl-1,3-butadiyne) threonyl-hydroxamate scaffold. These studies provide a molecular interpretation for the differential antibiotic activities of compounds with a substituted distal phenyl ring as well as the absolute stereochemical requirement at the C2, but not C3, position of the threonyl group.
Collapse
Affiliation(s)
- Xiaofei Liang
- Department of Chemistry, Jilin University, Changchun, Jilin 130021, P.R. China
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Chul-Jin Lee
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
- Structural Biology & Biophysics Program, Duke University, Durham, NC 27710, USA
| | - Xin Chen
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Hak Suk Chung
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Daina Zeng
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Yaoxian Li
- Department of Chemistry, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Pei Zhou
- Department of Chemistry, Duke University, Durham, NC 27708, USA
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
- Structural Biology & Biophysics Program, Duke University, Durham, NC 27710, USA
| | - Eric J. Toone
- Department of Chemistry, Duke University, Durham, NC 27708, USA
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
- Structural Biology & Biophysics Program, Duke University, Durham, NC 27710, USA
| |
Collapse
|
25
|
Abstract
Treatment of infections caused by Gram-negative bacteria is difficult due in large part to problems arising from innate and acquired drug resistance, resulting in a limited number of effective antibiotics. Consequently, antibiotics that can circumvent mechanisms of drug resistance are needed. Lipid A is a glucosamine phospholipid that acts as an anchor for lipopolysaccharides (LPS) that comprise the outer membranes of Gram-negative bacteria, a barrier for small molecule entry into the cell, and is also the portion of LPS that stimulates the immune system in septic shock. Consequently, inhibitors of lipid A biosynthesis have the potential to function as antibiotics and/or anti-endotoxins in the treatment of Gram-negative bacterial infections. Current efforts in the development of antibiotics targeted against lipid A have focused on the metal-dependent deacetylase LpxC. Herein we describe fluorescence-based assays that can be used for the evaluation of LpxC inhibitors with the potential to serve as antibiotics.
Collapse
Affiliation(s)
- Marcy Hernick
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
26
|
Abstract
The discovery of novel small-molecule antibacterial drugs has been stalled for many years. The purpose of this review is to underscore and illustrate those scientific problems unique to the discovery and optimization of novel antibacterial agents that have adversely affected the output of the effort. The major challenges fall into two areas: (i) proper target selection, particularly the necessity of pursuing molecular targets that are not prone to rapid resistance development, and (ii) improvement of chemical libraries to overcome limitations of diversity, especially that which is necessary to overcome barriers to bacterial entry and proclivity to be effluxed, especially in Gram-negative organisms. Failure to address these problems has led to a great deal of misdirected effort.
Collapse
Affiliation(s)
- Lynn L Silver
- LL Silver Consulting, LLC, 955 S. Springfield Ave., Unit C403, Springfield, NJ 07081, USA.
| |
Collapse
|
27
|
Control of lipopolysaccharide biosynthesis by FtsH-mediated proteolysis of LpxC is conserved in enterobacteria but not in all gram-negative bacteria. J Bacteriol 2010; 193:1090-7. [PMID: 21193611 DOI: 10.1128/jb.01043-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the essential function of lipopolysaccharides (LPS) in Gram-negative bacteria, it is largely unknown how the exact amount of this molecule in the outer membrane is controlled. The first committed step in LPS biosynthesis is catalyzed by the LpxC enzyme. In Escherichia coli, the cellular concentration of LpxC is adjusted by the only essential protease in this organism, the membrane-anchored metalloprotease FtsH. Turnover of E. coli LpxC requires a length- and sequence-specific C-terminal degradation signal. LpxC proteins from Salmonella, Yersinia, and Vibrio species carry similar C-terminal ends and, like the E. coli enzyme, were degraded by FtsH. Although LpxC proteins are highly conserved in Gram-negative bacteria, there are striking differences in their C termini. The Aquifex aeolicus enzyme, which is devoid of the C-terminal extension, was stable in E. coli, whereas LpxC from the alphaproteobacteria Agrobacterium tumefaciens and Rhodobacter capsulatus was degraded by the Lon protease. Proteolysis of the A. tumefaciens protein required the C-terminal end of LpxC. High stability of Pseudomonas aeruginosa LpxC in E. coli and P. aeruginosa suggested that Pseudomonas uses a proteolysis-independent strategy to control its LPS content. The differences in LpxC turnover along with previously reported differences in susceptibility against antimicrobial compounds have important implications for the potential of LpxC as a drug target.
Collapse
|
28
|
Abstract
Endotoxin refers lipopolysaccharide that constitutes the outer leaflet of the outer membrane of most Gram-negative bacteria. Lipopolysaccharide is comprised of a hydrophilic polysaccharide and a hydrophobic component known as lipid A which is responsible for the major bioactivity of endotoxin. Lipopolysaccharide can be recognized by immune cells as a pathogen-associated molecule through Toll-like receptor 4. Most enzymes and genes related to the biosynthesis and export of lipopolysaccharide have been identified in Escherichia coli, and they are shared by most Gram-negative bacteria based on available genetic information. However, the detailed structure of lipopolysaccharide differs from one bacterium to another, suggesting that additional enzymes that can modify the basic structure of lipopolysaccharide exist in bacteria, especially some pathogens. These structural modifications of lipopolysaccharide are sometimes tightly regulated. They are not required for survival but closely related to the virulence of bacteria. In this chapter we will focus on the mechanism of biosynthesis and export of lipopolysaccharide in bacteria.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
| | | |
Collapse
|