1
|
Kiser PD. Retinal pigment epithelium 65 kDa protein (RPE65): An update. Prog Retin Eye Res 2021; 88:101013. [PMID: 34607013 PMCID: PMC8975950 DOI: 10.1016/j.preteyeres.2021.101013] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022]
Abstract
Vertebrate vision critically depends on an 11-cis-retinoid renewal system known as the visual cycle. At the heart of this metabolic pathway is an enzyme known as retinal pigment epithelium 65 kDa protein (RPE65), which catalyzes an unusual, possibly biochemically unique, reaction consisting of a coupled all-trans-retinyl ester hydrolysis and alkene geometric isomerization to produce 11-cis-retinol. Early work on this isomerohydrolase demonstrated its membership to the carotenoid cleavage dioxygenase superfamily and its essentiality for 11-cis-retinal production in the vertebrate retina. Three independent studies published in 2005 established RPE65 as the actual isomerohydrolase instead of a retinoid-binding protein as previously believed. Since the last devoted review of RPE65 enzymology appeared in this journal, major advances have been made in a number of areas including our understanding of the mechanistic details of RPE65 isomerohydrolase activity, its phylogenetic origins, the relationship of its membrane binding affinity to its catalytic activity, its role in visual chromophore production for rods and cones, its modulation by macromolecules and small molecules, and the involvement of RPE65 mutations in the development of retinal diseases. In this article, I will review these areas of progress with the goal of integrating results from the varied experimental approaches to provide a comprehensive picture of RPE65 biochemistry. Key outstanding questions that may prove to be fruitful future research pursuits will also be highlighted.
Collapse
Affiliation(s)
- Philip D Kiser
- Research Service, VA Long Beach Healthcare System, Long Beach, CA, 90822, USA; Department of Physiology & Biophysics, University of California, Irvine School of Medicine, Irvine, CA, 92697, USA; Department of Ophthalmology and Center for Translational Vision Research, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA, 92697, USA.
| |
Collapse
|
2
|
Expression of Pro-Angiogenic Markers Is Enhanced by Blue Light in Human RPE Cells. Antioxidants (Basel) 2020; 9:antiox9111154. [PMID: 33233546 PMCID: PMC7699675 DOI: 10.3390/antiox9111154] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022] Open
Abstract
Inherited retinal dystrophies are characterized by photoreceptor death. Oxidative stress usually occurs, increasing vision loss, and oxidative damage is often reported in retinitis pigmentosa (RP). More than 300 genes have been reported as RP causing. In contrast, choroidal neovascularization (CNV) only occasionally develops in the late stages of RP. We herein study the regulation of RP causative genes that are likely linked to CNV onset under oxidative conditions. We studied how the endogenous adduct N-retinylidene-N-retinylethanolamine (A2E) affects the expression of angiogenic markers in human retinal pigment epithelium (H-RPE) cells and a possible correlation with RP-causing genes. H-RPE cells were exposed to A2E and blue light for 3 and 6h. By transcriptome analysis, genes differentially expressed between A2E-treated cells and untreated ones were detected. The quantification of differential gene expression was performed by the Limma R package. Enrichment pathway analysis by the FunRich tool and gene prioritization by ToppGene allowed us to identify dysregulated genes involved in angiogenesis and linked to RP development. Two RP causative genes, AHR and ROM1, can be associated with an increased risk of CNV development. Genetic analysis of RP patients affected by CNV will confirm this hypothesis.
Collapse
|
3
|
Widjaja-Adhi MAK, Golczak M. The molecular aspects of absorption and metabolism of carotenoids and retinoids in vertebrates. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158571. [PMID: 31770587 PMCID: PMC7244374 DOI: 10.1016/j.bbalip.2019.158571] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
Vitamin A is an essential nutrient necessary for numerous basic physiological functions, including reproduction and development, immune cell differentiation and communication, as well as the perception of light. To evade the dire consequences of vitamin A deficiency, vertebrates have evolved specialized metabolic pathways that enable the absorption, transport, and storage of vitamin A acquired from dietary sources as preformed retinoids or provitamin A carotenoids. This evolutionary advantage requires a complex interplay between numerous specialized retinoid-transport proteins, receptors, and enzymes. Recent advances in molecular and structural biology resulted in a rapid expansion of our understanding of these processes at the molecular level. This progress opened new avenues for the therapeutic manipulation of retinoid homeostasis. In this review, we summarize current research related to the biochemistry of carotenoid and retinoid-processing proteins with special emphasis on the structural aspects of their physiological actions. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Made Airanthi K Widjaja-Adhi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Marcin Golczak
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America; Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America.
| |
Collapse
|
4
|
Mizuno H, Fukumoto M, Sato T, Horie T, Kida T, Oku H, Nakamura K, Jin D, Takai S, Ikeda T. Involvement of the Retinal Pigment Epithelium in the Development of Retinal Lattice Degeneration. Int J Mol Sci 2020; 21:ijms21197347. [PMID: 33027920 PMCID: PMC7583762 DOI: 10.3390/ijms21197347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 11/16/2022] Open
Abstract
Lattice degeneration involves thinning of the retina that occurs over time. Here we performed an immunohistological study of tissue sections of human peripheral retinal lattice degeneration to investigate if retinal pigment epithelium (RPE) cells are involved in the pathogenesis of this condition. In two cases of retinal detachment with a large tear that underwent vitreous surgery, retinal lattice degeneration tissue specimens were collected during surgery. In the obtained specimens, both whole mounts and horizontal section slices were prepared, and immunostaining was then performed with hematoxylin and antibodies against glial fibrillary acidic protein (GFAP), RPE-specific protein 65 kDa (RPE65), pan-cytokeratin (pan-CK), and CK18. Hematoxylin staining showed no nuclei in the center of the degenerative lesion, thus suggesting the possibility of the occurrence of apoptosis. In the degenerative lesion specimens, GFAP staining was observed in the center, RPE65 staining was observed in the slightly peripheral region, and pan-CK staining was observed in all areas. However, no obvious CK18 staining was observed. In a monkey retina used as the control specimen of a normal healthy retina, no RPE65 or pan-CK staining was observed in the neural retina. Our findings suggest that migration, proliferation, and differentiation of RPE cells might be involved in the repair of retinal lattice degeneration.
Collapse
Affiliation(s)
- Hiroshi Mizuno
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka 569-8686, Japan; (H.M.); (M.F.); (T.S.); (T.H.); (T.K.); (H.O.)
| | - Masanori Fukumoto
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka 569-8686, Japan; (H.M.); (M.F.); (T.S.); (T.H.); (T.K.); (H.O.)
| | - Takaki Sato
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka 569-8686, Japan; (H.M.); (M.F.); (T.S.); (T.H.); (T.K.); (H.O.)
| | - Taeko Horie
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka 569-8686, Japan; (H.M.); (M.F.); (T.S.); (T.H.); (T.K.); (H.O.)
| | - Teruyo Kida
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka 569-8686, Japan; (H.M.); (M.F.); (T.S.); (T.H.); (T.K.); (H.O.)
| | - Hidehiro Oku
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka 569-8686, Japan; (H.M.); (M.F.); (T.S.); (T.H.); (T.K.); (H.O.)
| | | | - Denan Jin
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical College, Takatsuki-City, Osaka 569-8686, Japan; (D.J.); (S.T.)
| | - Shinji Takai
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical College, Takatsuki-City, Osaka 569-8686, Japan; (D.J.); (S.T.)
| | - Tsunehiko Ikeda
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka 569-8686, Japan; (H.M.); (M.F.); (T.S.); (T.H.); (T.K.); (H.O.)
- Correspondence: ; Tel.: +81-72-684-6434; Fax: +81-72-682-0995
| |
Collapse
|
5
|
Kiser PD, Kolesnikov AV, Kiser JZ, Dong Z, Chaurasia B, Wang L, Summers SA, Hoang T, Blackshaw S, Peachey NS, Kefalov VJ, Palczewski K. Conditional deletion of Des1 in the mouse retina does not impair the visual cycle in cones. FASEB J 2019; 33:5782-5792. [PMID: 30645148 PMCID: PMC6436658 DOI: 10.1096/fj.201802493r] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cone photoreceptors are essential for vision under moderate to high illuminance and allow color discrimination. Their fast dark adaptation rate and resistance to saturation are believed to depend in part on an intraretinal visual cycle that supplies 11-cis-retinaldehyde to cone opsins. Candidate enzymes of this pathway have been reported, but their physiologic contribution to cone photoresponses remains unknown. Here, we evaluate the role of a candidate retinol isomerase of this pathway, sphingolipid δ4 desaturase 1 (Des1). Single-cell RNA sequencing analysis revealed Des1 expression not only in Müller glia but also throughout the retina and in the retinal pigment epithelium. We assessed cone functional dependence on Müller cell–expressed Des1 through a conditional knockout approach. Floxed Des1 mice, on a guanine nucleotide-binding protein subunit α transducin 1 knockout (Gnat1−/−) background to allow isolated recording of cone-driven photoresponses, were bred with platelet-derived growth factor receptor α (Pdgfrα)-Cre mice to delete Des1 in Müller cells. Conditional knockout of Des1 expression, as shown by tissue-selective Des1 gene recombination and reduced Des1 catalytic activity, caused no gross changes in the retinal structure and had no effect on cone sensitivity or dark adaptation but did slightly accelerate the rate of cone phototransduction termination. These results indicate that Des1 expression in Müller cells is not required for cone visual pigment regeneration in the mouse.—Kiser, P. D., Kolesnikov, A.V., Kiser, J. Z., Dong, Z., Chaurasia, B., Wang, L., Summers, S. A., Hoang, T., Blackshaw, S., Peachey, N. S., Kefalov, V. J., Palczewski, K. Conditional deletion of Des1 in the mouse retina does not impair the visual cycle in cones.
Collapse
Affiliation(s)
- Philip D Kiser
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, USA.,Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Alexander V Kolesnikov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jianying Z Kiser
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | - Bhagirath Chaurasia
- Department of Nutrition and Integrative Physiology (NUIP), University of Utah, Salt Lake City, Utah, USA.,Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA
| | - Liping Wang
- Department of Nutrition and Integrative Physiology (NUIP), University of Utah, Salt Lake City, Utah, USA.,Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology (NUIP), University of Utah, Salt Lake City, Utah, USA.,Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA
| | - Thanh Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Neal S Peachey
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, USA.,Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,Department of Ophthalmology, Gavin Herbert Eye Institute, University of California-Irvine, School of Medicine, Irvine, California, USA
| |
Collapse
|
6
|
Donato L, Scimone C, Nicocia G, D'Angelo R, Sidoti A. Role of oxidative stress in Retinitis pigmentosa: new involved pathways by an RNA-Seq analysis. Cell Cycle 2018; 18:84-104. [PMID: 30569795 DOI: 10.1080/15384101.2018.1558873] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Retinitis pigmentosa (RP) is a very heterogeneous inherited ocular disorder group characterized by progressive retinal disruption. Retinal pigment epithelium (RPE) degeneration, due to oxidative stress which arrests the metabolic support to photoreceptors, represents one of the principal causes of RP. Here, the role of oxidative stress in RP onset and progression was analyzed by a comparative whole transcriptome analysis of human RPE cells, treated with 100 µg/ml of oxLDL and untreated, at different time points. Experiment was thrice repeated and performed on Ion ProtonTM sequencing system. Data analysis, including low quality reads trimming and gene expression quantification, was realized by CLC Genomics Workbench software. The whole analysis highlighted 14 clustered "macro-pathways" and many sub-pathways, classified by selection of 5271 genes showing the highest alteration of expression. Among them, 23 genes were already known to be RP causative ones (15 over-expressed and 8 down-expressed), and their enrichment and intersection analyses highlighted new 77 candidate related genes (49 over-expressed and 28 down-expressed). A final filtering analysis then highlighted 29 proposed candidate genes. This data suggests that many new genes, not yet associated with RP, could influence its etiopathogenesis.
Collapse
Affiliation(s)
- Luigi Donato
- a Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine , University of Messina , Messina , Italy.,b Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Applied Neuroscience, Molecular Genetics and Predictive Medicine , I.E.ME.S.T. ., Palermo , Italy
| | - Concetta Scimone
- a Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine , University of Messina , Messina , Italy.,b Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Applied Neuroscience, Molecular Genetics and Predictive Medicine , I.E.ME.S.T. ., Palermo , Italy
| | - Giacomo Nicocia
- c Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Rosalia D'Angelo
- a Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine , University of Messina , Messina , Italy.,b Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Applied Neuroscience, Molecular Genetics and Predictive Medicine , I.E.ME.S.T. ., Palermo , Italy
| | - Antonina Sidoti
- a Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine , University of Messina , Messina , Italy.,b Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Applied Neuroscience, Molecular Genetics and Predictive Medicine , I.E.ME.S.T. ., Palermo , Italy
| |
Collapse
|
7
|
Tsin A, Betts-Obregon B, Grigsby J. Visual cycle proteins: Structure, function, and roles in human retinal disease. J Biol Chem 2018; 293:13016-13021. [PMID: 30002120 DOI: 10.1074/jbc.aw118.003228] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here, we seek to summarize the current understanding of the biochemical and molecular events mediated by visual cycle molecules in the eye. The structures and functions of selected visual cycle proteins and their roles in human retinal diseases are also highlighted. Genetic mutations and malfunctions of these proteins provide etiological evidence that many ocular diseases arise from anomalies of retinoid (vitamin A) metabolism and related visual processes. Genetic retinal disorders such as retinitis pigmentosa, Leber's congenital amaurosis, and Stargardt's disease are linked to structural changes in visual cycle proteins. Moreover, recent reports suggest that visual cycle proteins may also play a role in the development of diabetic retinopathy. Basic science has laid the groundwork for finding a cure for many of these blindness-causing afflictions, but much work remains. Some translational research projects have advanced to the clinical trial stage, while many others are still in progress, and more are at the ideas stage and remain yet to be tested. Some examples of these studies are discussed. Recent and future progress in our understanding of the visual cycle will inform intervention strategies to preserve human vision and prevent blindness.
Collapse
Affiliation(s)
- Andrew Tsin
- From the Department of Biomedical Sciences, University of Texas Rio Grande Valley School of Medicine, Edinburg, Texas 78541,
| | - Brandi Betts-Obregon
- From the Department of Biomedical Sciences, University of Texas Rio Grande Valley School of Medicine, Edinburg, Texas 78541
| | - Jeffery Grigsby
- Vision Health Specialties, Midland, Texas 79707.,the College of Optometry, University of Houston, Houston, Texas 77204, and.,the Department of Laboratory Science and Primary Care, School of Health Professions, Texas Tech University Health Science Center, Midland, Texas 79705
| |
Collapse
|
8
|
Kiser PD, Zhang J, Sharma A, Angueyra JM, Kolesnikov AV, Badiee M, Tochtrop GP, Kinoshita J, Peachey NS, Li W, Kefalov VJ, Palczewski K. Retinoid isomerase inhibitors impair but do not block mammalian cone photoreceptor function. J Gen Physiol 2018; 150:571-590. [PMID: 29500274 PMCID: PMC5881442 DOI: 10.1085/jgp.201711815] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 12/18/2017] [Accepted: 01/22/2018] [Indexed: 12/11/2022] Open
Abstract
RPE65 is a retinoid isomerase essential for rod function, but its contribution to cone vision is enigmatic. Using selective RPE65 inhibitors, Kiser et al. demonstrate that cone function depends only partially on continuous RPE65 activity, providing support for cone-specific regeneration mechanisms. Visual function in vertebrates critically depends on the continuous regeneration of visual pigments in rod and cone photoreceptors. RPE65 is a well-established retinoid isomerase in the pigment epithelium that regenerates rhodopsin during the rod visual cycle; however, its contribution to the regeneration of cone pigments remains obscure. In this study, we use potent and selective RPE65 inhibitors in rod- and cone-dominant animal models to discern the role of this enzyme in cone-mediated vision. We confirm that retinylamine and emixustat-family compounds selectively inhibit RPE65 over DES1, the putative retinoid isomerase of the intraretinal visual cycle. In vivo and ex vivo electroretinography experiments in Gnat1−/− mice demonstrate that acute administration of RPE65 inhibitors after a bleach suppresses the late, slow phase of cone dark adaptation without affecting the initial rapid portion, which reflects intraretinal visual cycle function. Acute administration of these compounds does not affect the light sensitivity of cone photoreceptors in mice during extended exposure to background light, but does slow all phases of subsequent dark recovery. We also show that cone function is only partially suppressed in cone-dominant ground squirrels and wild-type mice by multiday administration of an RPE65 inhibitor despite profound blockade of RPE65 activity. Complementary experiments in these animal models using the DES1 inhibitor fenretinide show more modest effects on cone recovery. Collectively, these studies demonstrate a role for continuous RPE65 activity in mammalian cone pigment regeneration and provide further evidence for RPE65-independent regeneration mechanisms.
Collapse
Affiliation(s)
- Philip D Kiser
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH .,Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Jianye Zhang
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Aditya Sharma
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO
| | - Juan M Angueyra
- Retinal Neurophysiology Section, National Eye Institute, Bethesda, MD
| | - Alexander V Kolesnikov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO
| | - Mohsen Badiee
- Department of Chemistry, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH
| | - Gregory P Tochtrop
- Department of Chemistry, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH
| | | | - Neal S Peachey
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH.,Cole Eye Institute, Cleveland Clinic, Cleveland, OH.,Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, Bethesda, MD
| | - Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
9
|
Abstract
Recent progress in molecular understanding of the retinoid cycle in mammalian retina stems from painstaking biochemical reconstitution studies supported by natural or engineered animal models with known genetic lesions and studies of humans with specific genetic blinding diseases. Structural and membrane biology have been used to detect critical retinal enzymes and proteins and their substrates and ligands, placing them in a cellular context. These studies have been supplemented by analytical chemistry methods that have identified small molecules by their spectral characteristics, often in conjunction with the evaluation of models of animal retinal disease. It is from this background that rational therapeutic interventions to correct genetic defects or environmental insults are identified. Thus, most presently accepted modulators of the retinoid cycle already have demonstrated promising results in animal models of retinal degeneration. These encouraging signs indicate that some human blinding diseases can be alleviated by pharmacological interventions.
Collapse
Affiliation(s)
- Philip D Kiser
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106 ; Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio 44106
| | - Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
10
|
Abstract
Visual systems detect light by monitoring the effect of photoisomerization of a chromophore on the release of a neurotransmitter from sensory neurons, known as rod and cone photoreceptor cells in vertebrate retina. In all known visual systems, the chromophore is 11-cis-retinal complexed with a protein, called opsin, and photoisomerization produces all-trans-retinal. In mammals, regeneration of 11-cis-retinal following photoisomerization occurs by a thermally driven isomerization reaction. Additional reactions are required during regeneration to protect cells from the toxicity of aldehyde forms of vitamin A that are essential to the visual process. Photochemical and phototransduction reactions in rods and cones are identical; however, reactions of the rod and cone visual pigment regeneration cycles differ, and perplexingly, rod and cone regeneration cycles appear to use different mechanisms to overcome the energy barrier involved in converting all-trans- to 11-cis-retinoid. Abnormal processing of all-trans-retinal in the rod regeneration cycle leads to retinal degeneration, suggesting that excessive amounts of the retinoid itself or its derivatives are toxic. This line of reasoning led to the development of various approaches to modifying the activity of the rod visual cycle as a possible therapeutic approach to delay or prevent retinal degeneration in inherited retinal diseases and perhaps in the dry form of macular degeneration (geographic atrophy). In spite of great progress in understanding the functioning of rod and cone regeneration cycles at a molecular level, resolution of a number of remaining puzzling issues will offer insight into the amelioration of several blinding retinal diseases.
Collapse
|
11
|
Gonzalez-Fernandez F, Betts-Obregon B, Yust B, Mimun J, Sung D, Sardar D, Tsin AT. Interphotoreceptor retinoid-binding protein protects retinoids from photodegradation. Photochem Photobiol 2015; 91:371-8. [PMID: 25565073 DOI: 10.1111/php.12416] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/16/2014] [Indexed: 12/20/2022]
Abstract
Retinol degrades rapidly in light into a variety of photoproducts. It is remarkable that visual cycle retinoids can evade photodegradation as they are exchanged between the photoreceptors, retinal pigment epithelium and Müller glia. Within the interphotoreceptor matrix, all-trans retinol, 11-cis retinol and retinal are bound by interphotoreceptor retinoid-binding protein (IRBP). Apart from its role in retinoid trafficking and targeting, could IRBP have a photoprotective function? HPLC was used to evaluate the ability of IRBP to protect all-trans and 11-cis retinols from photodegradation when exposed to incandescent light (0 to 8842 μW cm(-2)); time periods of 0-60 min, and bIRBP: retinol molar ratios of 1:1 to 1:5. bIRBP afforded a significant prevention of both all-trans and 11-cis retinol to rapid photodegradation. The effect was significant over the entire light intensity range tested, and extended to the bIRBP: retinol ratio 1:5. In view of the continual exposure of the retina to light, and the high oxidative stress in the outer retina, our results suggest IRBP may have an important protective role in the visual cycle by reducing photodegradation of all-trans and 11-cis retinols. This role of IRBP is particularly relevant in the high flux conditions of the cone visual cycle.
Collapse
Affiliation(s)
- Federico Gonzalez-Fernandez
- Medical Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS; Departments of Ophthalmology & Pathology, University of Mississippi School of Medicine, Jackson, MS; SUNY Eye Institute, State University of New York, Buffalo, NY
| | | | | | | | | | | | | |
Collapse
|
12
|
Xue Y, Shen SQ, Jui J, Rupp AC, Byrne LC, Hattar S, Flannery JG, Corbo JC, Kefalov VJ. CRALBP supports the mammalian retinal visual cycle and cone vision. J Clin Invest 2015; 125:727-38. [PMID: 25607845 DOI: 10.1172/jci79651] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/11/2014] [Indexed: 11/17/2022] Open
Abstract
Mutations in the cellular retinaldehyde-binding protein (CRALBP, encoded by RLBP1) can lead to severe cone photoreceptor-mediated vision loss in patients. It is not known how CRALBP supports cone function or how altered CRALBP leads to cone dysfunction. Here, we determined that deletion of Rlbp1 in mice impairs the retinal visual cycle. Mice lacking CRALBP exhibited M-opsin mislocalization, M-cone loss, and impaired cone-driven visual behavior and light responses. Additionally, M-cone dark adaptation was largely suppressed in CRALBP-deficient animals. While rearing CRALBP-deficient mice in the dark prevented the deterioration of cone function, it did not rescue cone dark adaptation. Adeno-associated virus-mediated restoration of CRALBP expression specifically in Müller cells, but not retinal pigment epithelial (RPE) cells, rescued the retinal visual cycle and M-cone sensitivity in knockout mice. Our results identify Müller cell CRALBP as a key component of the retinal visual cycle and demonstrate that this pathway is important for maintaining normal cone-driven vision and accelerating cone dark adaptation.
Collapse
|
13
|
Betts-Obregon BS, Gonzalez-Fernandez F, Tsin AT. Interphotoreceptor retinoid-binding protein (IRBP) promotes retinol uptake and release by rat Müller cells (rMC-1) in vitro: implications for the cone visual cycle. Invest Ophthalmol Vis Sci 2014; 55:6265-71. [PMID: 25183762 DOI: 10.1167/iovs.14-14721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Interphotoreceptor retinoid-binding protein's (IRBP) role in facilitating the exchange of retinoids between rod and cone photoreceptors, RPE, and Müller cells in the visual cycle remains a mystery. Interphotoreceptor retinoid-binding protein's ability to bind the pericellular matrix of the cone outer segment and Müller cell villi suggests a function in all-trans and 11-cis retinol targeted trafficking in the cone visual cycle. We hypothesize that IRBP facilitates delivery and uptake of all-trans retinol to and release of 11-cis retinol from rat Müller cells (rMC-1). METHODS Rat Müller cells were incubated with all-trans retinol and BSA or bovine IRBP (bIRBP). Retinoids in the cell homogenates and conditioned media were analyzed by high performance liquid chromatography (HPLC). RESULTS Cells incubated with 10 μM retinol and BSA had 2100 pmol of all-trans retinol per milligram homogenate protein compared with 3450 pmol when retinol was delivered by bIRBP; these cells also had 450 pmol all-trans retinyl ester per milligram when retinol was delivered by BSA compared with 270 pmol when retinol was delivered by bIRBP. Conditioned media from cells incubated with retinol delivered by BSA did not contain11-cis retinol. However, cells with retinol delivered by bIRBP released 130 pmol/mL of 11-cis retinol into the cell media. Incubation with 5.0 mM deferoxamine (an iron chelator) reduced IRBP-dependent 11-cis retinol retrieval by 60%. CONCLUSIONS Promoting Müller cell uptake of all-trans retinol and release of 11-cis retinol is a previously unrecognized function of IRBP that may be critical to cone function and integrity.
Collapse
Affiliation(s)
- Brandi S Betts-Obregon
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States
| | - Federico Gonzalez-Fernandez
- Medical Research Service, Veterans Affairs Medical Center, Buffalo, New York, New York, United States Departments of Ophthalmology (Ross Eye Institute) and Pathology & Anatomic Sciences; Graduate Program in Neurosciences, SUNY Eye Institute, State University of New York, Buffalo, New York, United States
| | - Andrew T Tsin
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States
| |
Collapse
|
14
|
|
15
|
Abernathy J, Li X, Jia X, Chou W, Lamont SJ, Crooijmans R, Zhou H. Copy number variation in Fayoumi and Leghorn chickens analyzed using array comparative genomic hybridization. Anim Genet 2014; 45:400-11. [DOI: 10.1111/age.12141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2014] [Indexed: 12/25/2022]
Affiliation(s)
- J. Abernathy
- Department of Animal Science; University of California; Davis CA 95616 USA
| | - X. Li
- College of Animal Science and Technology; Shandong Agricultural University; Taian Shandong 271018 China
- Department of Poultry Science; Texas A&M University; College Station TX 77843 USA
| | - X. Jia
- Department of Animal Science; University of California; Davis CA 95616 USA
- College of Animal Science and Technology; China Agricultural University; Beijing 100193 China
| | - W. Chou
- Department of Poultry Science; Texas A&M University; College Station TX 77843 USA
| | - S. J. Lamont
- Department of Animal Science; Iowa State University; Ames IA 50011 USA
| | - R. Crooijmans
- Animal Breeding and Genomics Centre; Wageningen University; Wageningen the Netherlands
| | - H. Zhou
- Department of Animal Science; University of California; Davis CA 95616 USA
| |
Collapse
|
16
|
Garlipp MA, Gonzalez-Fernandez F. Cone outer segment and Müller microvilli pericellular matrices provide binding domains for interphotoreceptor retinoid-binding protein (IRBP). Exp Eye Res 2013; 113:192-202. [DOI: 10.1016/j.exer.2013.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 01/24/2013] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
|
17
|
Abstract
The chromophore of all known visual pigments consists of 11-cis-retinal (derived from either vitamin A1 or A2) or a hydroxylated derivative, bound to a protein (opsin) via a Schiff base. Absorption of a photon results in photoisomerization of the chromophore to all-trans-retinal and conversion of the visual pigment to the signaling form. Regeneration of the 11-cis-retinal occurs in an adjacent tissue and involves several enzymes, several water-soluble retinoid-binding proteins, and intra- and intercellular diffusional processes. Rod photoreceptor cells depend completely on the output of 11-cis-retinal from adjacent retinal pigment epithelial (RPE) cells. Cone photoreceptors cells can use 11-cis-retinal from the RPE and from a second more poorly characterized cycle, which appears to involve adjacent Müller (glial) cells. Recent progress in the characterization of rod and cone visual cycle components and reactions will result in the development of approaches to the amelioration of blinding eye diseases associated with visual cycle defects.
Collapse
Affiliation(s)
- John C Saari
- Department of Ophthalmology and Biochemistry, University of Washington, Seattle, WA 91895, USA.
| |
Collapse
|
18
|
Kaylor JJ, Yuan Q, Cook J, Sarfare S, Makshanoff J, Miu A, Kim A, Kim P, Habib S, Roybal CN, Xu T, Nusinowitz S, Travis GH. Identification of DES1 as a vitamin A isomerase in Müller glial cells of the retina. Nat Chem Biol 2012; 9:30-6. [PMID: 23143414 PMCID: PMC3522777 DOI: 10.1038/nchembio.1114] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/05/2012] [Indexed: 11/21/2022]
Abstract
Absorption of a light particle by an opsin-pigment causes photoisomerization of its retinaldehyde chromophore. Restoration of light sensitivity to the resulting apo-opsin requires chemical re-isomerization of the photobleached chromophore. This is carried out by a multistep enzyme pathway called the visual cycle. Accumulating evidence suggests the existence of an alternate visual cycle for regenerating opsins in daylight. Here, we identified dihydroceramide desaturase-1 (DES1) as a retinol isomerase and an excellent candidate for isomerase-2 in this alternate pathway. DES1 is expressed in retinal Müller cells where it co-immunoprecipitates with cellular retinaldehyde binding protein (CRALBP). Adenoviral gene therapy with DES1 partially rescued the biochemical and physiological phenotypes in rpe65 −/− mice lacking isomerohydrolase (isomerase-1). Knockdown of DES1 expression by RNA-interference concordantly reduced isomerase-2 activity in cultured Müller cells. Purified DES1 possessed very high isomerase-2 activity in the presence of appropriate cofactors, suggesting that DES1 by itself is sufficient for isomerase activity.
Collapse
Affiliation(s)
- Joanna J Kaylor
- Jules Stein Eye Institute, University of California, Los Angeles School of Medicine, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tang PH, Kono M, Koutalos Y, Ablonczy Z, Crouch RK. New insights into retinoid metabolism and cycling within the retina. Prog Retin Eye Res 2012; 32:48-63. [PMID: 23063666 DOI: 10.1016/j.preteyeres.2012.09.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 09/28/2012] [Accepted: 09/30/2012] [Indexed: 01/05/2023]
Abstract
The retinoid cycle is a series of biochemical reactions within the eye that is responsible for synthesizing the chromophore, 11-cis retinal, for visual function. The chromophore is bound to G-protein coupled receptors, opsins, within rod and cone photoreceptor cells forming the photosensitive visual pigments. Integral to the sustained function of photoreceptors is the continuous generation of chromophore by the retinoid cycle through two separate processes, one that supplies both rods and cones and another that exclusively supplies cones. Recent findings such as RPE65 localization within cones and the pattern of distribution of retinoid metabolites within mouse and human retinas have challenged previous proposed schemes. This review will focus on recent findings regarding the transport of retinoids, the mechanisms by which chromophore is supplied to both rods and cones, and the metabolism of retinoids within the posterior segment of the eye.
Collapse
Affiliation(s)
- Peter H Tang
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
20
|
Betts BS, Obregon I, Tsin ATC. Cultured Müller cells from mammals can synthesize and accumulate retinyl esters. Exp Eye Res 2012; 101:56-9. [PMID: 22634428 DOI: 10.1016/j.exer.2012.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 05/09/2012] [Accepted: 05/16/2012] [Indexed: 01/21/2023]
|
21
|
Garlipp MA, Nowak KR, Gonzalez-Fernandez F. Cone outer segment extracellular matrix as binding domain for interphotoreceptor retinoid-binding protein. J Comp Neurol 2012; 520:756-69. [PMID: 21935947 DOI: 10.1002/cne.22773] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cones are critically dependent on interphotoreceptor retinoid-binding protein (IRBP) for retinoid delivery in the visual cycle. Cone-dominant vertebrates offer an opportunity to uncover the molecular basis of IRBP's role in this process. Here, we explore the association of IRBP with the interphotoreceptor matrix (IPM) of cones vs. rods in cone dominant retinas from chicken (Gallus domesticus), turkey (Meleagris gallopavo), and pig (Sus scrofa). Retinas were detached and fixed directly or washed in saline prior to fixation. Disassociated photoreceptors with adherent matrix were also prepared. Under 2 mM CaCl(2) , insoluble matrix was delaminated from saline washed retinas. The distribution of IRBP, as well as glycans binding peanut agglutinin (cone matrix) and wheat germ agglutinin (rod/cone matrix), was defined by confocal microscopy. Retina flat mounts showed IRBP diffusely distributed in an interconnecting, lattice-like pattern throughout the entire matrix. Saline wash replaced this pattern with fluorescent annuli surrounding individual cone outer segments. In isolated cones and matrix sheets, IRBP colocalized with the peanut agglutinin binding matrix glycans. Our results reveal a wash-resistant association of IRBP with a matrix domain immediately surrounding cone outer segments. The cone matrix sheath may be responsible for IRBP-mediated cone targeting of 11-cis retinoids.
Collapse
Affiliation(s)
- Mary Alice Garlipp
- Graduate Program in Neuroscience, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14209, USA
| | | | | |
Collapse
|
22
|
RPE65 is present in human green/red cones and promotes photopigment regeneration in an in vitro cone cell model. J Neurosci 2012; 31:18618-26. [PMID: 22171060 DOI: 10.1523/jneurosci.4265-11.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RPE65 is an abundantly expressed protein within the retinal pigment epithelium (RPE) of the eye that is required for retinoid metabolism to support vision. Its genetic mutations are linked to the congenital disease Leber congenital amaurosis Type 2 (LCA2) characterized by the early onset of central vision loss. Current gene therapy trials have targeted restoration of functional RPE65 within the RPE of these patients with some success. Recent data show that RPE65 is also present within mouse cones to promote function. In this study, we evaluated the presence of RPE65 in human cones and investigated its potential mechanism for supporting cone function in the 661W cone cell line. We found that RPE65 was selectively expressed in human green/red cones but absent from blue cones and mediated ester hydrolysis for photopigment synthesis in vitro. These data suggest that cone RPE65 supports human diurnal vision, potentially enhancing our strategies for treating LCA2.
Collapse
|
23
|
Regeneration of photopigment is enhanced in mouse cone photoreceptors expressing RPE65 protein. J Neurosci 2011; 31:10403-11. [PMID: 21753017 DOI: 10.1523/jneurosci.0182-11.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As cone photoreceptors mediate vision in bright light, their photopigments are bleached at a rapid rate and require substantial recycling of the chromophore 11-cis-retinal (RAL) for continued function. The retinal pigment epithelium (RPE) supplies 11-cis-RAL to both rod and cone photoreceptors; however, stringent demands imposed by the function of cones in bright light exceed the output from this source. Recent evidence has suggested that cones may be able to satisfy this demand through privileged access to an additional source of chromophore located within the inner retina. In this study, we demonstrate that the protein RPE65, previously identified in RPE as the isomerohydrolase of the RPE-retinal visual cycle, is found within cones of the rod-dominant mouse retina, and the level of RPE65 in cones is inversely related to the level in the RPE. The light sensitivity of cone ERGs of BALB/c mice, which had an undetectable level of cone RPE65, was enhanced by approximately threefold with administration of exogenous chromophore, indicating that the cones of these animals are chromophore deficient. This enhancement with chromophore administration was not observed in C57BL/6 mice, whose cones contain RPE65. These results demonstrate that RPE65 within cones may be essential for the efficient regeneration of cone photopigments under bright-light conditions.
Collapse
|
24
|
Takahashi Y, Moiseyev G, Chen Y, Nikolaeva O, Ma JX. An alternative isomerohydrolase in the retinal Müller cells of a cone-dominant species. FEBS J 2011; 278:2913-26. [PMID: 21676174 DOI: 10.1111/j.1742-4658.2011.08216.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cone photoreceptors have faster light responses than rods and a higher demand for 11-cis retinal (11cRAL), the chromophore of visual pigments. RPE65 is the isomerohydrolase in the retinal pigment epithelium (RPE) that converts all-trans retinyl ester to 11-cis retinol, a key step in the visual cycle for regenerating 11cRAL. Accumulating evidence suggests that cone-dominant species express an alternative isomerase, likely in retinal Müller cells, to meet the high demand for the chromophore by cones. In the present study, we describe the identification and characterization of a novel isomerohydrolase, RPE65c, from the cone-dominant zebrafish retina. RPE65c shares 78% amino acid sequence identity with RPE-specific zebrafish RPE65a (orthologue of human RPE65) and retains all of the known key residues for the enzymatic activity of RPE65. Similar to the other RPE-specific RPE65, RPE65c was present in both the membrane and cytosolic fractions, used all-trans retinyl ester as its substrate and required iron for its enzymatic activity. However, immunohistochemistry detected RPE65c in the inner retina, including Müller cells, but not in the RPE. Furthermore, double-immunostaining of dissociated retinal cells using antibodies for RPE65c and glutamine synthetase (a Müller cell marker), showed that RPE65c co-localized with the Müller cell marker. These results suggest that RPE65c is the alternative isomerohydrolase in the intra-retinal visual cycle, providing 11cRAL to cone photoreceptors in cone-dominant species. Identification of an alternative visual cycle will contribute to the understanding of the functional differences of rod and cone photoreceptors.
Collapse
Affiliation(s)
- Yusuke Takahashi
- Department of Medicine Endocrinology, Harold Hamm Oklahoma Diabetes Center, Oklahoma City, OK, USA
| | | | | | | | | |
Collapse
|
25
|
Li X, Li W, Dai X, Kong F, Zheng Q, Zhou X, Lü F, Chang B, Rohrer B, Hauswirth WW, Qu J, Pang JJ. Gene therapy rescues cone structure and function in the 3-month-old rd12 mouse: a model for midcourse RPE65 leber congenital amaurosis. Invest Ophthalmol Vis Sci 2011; 52:7-15. [PMID: 21169527 PMCID: PMC3053305 DOI: 10.1167/iovs.10-6138] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 07/25/2010] [Accepted: 07/27/2010] [Indexed: 11/24/2022] Open
Abstract
PURPOSE RPE65 function is necessary in the retinal pigment epithelium (RPE) to generate chromophore for all opsins. Its absence results in vision loss and rapid cone degeneration. Recent Leber congenital amaurosis type 2 (LCA with RPE65 mutations) phase I clinical trials demonstrated restoration of vision on RPE65 gene transfer into RPE cells overlying cones. In the rd12 mouse, a naturally occurring model of RPE65-LCA early cone degeneration was observed; however, some peripheral M-cones remained. A prior study showed that AAV-mediated RPE65 expression can prevent early cone degeneration. The present study was conducted to test whether the remaining cones in older rd12 mice can be rescued. METHODS Subretinal treatment with the scAAV5-smCBA-hRPE65 vector was initiated at postnatal day (P)14 and P90. After 2 months, electroretinograms were recorded, and cone morphology was analyzed by using cone-specific peanut agglutinin and cone opsin-specific antibodies. RESULTS Cone degeneration started centrally and spread ventrally, with cells losing cone-opsin staining before that for the PNA-lectin-positive cone sheath. Gene therapy starting at P14 resulted in almost wild-type M- and S-cone function and morphology. Delaying gene-replacement rescued the remaining M-cones, and most important, more M-cone opsin-positive cells were identified than were present at the onset of gene therapy, suggesting that opsin expression could be reinitiated in cells with cone sheaths. CONCLUSIONS The results support and extend those of the previous study that gene therapy can stop early cone degeneration, and, more important, they provide proof that delayed treatment can restore the function and morphology of the remaining cones. These results have important implications for the ongoing LCA2 clinical trials.
Collapse
Affiliation(s)
- Xia Li
- From the Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, PR China
| | - Wensheng Li
- From the Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, PR China
| | - Xufeng Dai
- From the Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, PR China
| | - Fansheng Kong
- From the Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, PR China
| | - Qinxiang Zheng
- From the Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, PR China
| | - Xiangtian Zhou
- From the Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, PR China
| | - Fan Lü
- From the Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, PR China
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, Maine
| | - Bärbel Rohrer
- the Department of Ophthalmology and
- Neurosciences Division of Research, Medical University of South Carolina, Charleston, South Carolina; and
| | | | - Jia Qu
- From the Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, PR China
| | - Ji-jing Pang
- From the Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, PR China
- the Department of Ophthalmology, University of Florida, Gainesville, Florida
| |
Collapse
|
26
|
Abstract
Regeneration of visual pigments is essential for sustained visual function. Although the requirement for non-photochemical regeneration of the visual chromophore, 11-cis-retinal, was recognized early on, it was only recently that the trans to cis retinoid isomerase activity required for this process was assigned to a specific protein, a microsomal membrane enzyme called RPE65. In this review, we outline progress that has been made in the functional characterization of RPE65. We then discuss general concepts related to protein-membrane interactions and the mechanism of the retinoid isomerization reaction and describe some of the important biochemical and structural features of RPE65 with respect to its membrane-binding and enzymatic properties.
Collapse
Affiliation(s)
- Philip D Kiser
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland OH 44106-4965, USA
| | | |
Collapse
|