1
|
Maity A, Wulffelé J, Ayala I, Favier A, Adam V, Bourgeois D, Brutscher B. Structural Heterogeneity in a Phototransformable Fluorescent Protein Impacts its Photochemical Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306272. [PMID: 38146132 PMCID: PMC10933604 DOI: 10.1002/advs.202306272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/29/2023] [Indexed: 12/27/2023]
Abstract
Photoconvertible fluorescent proteins (PCFP) are important cellular markers in advanced imaging modalities such as photoactivatable localization microscopy (PALM). However, their complex photophysical and photochemical behavior hampers applications such as quantitative and single-particle-tracking PALM. This work employs multidimensional NMR combined with ensemble fluorescence measurements to show that the popular mEos4b in its Green state populates two conformations (A and B), differing in side-chain protonation of the conserved residues E212 and H62, altering the hydrogen-bond network in the chromophore pocket. The interconversion (protonation/deprotonation) between these two states, which occurs on the minutes time scale in the dark, becomes strongly accelerated in the presence of UV light, leading to a population shift. This work shows that the reversible photoswitching and Green-to-Red photoconversion properties differ between the A and B states. The chromophore in the A-state photoswitches more efficiently and is proposed to be more prone to photoconversion, while the B-state shows a higher level of photobleaching. Altogether, this data highlights the central role of conformational heterogeneity in fluorescent protein photochemistry.
Collapse
Affiliation(s)
- Arijit Maity
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Jip Wulffelé
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Isabel Ayala
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Adrien Favier
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Virgile Adam
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Dominique Bourgeois
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Bernhard Brutscher
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| |
Collapse
|
2
|
Li SA, Meng XY, Zhang YJ, Chen CL, Jiao YX, Zhu YQ, Liu PP, Sun W. Progress in pH-Sensitive sensors: essential tools for organelle pH detection, spotlighting mitochondrion and diverse applications. Front Pharmacol 2024; 14:1339518. [PMID: 38269286 PMCID: PMC10806205 DOI: 10.3389/fphar.2023.1339518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
pH-sensitive fluorescent proteins have revolutionized the field of cellular imaging and physiology, offering insight into the dynamic pH changes that underlie fundamental cellular processes. This comprehensive review explores the diverse applications and recent advances in the use of pH-sensitive fluorescent proteins. These remarkable tools enable researchers to visualize and monitor pH variations within subcellular compartments, especially mitochondria, shedding light on organelle-specific pH regulation. They play pivotal roles in visualizing exocytosis and endocytosis events in synaptic transmission, monitoring cell death and apoptosis, and understanding drug effects and disease progression. Recent advancements have led to improved photostability, pH specificity, and subcellular targeting, enhancing their utility. Techniques for multiplexed imaging, three-dimensional visualization, and super-resolution microscopy are expanding the horizon of pH-sensitive protein applications. The future holds promise for their integration into optogenetics and drug discovery. With their ever-evolving capabilities, pH-sensitive fluorescent proteins remain indispensable tools for unravelling cellular dynamics and driving breakthroughs in biological research. This review serves as a comprehensive resource for researchers seeking to harness the potential of pH-sensitive fluorescent proteins.
Collapse
Affiliation(s)
- Shu-Ang Li
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Yan Meng
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying-Jie Zhang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Cai-Li Chen
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yu-Xue Jiao
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong-Qing Zhu
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pei-Pei Liu
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Sun
- Department of Burn and Repair Reconstruction, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Krueger TD, Henderson JN, Breen IL, Zhu L, Wachter RM, Mills JH, Fang C. Capturing excited-state structural snapshots of evolutionary green-to-red photochromic fluorescent proteins. Front Chem 2023; 11:1328081. [PMID: 38144887 PMCID: PMC10748491 DOI: 10.3389/fchem.2023.1328081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
Photochromic fluorescent proteins (FPs) have proved to be indispensable luminous probes for sophisticated and advanced bioimaging techniques. Among them, an interplay between photoswitching and photoconversion has only been observed in a limited subset of Kaede-like FPs that show potential for discovering the key mechanistic steps during green-to-red photoconversion. Various spectroscopic techniques including femtosecond stimulated Raman spectroscopy (FSRS), X-ray crystallography, and femtosecond transient absorption were employed on a set of five related FPs with varying photoconversion and photoswitching efficiencies. A 3-methyl-histidine chromophore derivative, incorporated through amber suppression using orthogonal aminoacyl tRNA synthetase/tRNA pairs, displays more dynamic photoswitching but greatly reduced photoconversion versus the least-evolved ancestor (LEA). Excitation-dependent measurements of the green anionic chromophore reveal that the varying photoswitching efficiencies arise from both the initial transient dynamics of the bright cis state and the final trans-like photoswitched off state, with an exocyclic bridge H-rocking motion playing an active role during the excited-state energy dissipation. This investigation establishes a close-knit feedback loop between spectroscopic characterization and protein engineering, which may be especially beneficial to develop more versatile FPs with targeted mutations and enhanced functionalities, such as photoconvertible FPs that also feature photoswitching properties.
Collapse
Affiliation(s)
- Taylor D. Krueger
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - J. Nathan Henderson
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Isabella L. Breen
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Rebekka M. Wachter
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Jeremy H. Mills
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
4
|
Krueger TD, Chen C, Fang C. Targeting Ultrafast Spectroscopic Insights into Red Fluorescent Proteins. Chem Asian J 2023; 18:e202300668. [PMID: 37682793 DOI: 10.1002/asia.202300668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2023]
Abstract
Red fluorescent proteins (RFPs) represent an increasingly popular class of genetically encodable bioprobes and biomarkers that can advance next-generation breakthroughs across the imaging and life sciences. Since the rational design of RFPs with improved functions or enhanced versatility requires a mechanistic understanding of their working mechanisms, while fluorescence is intrinsically an ultrafast event, a suitable toolset involving steady-state and time-resolved spectroscopic techniques has become powerful in delineating key structural features and dynamic steps which govern irreversible photoconverting or reversible photoswitching RFPs, and large Stokes shift (LSS)RFPs. The pertinent cis-trans isomerization and protonation state change of RFP chromophores in their local environments, involving key residues in protein matrices, lead to rich and complicated spectral features across multiple timescales. In particular, ultrafast excited-state proton transfer in various LSSRFPs showcases the resolving power of wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS) in mapping a photocycle with crucial knowledge about the red-emitting species. Moreover, recent progress in noncanonical RFPs with a site-specifically modified chromophore provides an appealing route for efficient engineering of redder and brighter RFPs, highly desirable for bioimaging. Such an effective feedback loop involving physical chemists, protein engineers, and biomedical microscopists will enable future successes to expand fundamental knowledge and improve human health.
Collapse
Affiliation(s)
- Taylor D Krueger
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon, 97331-4003, USA
| | - Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon, 97331-4003, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon, 97331-4003, USA
| |
Collapse
|
5
|
Khatib TO, Amanso AM, Knippler CM, Pedro B, Summerbell ER, Zohbi NM, Konen JM, Mouw JK, Marcus AI. A live-cell platform to isolate phenotypically defined subpopulations for spatial multi-omic profiling. PLoS One 2023; 18:e0292554. [PMID: 37819930 PMCID: PMC10566726 DOI: 10.1371/journal.pone.0292554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/22/2023] [Indexed: 10/13/2023] Open
Abstract
Numerous techniques have been employed to deconstruct the heterogeneity observed in normal and diseased cellular populations, including single cell RNA sequencing, in situ hybridization, and flow cytometry. While these approaches have revolutionized our understanding of heterogeneity, in isolation they cannot correlate phenotypic information within a physiologically relevant live-cell state with molecular profiles. This inability to integrate a live-cell phenotype-such as invasiveness, cell:cell interactions, and changes in spatial positioning-with multi-omic data creates a gap in understanding cellular heterogeneity. We sought to address this gap by employing lab technologies to design a detailed protocol, termed Spatiotemporal Genomic and Cellular Analysis (SaGA), for the precise imaging-based selection, isolation, and expansion of phenotypically distinct live cells. This protocol requires cells expressing a photoconvertible fluorescent protein and employs live cell confocal microscopy to photoconvert a user-defined single cell or set of cells displaying a phenotype of interest. The total population is then extracted from its microenvironment, and the optically highlighted cells are isolated using fluorescence activated cell sorting. SaGA-isolated cells can then be subjected to multi-omics analysis or cellular propagation for in vitro or in vivo studies. This protocol can be applied to a variety of conditions, creating protocol flexibility for user-specific research interests. The SaGA technique can be accomplished in one workday by non-specialists and results in a phenotypically defined cellular subpopulations for integration with multi-omics techniques. We envision this approach providing multi-dimensional datasets exploring the relationship between live cell phenotypes and multi-omic heterogeneity within normal and diseased cellular populations.
Collapse
Affiliation(s)
- Tala O. Khatib
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Winship Cancer Institute of Emory University, Atlanta, Georgia, United States of America
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, Georgia, United States of America
| | - Angelica M. Amanso
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Winship Cancer Institute of Emory University, Atlanta, Georgia, United States of America
| | - Christina M. Knippler
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Winship Cancer Institute of Emory University, Atlanta, Georgia, United States of America
| | - Brian Pedro
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Emily R. Summerbell
- Office of Intramural Training and Education, The National Institutes of Health, Bethesda, Maryland, United States of America
| | - Najdat M. Zohbi
- Graduate Medical Education, Piedmont Macon Medical, Macon, Georgia, United States of America
| | - Jessica M. Konen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Winship Cancer Institute of Emory University, Atlanta, Georgia, United States of America
| | - Janna K. Mouw
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Winship Cancer Institute of Emory University, Atlanta, Georgia, United States of America
| | - Adam I. Marcus
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Winship Cancer Institute of Emory University, Atlanta, Georgia, United States of America
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
6
|
García-López JP, Grimaldi A, Chen Z, Meneses C, Bravo-Tello K, Bresciani E, Banderas A, Burgess SM, Hernández PP, Feijoo CG. Ontogenetically distinct neutrophils differ in function and transcriptional profile in zebrafish. Nat Commun 2023; 14:4942. [PMID: 37582932 PMCID: PMC10427629 DOI: 10.1038/s41467-023-40662-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 08/07/2023] [Indexed: 08/17/2023] Open
Abstract
The current view of hematopoiesis considers leukocytes on a continuum with distinct developmental origins, and which exert non-overlapping functions. However, there is less known about the function and phenotype of ontogenetically distinct neutrophil populations. In this work, using a photoconvertible transgenic zebrafish line; Tg(mpx:Dendra2), we selectively label rostral blood island-derived and caudal hematopoietic tissue-derived neutrophils in vivo during steady state or upon injury. By comparing the migratory properties and single-cell expression profiles of both neutrophil populations at steady state we show that rostral neutrophils show higher csf3b expression and migration capacity than caudal neutrophils. Upon injury, both populations share a core transcriptional profile as well as subset-specific transcriptional signatures. Accordingly, both rostral and caudal neutrophils are recruited to the wound independently of their distance to the injury. While rostral neutrophils respond uniformly, caudal neutrophils respond heterogeneously. Collectively, our results reveal that co-existing neutrophils populations with ontogenically distinct origin display functional differences.
Collapse
Affiliation(s)
- Juan P García-López
- Fish Immunology Laboratory, Faculty of Life Science, Andres Bello University, Santiago, Chile
| | - Alexandre Grimaldi
- Stem Cells & Development Unit, Institut Pasteur, 75015, Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Zelin Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Claudio Meneses
- Millennium Nucleus Development of Super Adaptable Plants (MN-SAP), Santiago, 8331150, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago, 8331150, Chile
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - Karina Bravo-Tello
- Fish Immunology Laboratory, Faculty of Life Science, Andres Bello University, Santiago, Chile
| | - Erica Bresciani
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Alvaro Banderas
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005, Paris, France
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA.
| | - Pedro P Hernández
- Institut Curie, PSL Research University, INSERM U934/CNRS UMR3215, Development and Homeostasis of Mucosal Tissues Lab, Paris, France.
| | - Carmen G Feijoo
- Fish Immunology Laboratory, Faculty of Life Science, Andres Bello University, Santiago, Chile.
| |
Collapse
|
7
|
Schaller T, Ringen J, Fischer B, Bieler T, Perius K, Knopp T, Kommoss KS, Korn T, Heikenwälder M, Oelze M, Daiber A, Münzel T, Kramer D, Wenzel P, Wild J, Karbach S, Waisman A. Reactive oxygen species produced by myeloid cells in psoriasis as a potential biofactor contributing to the development of vascular inflammation. Biofactors 2023; 49:861-874. [PMID: 37139784 DOI: 10.1002/biof.1949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/04/2023] [Indexed: 05/05/2023]
Abstract
Psoriasis is an immune-mediated inflammatory skin disease driven by interleukin-17A (IL-17A) and associated with cardiovascular dysfunction. We used a severe psoriasis mouse model of keratinocyte IL-17A overexpression (K14-IL-17Aind/+ , IL-17Aind/+ control mice) to investigate the activity of neutrophils and a potential cellular interconnection between skin and vasculature. Levels of dermal reactive oxygen species (ROS) and their release by neutrophils were measured by lucigenin-/luminol-based assays, respectively. Quantitative RT-PCR determined neutrophilic activity and inflammation-related markers in skin and aorta. To track skin-derived immune cells, we used PhAM-K14-IL-17Aind/+ mice allowing us to mark all cells in the skin by photoconversion of a fluorescent protein to analyze their migration into spleen, aorta, and lymph nodes by flow cytometry. Compared to controls, K14-IL-17Aind/+ mice exhibited elevated ROS levels in the skin and a higher neutrophilic oxidative burst accompanied by the upregulation of several activation markers. In line with these results psoriatic mice displayed elevated expression of genes involved in neutrophil migration (e.g., Cxcl2 and S100a9) in skin and aorta. However, no direct immune cell migration from the psoriatic skin into the aortic vessel wall was observed. Neutrophils of psoriatic mice showed an activated phenotype, but no direct cellular migration from the skin to the vasculature was observed. This suggests that highly active vasculature-invading neutrophils must originate directly from the bone marrow. Hence, the skin-vasculature crosstalk in psoriasis is most likely based on the systemic effects of the autoimmune skin disease, emphasizing the importance of a systemic therapeutic approach for psoriasis patients.
Collapse
Affiliation(s)
- Theresa Schaller
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Julia Ringen
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Center of Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Berenice Fischer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tabea Bieler
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Heidelberg, Germany
| | - Katharina Perius
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Center of Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tanja Knopp
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Center of Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Hematology and Central Hematology Laboratory, Inselspital University Hospital Bern, Bern, Switzerland
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Katharina S Kommoss
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - Thomas Korn
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy) Ludwig-Maximilians-University Munich, Munich, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- The M3 Research Institute, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Matthias Oelze
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK) - Partner Site Rhine-Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK) - Partner Site Rhine-Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Center of Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK) - Partner Site Rhine-Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Daniela Kramer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Philip Wenzel
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Center of Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK) - Partner Site Rhine-Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Johannes Wild
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Center of Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK) - Partner Site Rhine-Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Susanne Karbach
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Center of Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK) - Partner Site Rhine-Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
8
|
Morgner J, Bornes L, Hahn K, López-Iglesias C, Kroese L, Pritchard CEJ, Vennin C, Peters PJ, Huijbers I, van Rheenen J. A Lamb1Dendra2 mouse model identifies basement-membrane-producing origins and dynamics in PyMT breast tumors. Dev Cell 2023; 58:535-549.e5. [PMID: 36905927 DOI: 10.1016/j.devcel.2023.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/20/2022] [Accepted: 02/20/2023] [Indexed: 03/12/2023]
Abstract
The basement membrane (BM) around tumor lobes forms a barrier to prevent cancer cells from invading the surrounding tissue. Although myoepithelial cells are key producers of the healthy mammary epithelium BM, they are nearly absent in mammary tumors. To study the origin and dynamics of the BM, we developed and imaged a laminin beta1-Dendra2 mouse model. We show that the turnover of laminin beta1 is faster in the BMs that surround the tumor lobes than in the BMs that surround the healthy epithelium. Moreover, we find that epithelial cancer cells and tumor-infiltrating endothelial cells synthesize laminin beta1 and that this production is temporarily and locally heterogeneous, leading to local discontinuity of the BM laminin beta1. Collectively, our data draw a new paradigm for tumor BM turnover in which the disassembly happens at a constant rate, and a local misbalance of compensating production leads to reduction or even complete disappearance of the BM.
Collapse
Affiliation(s)
- Jessica Morgner
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, 1066 CX, the Netherlands.
| | - Laura Bornes
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, 1066 CX, the Netherlands
| | - Kerstin Hahn
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, 1066 CX, the Netherlands
| | - Carmen López-Iglesias
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Lona Kroese
- Mouse Clinic for Cancer and Aging, the Netherlands Cancer Institute, Amsterdam, 1066 CX, the Netherlands
| | - Colin E J Pritchard
- Mouse Clinic for Cancer and Aging, the Netherlands Cancer Institute, Amsterdam, 1066 CX, the Netherlands
| | - Claire Vennin
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, 1066 CX, the Netherlands
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Ivo Huijbers
- Mouse Clinic for Cancer and Aging, the Netherlands Cancer Institute, Amsterdam, 1066 CX, the Netherlands
| | - Jacco van Rheenen
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, 1066 CX, the Netherlands.
| |
Collapse
|
9
|
Khatib TO, Amanso AM, Pedro B, Knippler CM, Summerbell ER, Zohbi NM, Konen JM, Mouw JK, Marcus AI. A live-cell platform to isolate phenotypically defined subpopulations for spatial multi-omic profiling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530493. [PMID: 36909653 PMCID: PMC10002729 DOI: 10.1101/2023.02.28.530493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Numerous techniques have been employed to deconstruct the heterogeneity observed in normal and diseased cellular populations, including single cell RNA sequencing, in situ hybridization, and flow cytometry. While these approaches have revolutionized our understanding of heterogeneity, in isolation they cannot correlate phenotypic information within a physiologically relevant live-cell state, with molecular profiles. This inability to integrate a historical live-cell phenotype, such as invasiveness, cell:cell interactions, and changes in spatial positioning, with multi-omic data, creates a gap in understanding cellular heterogeneity. We sought to address this gap by employing lab technologies to design a detailed protocol, termed Spatiotemporal Genomics and Cellular Analysis (SaGA), for the precise imaging-based selection, isolation, and expansion of phenotypically distinct live-cells. We begin with cells stably expressing a photoconvertible fluorescent protein and employ live cell confocal microscopy to photoconvert a user-defined single cell or set of cells displaying a phenotype of interest. The total population is then extracted from its microenvironment, and the optically highlighted cells are isolated using fluorescence activated cell sorting. SaGA-isolated cells can then be subjected to multi-omics analysis or cellular propagation for in vitro or in vivo studies. This protocol can be applied to a variety of conditions, creating protocol flexibility for user-specific research interests. The SaGA technique can be accomplished in one workday by non-specialists and results in a phenotypically defined cellular subpopulation for integration with multi-omics techniques. We envision this approach providing multi-dimensional datasets exploring the relationship between live-cell phenotype and multi-omic heterogeneity within normal and diseased cellular populations.
Collapse
Affiliation(s)
- Tala O Khatib
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, Georgia, USA
- These authors contributed equally
| | - Angelica M Amanso
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
- These authors contributed equally
| | - Brian Pedro
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Christina M Knippler
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Emily R Summerbell
- Office of Intratumoral Training and Education, The National Institutes of Health, Bethesda, Maryland, USA
| | - Najdat M Zohbi
- Graduate Medical Education, Piedmont Macon Medical, Macon, Georgia, USA
| | - Jessica M Konen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Janna K Mouw
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Adam I Marcus
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Bochenkov VE, Sopova NS, Shakhov AM, Astafiev AA, Bochenkova AV. Protein Mobility Measurements through Oxidative Green-to-Red Photoconversion of EGFP. J Phys Chem B 2022; 126:4184-4188. [PMID: 35657700 DOI: 10.1021/acs.jpcb.2c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein dynamics plays a key role in live cell functioning, stimulating the development of new experimental techniques for studying protein transport phenomena. Here, we introduce a relaxation method that is based on the rapid formation of a nonequilibrium concentration profile of the enhanced green fluorescent protein (EGFP) across a sample by its oxidative green-to-red photoconversion. Following the blue-light irradiation of a part of a sample containing EGFP and an oxidant, the diffusion-controlled response of a system is monitored. Changes in the concentration of the initial green-emitting and oxidized red-emitting forms are simultaneously tracked by fluorescence lifetime measurements using the time-correlated single photon counting. We show that the diffusion coefficient of EGFP in water, determined by this method, is in good agreement with previously published data. This approach opens a way for the studies of intracellular viscosity changes combined with sensing of elevated levels of reactive oxygen species.
Collapse
Affiliation(s)
- Vladimir E Bochenkov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Nina S Sopova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Aleksander M Shakhov
- N.N. Semenov Federal Research Center for Chemical Physics of RAS, 119991 Moscow, Russia
| | - Artyom A Astafiev
- N.N. Semenov Federal Research Center for Chemical Physics of RAS, 119991 Moscow, Russia
| | | |
Collapse
|
11
|
Diana R, Caruso U, Panunzi B. Stimuli-Responsive Zinc (II) Coordination Polymers: A Novel Platform for Supramolecular Chromic Smart Tools. Polymers (Basel) 2021; 13:3712. [PMID: 34771269 PMCID: PMC8588226 DOI: 10.3390/polym13213712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/12/2022] Open
Abstract
The unique role of the zinc (II) cation prompted us to cut a cross-section of the large and complex topic of the stimuli-responsive coordination polymers (CPs). Due to its flexible coordination environment and geometries, easiness of coordination-decoordination equilibria, "optically innocent" ability to "clip" the ligands in emissive architectures, non-toxicity and sustainability, the zinc (II) cation is a good candidate for building supramolecular smart tools. The review summarizes the recent achievements of zinc-based CPs as stimuli-responsive materials able to provide a chromic response. An overview of the past five years has been organised, encompassing 1, 2 and 3D responsive zinc-based CPs; specifically zinc-based metallorganic frameworks and zinc-based nanosized polymeric probes. The most relevant examples were collected following a consequential and progressive approach, referring to the structure-responsiveness relationship, the sensing mechanisms, the analytes and/or parameters detected. Finally, applications of highly bioengineered Zn-CPs for advanced imaging technique have been discussed.
Collapse
Affiliation(s)
- Rosita Diana
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Ugo Caruso
- Department of Chemical Science, University of Naples Federico II, 80126 Napoli, Italy;
| | - Barbara Panunzi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| |
Collapse
|
12
|
Miller EB, Karlen SJ, Ronning KE, Burns ME. Tracking distinct microglia subpopulations with photoconvertible Dendra2 in vivo. J Neuroinflammation 2021; 18:235. [PMID: 34654439 PMCID: PMC8520240 DOI: 10.1186/s12974-021-02285-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Background The ability to track individual immune cells within the central nervous system has revolutionized our understanding of the roles that microglia and monocytes play in synaptic maintenance, plasticity, and neurodegenerative diseases. However, distinguishing between similar subpopulations of mobile immune cells over time during episodes of neuronal death and tissue remodeling has proven to be challenging. Methods We recombineered a photoconvertible fluorescent protein (Dendra2; D2) downstream of the Cx3cr1 promoter commonly used to drive expression of fluorescent markers in microglia and monocytes. Like the popular Cx3cr1–GFP line (Cx3cr1+/GFP), naïve microglia in Cx3cr1–Dendra2 mice (Cx3cr1+/D2) fluoresce green and can be noninvasively imaged in vivo throughout the CNS. In addition, individual D2-expressing cells can be photoconverted, resulting in red fluorescence, and tracked unambiguously within a field of green non-photoconverted cells for several days in vivo. Results Dendra2-expressing retinal microglia were noninvasively photoconverted in both ex vivo and in vivo conditions. Local in vivo D2 photoconversion was sufficiently robust to quantify cell subpopulations by flow cytometry, and the protein was stable enough to survive tissue processing for immunohistochemistry. Simultaneous in vivo fluorescence imaging of Dendra2 and light scattering measurements (Optical Coherence Tomography, OCT) were used to assess responses of individual microglial cells to localized neuronal damage and to identify the infiltration of monocytes from the vasculature in response to large scale neurodegeneration. Conclusions The ability to noninvasively and unambiguously track D2-expressing microglia and monocytes in vivo through space and time makes the Cx3cr1–Dendra2 mouse model a powerful new tool for disentangling the roles of distinct immune cell subpopulations in neuroinflammation. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02285-x. New mouse for tracking microglia and all mononuclear phagocytes both ex and in vivo within the CNS over time. Dendra2 protein is stable enough to survive tissue processing for immunohistochemistry and flow cytometry quantification. Simultaneous fluorescence imaging of Dendra2 and light scattering measurements can be used to assess the immune response to retinal damage. Chronic in vivo imaging reveals mixed populations of microglia and monocytes during retinal degeneration.
Collapse
Affiliation(s)
- Eric B Miller
- Center for Neuroscience, University of California, 1544 Newton Court, Davis, CA, 95618, USA
| | - Sarah J Karlen
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, 95616, USA
| | - Kaitryn E Ronning
- Center for Neuroscience, University of California, 1544 Newton Court, Davis, CA, 95618, USA
| | - Marie E Burns
- Center for Neuroscience, University of California, 1544 Newton Court, Davis, CA, 95618, USA. .,Department of Cell Biology and Human Anatomy, University of California, Davis, CA, 95616, USA. .,Department of Ophthalmology & Vision Science, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
13
|
Drees C, Rühl P, Czerny J, Chandra G, Bajorath J, Haase M, Heinemann SH, Piehler J. Diffraction-Unlimited Photomanipulation at the Plasma Membrane via Specifically Targeted Upconversion Nanoparticles. NANO LETTERS 2021; 21:8025-8034. [PMID: 34519216 DOI: 10.1021/acs.nanolett.1c02267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Engineered UCNP are used to trigger rapid photoconversion of the fluorescent protein Dendra2 with nanoscopic precision and over longer distances in mammalian cells. By exploiting the synergy of high-level thulium doping with core-shell design and elevated excitation intensities, intense UCNP emission is achieved, allowing fast photoconversion of Dendra2 with <10 nm resolution. A tailored biocompatible surface coating and functionalization with a derivate of green fluorescent protein (GFP) for recognition of antiGFP nanobodies are developed. Highly specific targeting of UCNP to fusion proteins of antiGFP on the surface of mammalian cells is demonstrated. UCNP bound to extracellular Dendra2 enable rapid photoconversion selectively in molecular proximity and thus unambiguous detection of cytokine receptor dimerization in the plasma membrane and in endosomes. Remarkably, UCNPs are also suited for manipulating intracellular Dendra2 across the plasma membrane. This study thus establishes UCNP-controlled photomanipulation with nanoscale precision, opening exciting opportunities for bioanalytical applications in cell biology.
Collapse
Affiliation(s)
- Christoph Drees
- Department of Biology/Chemistry and Center of Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076 Osnabrück, Germany
| | - Philipp Rühl
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, 07745 Jena, Germany
| | - Jacqueline Czerny
- Department of Biology/Chemistry and Center of Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076 Osnabrück, Germany
| | - Gemini Chandra
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, 07745 Jena, Germany
| | - Janosch Bajorath
- Department of Biology/Chemistry and Center of Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076 Osnabrück, Germany
| | - Markus Haase
- Department of Biology/Chemistry and Center of Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076 Osnabrück, Germany
| | - Stefan H Heinemann
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, 07745 Jena, Germany
| | - Jacob Piehler
- Department of Biology/Chemistry and Center of Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076 Osnabrück, Germany
| |
Collapse
|
14
|
Wavreil FDM, Poon J, Wessel GM, Yajima M. Light-induced, spatiotemporal control of protein in the developing embryo of the sea urchin. Dev Biol 2021; 478:13-24. [PMID: 34147471 DOI: 10.1016/j.ydbio.2021.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 11/18/2022]
Abstract
Differential protein regulation is a critical biological process that regulates cellular activity and controls cell fate determination. It is especially important during early embryogenesis when post-transcriptional events predominate differential fate specification in many organisms. Light-induced approaches have been a powerful technology to interrogate protein functions with temporal and spatial precision, even at subcellular levels within a cell by controlling laser irradiation on the confocal microscope. However, application and efficacy of these tools need to be tested for each model system or for the cell type of interest because of the complex nature of each system. Here, we introduce two types of light-induced approaches to track and control proteins at a subcellular level in the developing embryo of the sea urchin. We found that the photoconvertible fluorescent protein Kaede is highly efficient to distinguish pre-existing and newly synthesized proteins with no apparent phototoxicity, even when interrogating proteins associated with the mitotic spindle. Further, chromophore-assisted light inactivation (CALI) using miniSOG successfully inactivated target proteins of interest in the vegetal cortex and selectively delayed or inhibited asymmetric cell division. Overall, these light-induced manipulations serve as important molecular tools to identify protein function for for subcellular interrogations in developing embryos.
Collapse
Affiliation(s)
- Florence D M Wavreil
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA
| | - Jessica Poon
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA
| | - Gary M Wessel
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA
| | - Mamiko Yajima
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA.
| |
Collapse
|
15
|
Nienhaus K, Nienhaus GU. Fluorescent proteins of the EosFP clade: intriguing marker tools with multiple photoactivation modes for advanced microscopy. RSC Chem Biol 2021; 2:796-814. [PMID: 34458811 PMCID: PMC8341165 DOI: 10.1039/d1cb00014d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/27/2021] [Indexed: 02/04/2023] Open
Abstract
Optical fluorescence microscopy has taken center stage in the exploration of biological structure and dynamics, especially on live specimens, and super-resolution imaging methods continue to deliver exciting new insights into the molecular foundations of life. Progress in the field, however, crucially hinges on advances in fluorescent marker technology. Among these, fluorescent proteins (FPs) of the GFP family are advantageous because they are genetically encodable, so that live cells, tissues or organisms can produce these markers all by themselves. A subclass of them, photoactivatable FPs, allow for control of their fluorescence emission by light irradiation, enabling pulse-chase imaging and super-resolution microscopy. In this review, we discuss FP variants of the EosFP clade that have been optimized by amino acid sequence modification to serve as markers for various imaging techniques. In general, two different modes of photoactivation are found, reversible photoswitching between a fluorescent and a nonfluorescent state and irreversible green-to red photoconversion. First, we describe their basic structural and optical properties. We then summarize recent research aimed at elucidating the photochemical processes underlying photoactivation. Finally, we briefly introduce various advanced imaging methods facilitated by specific EosFP variants, and show some exciting sample applications.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology 76049 Karlsruhe Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology 76049 Karlsruhe Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology 76021 Karlsruhe Germany
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology 76021 Karlsruhe Germany
- Department of Physics, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
16
|
Visual pH Sensors: From a Chemical Perspective to New Bioengineered Materials. Molecules 2021; 26:molecules26102952. [PMID: 34065629 PMCID: PMC8156760 DOI: 10.3390/molecules26102952] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 02/05/2023] Open
Abstract
Many human activities and cellular functions depend upon precise pH values, and pH monitoring is considered a fundamental task. Colorimetric and fluorescence sensors for pH measurements are chemical and biochemical tools able to sense protons and produce a visible signal. These pH sensors are gaining widespread attention as non-destructive tools, visible to the human eye, that are capable of a real-time and in-situ response. Optical “visual” sensors are expanding researchers’ interests in many chemical contexts and are routinely used for biological, environmental, and medical applications. In this review we provide an overview of trending colorimetric, fluorescent, or dual-mode responsive visual pH sensors. These sensors include molecular synthetic organic sensors, metal organic frameworks (MOF), engineered sensing nanomaterials, and bioengineered sensors. We review different typological chemical entities of visual pH sensors, three-dimensional structures, and signaling mechanisms for pH sensing and applications; developed in the past five years. The progression of this review from simple organic molecules to biological macromolecules seeks to benefit beginners and scientists embarking on a project of pH sensing development, who needs background information and a quick update on advances in the field. Lessons learned from these tools will aid pH determination projects and provide new ways of thinking for cell bioimaging or other cutting-edge in vivo applications.
Collapse
|
17
|
De Zitter E, Hugelier S, Duwé S, Vandenberg W, Tebo AG, Van Meervelt L, Dedecker P. Structure-Function Dataset Reveals Environment Effects within a Fluorescent Protein Model System*. Angew Chem Int Ed Engl 2021; 60:10073-10081. [PMID: 33543524 DOI: 10.1002/anie.202015201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 11/05/2022]
Abstract
Anisotropic environments can drastically alter the spectroscopy and photochemistry of molecules, leading to complex structure-function relationships. We examined this using fluorescent proteins as easy-to-modify model systems. Starting from a single scaffold, we have developed a range of 27 photochromic fluorescent proteins that cover a broad range of spectroscopic properties, including the determination of 43 crystal structures. Correlation and principal component analysis confirmed the complex relationship between structure and spectroscopy, but also allowed us to identify consistent trends and to relate these to the spatial organization. We find that changes in spectroscopic properties can come about through multiple underlying mechanisms, of which polarity, hydrogen bonding and presence of water molecules are key modulators. We anticipate that our findings and rich structure/spectroscopy dataset can open opportunities for the development and evaluation of new and existing protein engineering methods.
Collapse
Affiliation(s)
- Elke De Zitter
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G - box 2403, 3001, Leuven, Belgium.,Present address: University Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Siewert Hugelier
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G - box 2403, 3001, Leuven, Belgium
| | - Sam Duwé
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G - box 2403, 3001, Leuven, Belgium.,Present address: Advanced Optical Microscopy Centre, Hasselt University, Agoralaan building C, 3590, Diepenbeek, Belgium
| | - Wim Vandenberg
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G - box 2403, 3001, Leuven, Belgium
| | - Alison G Tebo
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia, 20147, USA
| | - Luc Van Meervelt
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G - box 2403, 3001, Leuven, Belgium
| | - Peter Dedecker
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G - box 2403, 3001, Leuven, Belgium
| |
Collapse
|
18
|
De Zitter E, Hugelier S, Duwé S, Vandenberg W, Tebo AG, Van Meervelt L, Dedecker P. Structure–Function Dataset Reveals Environment Effects within a Fluorescent Protein Model System**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Elke De Zitter
- Department of Chemistry KU Leuven Celestijnenlaan 200G – box 2403 3001 Leuven Belgium
- Present address: University Grenoble Alpes CEA CNRS IBS 71 Avenue des Martyrs 38000 Grenoble France
| | - Siewert Hugelier
- Department of Chemistry KU Leuven Celestijnenlaan 200G – box 2403 3001 Leuven Belgium
| | - Sam Duwé
- Department of Chemistry KU Leuven Celestijnenlaan 200G – box 2403 3001 Leuven Belgium
- Present address: Advanced Optical Microscopy Centre Hasselt University Agoralaan building C 3590 Diepenbeek Belgium
| | - Wim Vandenberg
- Department of Chemistry KU Leuven Celestijnenlaan 200G – box 2403 3001 Leuven Belgium
| | - Alison G. Tebo
- Janelia Research Campus Howard Hughes Medical Institute 19700 Helix Drive Ashburn Virginia 20147 USA
| | - Luc Van Meervelt
- Department of Chemistry KU Leuven Celestijnenlaan 200G – box 2403 3001 Leuven Belgium
| | - Peter Dedecker
- Department of Chemistry KU Leuven Celestijnenlaan 200G – box 2403 3001 Leuven Belgium
| |
Collapse
|
19
|
Bourigault Y, Chane A, Barbey C, Jafra S, Czajkowski R, Latour X. Biosensors Used for Epifluorescence and Confocal Laser Scanning Microscopies to Study Dickeya and Pectobacterium Virulence and Biocontrol. Microorganisms 2021; 9:microorganisms9020295. [PMID: 33535657 PMCID: PMC7912877 DOI: 10.3390/microorganisms9020295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/31/2022] Open
Abstract
Promoter-probe vectors carrying fluorescent protein-reporter genes are powerful tools used to study microbial ecology, epidemiology, and etiology. In addition, they provide direct visual evidence of molecular interactions related to cell physiology and metabolism. Knowledge and advances carried out thanks to the construction of soft-rot Pectobacteriaceae biosensors, often inoculated in potato Solanum tuberosum, are discussed in this review. Under epifluorescence and confocal laser scanning microscopies, Dickeya and Pectobacterium-tagged strains managed to monitor in situ bacterial viability, microcolony and biofilm formation, and colonization of infected plant organs, as well as disease symptoms, such as cell-wall lysis and their suppression by biocontrol antagonists. The use of dual-colored reporters encoding the first fluorophore expressed from a constitutive promoter as a cell tag, while a second was used as a regulator-based reporter system, was also used to simultaneously visualize bacterial spread and activity. This revealed the chronology of events leading to tuber maceration and quorum-sensing communication, in addition to the disruption of the latter by biocontrol agents. The promising potential of these fluorescent biosensors should make it possible to apprehend other activities, such as subcellular localization of key proteins involved in bacterial virulence in planta, in the near future.
Collapse
Affiliation(s)
- Yvann Bourigault
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, 55 rue Saint-Germain, F-27000 Evreux, France; (Y.B.); (A.C.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Andrea Chane
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, 55 rue Saint-Germain, F-27000 Evreux, France; (Y.B.); (A.C.); (C.B.)
| | - Corinne Barbey
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, 55 rue Saint-Germain, F-27000 Evreux, France; (Y.B.); (A.C.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Sylwia Jafra
- Division of Biological Plant Protection, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, ul. A. Abrahama 58, 80-307 Gdansk, Poland;
| | - Robert Czajkowski
- Division of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, ul. A. Abrahama 58, 80-307 Gdansk, Poland
- Correspondence: (R.C.); (X.L.); Tel.: +48-58-523-63-33 (R.C.); +33-235-146-000 (X.L.)
| | - Xavier Latour
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, 55 rue Saint-Germain, F-27000 Evreux, France; (Y.B.); (A.C.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
- Correspondence: (R.C.); (X.L.); Tel.: +48-58-523-63-33 (R.C.); +33-235-146-000 (X.L.)
| |
Collapse
|
20
|
Muslinkina L, Pletnev VZ, Pletneva NV, Ruchkin DA, Kolesov DV, Bogdanov AM, Kost LA, Rakitina TV, Agapova YK, Shemyakina II, Chudakov DM, Pletnev S. Two independent routes of post-translational chemistry in fluorescent protein FusionRed. Int J Biol Macromol 2020; 155:551-559. [PMID: 32243936 DOI: 10.1016/j.ijbiomac.2020.03.244] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 10/24/2022]
Abstract
The crystal structure of monomeric red fluorescent protein FusionRed (λex/λem 580/608 mn) has been determined at 1.09 Å resolution and revealed two alternative routes of post-translational chemistry, resulting in distinctly different products. The refinement occupancies suggest the 60:40 ratio of the mature Met63-Tyr64-Gly65 chromophore and uncyclized chromophore-forming tripeptide with the protein backbone cleaved between Met63 and the preceding Phe62 and oxidized Cα-Cβ bond of Tyr64. We analyzed the structures of FusionRed and several related red fluorescent proteins, identified structural elements causing hydrolysis of the peptide bond, and verified their impact by single point mutagenesis. These findings advance the understanding of the post-translational chemistry of GFP-like fluorescent proteins beyond the canonical cyclization-dehydration-oxidation mechanism. They also show that impaired cyclization does not prevent chromophore-forming tripeptide from further transformations enabled by the same set of catalytic residues. Our mutagenesis efforts resulted in inhibition of the peptide backbone cleavage, and a FusionRed variant with ~30% improved effective brightness.
Collapse
Affiliation(s)
- Liya Muslinkina
- Basic Science Program, Frederick National Laboratory for Cancer Research, Argonne, IL 60439, USA
| | - Vladimir Z Pletnev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nadya V Pletneva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry A Ruchkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Danila V Kolesov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexey M Bogdanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Lubov A Kost
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana V Rakitina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yulia K Agapova
- National Research Center "Kurchatov Institute," Moscow, Russia
| | - Irina I Shemyakina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry M Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergei Pletnev
- Basic Science Program, Frederick National Laboratory for Cancer Research, Argonne, IL 60439, USA.
| |
Collapse
|
21
|
Petazzi RA, Aji AK, Chiantia S. Fluorescence microscopy methods for the study of protein oligomerization. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 169:1-41. [DOI: 10.1016/bs.pmbts.2019.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
The Photoconvertible Fluorescent Protein Dendra2 Tag as a Tool to Investigate Intracellular Protein Dynamics. Methods Mol Biol 2019; 1992:201-214. [PMID: 31148040 DOI: 10.1007/978-1-4939-9469-4_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Fluorescence proteins changing spectral properties after exposure to light with a specific wavelength have recently become outstanding aids in the study of intracellular protein dynamics. Herein we show using Arabidopsis SYNAPTOTAGMIN 1 as a model protein that the Dendra2 green to red photoconvertible protein tag in combination with confocal scanning laser microscopy is a useful tool to study membrane protein intracellular dynamics.
Collapse
|
23
|
Zhang Z, Heidary DK, Richards CI. High resolution measurement of membrane receptor endocytosis. J Biol Methods 2018; 5:e105. [PMID: 31453255 PMCID: PMC6706155 DOI: 10.14440/jbm.2018.266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/26/2018] [Accepted: 08/03/2018] [Indexed: 01/29/2023] Open
Abstract
We present a new approach to quantify the half-life of membrane proteins on the cell surface, through tagging the protein with the photoconvertible fluorescent protein, Dendra2. Upon exposure to 405 nm light, Dendra2 is photoconverted from green to red emission. Total internal reflection fluorescence microscopy (TIRF) is applied to limit visualization of fluorescence to proteins located on the plasma membrane. Conversion of Dendra2 works as a pulse chase experiment through monitoring only the population of protein that has been photoconverted. As the protein is endocytosed the red emission decreases due to the protein leaving the TIRF field of view. This method is not impacted by the insertion of new protein into the plasma membrane as newly synthesized protein only exhibits green emission. We used this approach to determine the half-life of ENaC on the plasma membrane illustrating the high temporal resolution capability of this technique compared to current methods.
Collapse
|
24
|
N-terminal acetylation and methylation differentially affect the function of MYL9. Biochem J 2018; 475:3201-3219. [PMID: 30242065 DOI: 10.1042/bcj20180638] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/30/2022]
Abstract
Deciphering the histone code has illustrated that acetylation or methylation on the same residue can have analogous or opposing roles. However, little is known about the interplay between these post-translational modifications (PTMs) on the same nonhistone residues. We have recently discovered that N-terminal acetyltransferases (NATs) and N-terminal methyltransferases (NRMTs) can have overlapping substrates and identified myosin regulatory light chain 9 (MYL9) as the first confirmed protein to occur in either α-amino-methylated (Nα-methyl) or α-amino-acetylated (Nα-acetyl) states in vivo Here we aim to determine if these PTMs function similarly or create different MYL9 proteoforms with distinct roles. We use enzymatic assays to directly verify MYL9 is a substrate of both NRMT1 and NatA and generate mutants of MYL9 that are exclusive for Nα-acetylation or Nα-methylation. We then employ eukaryotic cell models to probe the regulatory functions of these Nα-PTMs on MYL9. Our results show that, contrary to prevailing dogma, neither of these modifications regulate the stability of MYL9. Rather, exclusive Nα-acetylation promotes cytoplasmic roles of MYL9, while exclusive Nα-methylation promotes the nuclear role of MYL9 as a transcription factor. The increased cytoplasmic activity of Nα-acetylated MYL9 corresponds with increased phosphorylation at serine 19, a key MYL9 activating PTM. Increased nuclear activity of Nα-methylated MYL9 corresponds with increased DNA binding. Nα-methylation also results in a decrease of interactions between the N-terminus of MYL9 and a host of cytoskeletal proteins. These results confirm that Nα-acetylation and Nα-methylation differentially affect MYL9 function by creating distinct proteoforms with different internal PTM patterns and binding properties.
Collapse
|
25
|
Jarick KJ, Mokhtari Z, Scheller L, Hartweg J, Thusek S, Le DD, Ranecky M, Shaikh H, Qureischi M, Heinze KG, Beilhack A. Photoconversion of Alloreactive T Cells in Murine Peyer's Patches During Acute Graft-Versus-Host Disease: Tracking the Homing Route of Highly Proliferative Cells In Vivo. Front Immunol 2018; 9:1468. [PMID: 30013554 PMCID: PMC6036264 DOI: 10.3389/fimmu.2018.01468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/13/2018] [Indexed: 11/13/2022] Open
Abstract
The regulation of immune cell migration throughout the body is essential to warrant immunosurveillance and to maintain immune homeostasis. Marking and tracking of these cells has proven important to study mechanisms of immune cell trafficking and cell interaction in vivo. Photoconversion is a well-suited technique for intravital application because it enables contactless time- and location-specific marking of cells in the tissue without surgically manipulating the microenvironment of the cells in question. However, in dividing cells the converted fluorescent protein may decline quickly. Here, we provide a detailed description of the photoconversion technique and its applicability to tracking highly proliferating T cells from the priming site of T cell activation to peripheral target organs of effector function in a preclinical model. Dendra2+ T cells were photoconverted in the Peyer's patches during the initiation phase of acute graft-versus-host disease (GvHD) and tracked through the mesenteric lymph nodes and the peripheral blood to the small intestine with flow cytometry and intravital two-photon microscopy. Photoconverted alloreactive T cells preserved the full proliferative capacity, homing, and migration of alloreactive T cells in the intestinal lamina propria. We conclusively proved that photoconversion of highly proliferative alloreactive T cells in the Peyer's patches is an effective tool to study trafficking of alloreactive T cells under physiologic conditions and to GvHD target tissues. This technique can also be applied to the study of immune cell tracking under inflammatory and non-inflammatory conditions.
Collapse
Affiliation(s)
- Katja J Jarick
- Interdisciplinary Center for Clinical Research (IZKF) Laboratory for Experimental Stem Cell Transplantation, Department of Internal Medicine II, University Hospital, Würzburg, Germany.,Graduate School of Life Sciences, University of Würzburg, Würzburg, Germany
| | - Zeinab Mokhtari
- Interdisciplinary Center for Clinical Research (IZKF) Laboratory for Experimental Stem Cell Transplantation, Department of Internal Medicine II, University Hospital, Würzburg, Germany
| | - Lukas Scheller
- Interdisciplinary Center for Clinical Research (IZKF) Laboratory for Experimental Stem Cell Transplantation, Department of Internal Medicine II, University Hospital, Würzburg, Germany.,Graduate School of Life Sciences, University of Würzburg, Würzburg, Germany
| | - Julia Hartweg
- Interdisciplinary Center for Clinical Research (IZKF) Laboratory for Experimental Stem Cell Transplantation, Department of Internal Medicine II, University Hospital, Würzburg, Germany.,Graduate School of Life Sciences, University of Würzburg, Würzburg, Germany
| | - Sina Thusek
- Interdisciplinary Center for Clinical Research (IZKF) Laboratory for Experimental Stem Cell Transplantation, Department of Internal Medicine II, University Hospital, Würzburg, Germany
| | - Duc-Dung Le
- Interdisciplinary Center for Clinical Research (IZKF) Laboratory for Experimental Stem Cell Transplantation, Department of Internal Medicine II, University Hospital, Würzburg, Germany
| | - Maria Ranecky
- Interdisciplinary Center for Clinical Research (IZKF) Laboratory for Experimental Stem Cell Transplantation, Department of Internal Medicine II, University Hospital, Würzburg, Germany.,Graduate School of Life Sciences, University of Würzburg, Würzburg, Germany
| | - Haroon Shaikh
- Interdisciplinary Center for Clinical Research (IZKF) Laboratory for Experimental Stem Cell Transplantation, Department of Internal Medicine II, University Hospital, Würzburg, Germany.,Graduate School of Life Sciences, University of Würzburg, Würzburg, Germany
| | - Musga Qureischi
- Interdisciplinary Center for Clinical Research (IZKF) Laboratory for Experimental Stem Cell Transplantation, Department of Internal Medicine II, University Hospital, Würzburg, Germany.,Graduate School of Life Sciences, University of Würzburg, Würzburg, Germany
| | - Katrin G Heinze
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Andreas Beilhack
- Interdisciplinary Center for Clinical Research (IZKF) Laboratory for Experimental Stem Cell Transplantation, Department of Internal Medicine II, University Hospital, Würzburg, Germany.,Graduate School of Life Sciences, University of Würzburg, Würzburg, Germany.,Department of Pediatrics, University Hospital, Würzburg, Germany
| |
Collapse
|
26
|
Sun Y, Heidary DK, Zhang Z, Richards CI, Glazer EC. Bacterial Cytological Profiling Reveals the Mechanism of Action of Anticancer Metal Complexes. Mol Pharm 2018; 15:3404-3416. [PMID: 29865789 PMCID: PMC6083414 DOI: 10.1021/acs.molpharmaceut.8b00407] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Target
identification and mechanistic studies of cytotoxic agents
are challenging processes that are both time-consuming and costly.
Here we describe an approach to mechanism of action studies for potential
anticancer compounds by utilizing the simple prokaryotic system, E. coli, and we demonstrate its utility with the characterization
of a ruthenium polypyridyl complex [Ru(bpy)2dmbpy2+]. Expression of the photoconvertible fluorescent protein Dendra2
facilitated both high throughput studies and single-cell imaging.
This allowed for simultaneous ratiometric analysis of inhibition of
protein production and phenotypic investigations. The profile of protein
production, filament size and population, and nucleoid morphology
revealed important differences between inorganic agents that damage
DNA vs more selective inhibitors of transcription and translation.
Trace metal analysis demonstrated that DNA is the preferred nucleic
acid target of the ruthenium complex, but further studies in human
cancer cells revealed altered cell signaling pathways compared to
the commonly administrated anticancer agent cisplatin. This study
demonstrates E. coli can be used to rapidly distinguish
between compounds with disparate mechanisms of action and also for
more subtle distinctions within in studies in mammalian cells.
Collapse
Affiliation(s)
- Yang Sun
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , United States
| | - David K Heidary
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , United States
| | - Zhihui Zhang
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , United States
| | - Christopher I Richards
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , United States
| | - Edith C Glazer
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , United States
| |
Collapse
|
27
|
Singh A, Pati AK, Mishra AK. Photoinduced intramolecular charge transfer in a cross-conjugated push-pull enediyne: implications toward photoreaction. Phys Chem Chem Phys 2018; 20:14889-14898. [PMID: 29785442 DOI: 10.1039/c8cp01745j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Push-pull organic fluorophores are important owing to their interesting optoelectronical properties. Here we report the photophysics of a new cross-conjugated push-pull enediynyl dye which belongs to an unexplored class of π-conjugated donor-acceptor systems. Two N,N-dimethylaniline moieties serve as donors and one pyrene ring functions as an acceptor via a common Y-shaped 'enediyne' bridge which facilitates the cross-electronic communication. The dye exhibits dual emission from locally excited (LE) and intramolecular charge transfer (ICT) states. While the LE emission is dominant in non-polar solvents, the ICT emission predominates in polar solvents. Time-resolved fluorescence decay experiments reveal a relatively shorter lifetime component (∼0.5-0.9 ns) belonging to an ICT state and a relatively longer lifetime species (∼1.6-2.8 ns) corresponding to the LE state. The strong ICT behavior of the dye is manifested through the huge red-shift (4166 cm-1) of the emission spectra from non-polar cyclohexane to polar N,N-dimethylformamide. In contrast to many small push-pull organic dyes, the LE and ICT states of the push-pull enediynyl dye follow the same excitation pathway. The dominant red-shifted ICT emission (∼550 nm) intensity of the dye in polar solvent decreases with a concomitant appearance of the blue-shifted LE emission (∼385 nm) upon prolonged exposure to photons. This opens up a new photophysical strategy of achieving high contrast two fluorescence color conversion from yellow to blue.
Collapse
Affiliation(s)
- Anuja Singh
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| | | | | |
Collapse
|
28
|
Mohr MA, Pantazis P. Primed Conversion: The New Kid on the Block for Photoconversion. Chemistry 2018; 24:8268-8274. [PMID: 29430743 DOI: 10.1002/chem.201705651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Indexed: 11/07/2022]
Abstract
In 2015, a novel way to convert photoconvertible fluorescent proteins was reported that uses the intercept of blue and far-red light instead of traditional violet or near-UV light illumination. This Minireview describes and contrasts this distinct two-step mechanism termed primed conversion with traditional photoconversion. We provide a comprehensive overview of what is known to date about primed conversion and focus on the molecular requirements for it to take place. We provide examples of its application to axially confined photoconversion in complex tissues as well as super-resolution microscopy. Further, we describe why and when it is useful, including its advantages and disadvantages, and give an insight into potential future development in the field.
Collapse
Affiliation(s)
- Manuel Alexander Mohr
- Department for Biosystems Science and Engineering (D-BSSE), Eidgenössische Technische Hochschule (ETH) Zurich, 4058, Basel, Switzerland.,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Periklis Pantazis
- Department for Biosystems Science and Engineering (D-BSSE), Eidgenössische Technische Hochschule (ETH) Zurich, 4058, Basel, Switzerland
| |
Collapse
|
29
|
Gura Sadovsky R, Brielle S, Kaganovich D, England JL. Measurement of Rapid Protein Diffusion in the Cytoplasm by Photo-Converted Intensity Profile Expansion. Cell Rep 2017; 18:2795-2806. [PMID: 28297680 PMCID: PMC5368347 DOI: 10.1016/j.celrep.2017.02.063] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 12/05/2016] [Accepted: 02/17/2017] [Indexed: 11/27/2022] Open
Abstract
The fluorescence microscopy methods presently used to characterize protein motion in cells infer protein motion from indirect observables, rather than measuring protein motion directly. Operationalizing these methods requires expertise that can constitute a barrier to their broad utilization. Here, we have developed PIPE (photo-converted intensity profile expansion) to directly measure the motion of tagged proteins and quantify it using an effective diffusion coefficient. PIPE works by pulsing photo-convertible fluorescent proteins, generating a peaked fluorescence signal at the pulsed region, and analyzing the spatial expansion of the signal. We demonstrate PIPE's success in measuring accurate diffusion coefficients in silico and in vitro and compare effective diffusion coefficients of native cellular proteins and free fluorophores in vivo. We apply PIPE to measure diffusion anomality in the cell and use it to distinguish free fluorophores from native cellular proteins. PIPE's direct measurement and ease of use make it appealing for cell biologists.
Collapse
Affiliation(s)
- Rotem Gura Sadovsky
- Physics of Living Systems Group, Massachusetts Institute of Technology, Cambridge, MA 02138, USA; Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA 02138, USA
| | - Shlomi Brielle
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel; Alexander Grass Center for Bioengineering, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Daniel Kaganovich
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Jeremy L England
- Physics of Living Systems Group, Massachusetts Institute of Technology, Cambridge, MA 02138, USA.
| |
Collapse
|
30
|
Krüger CL, Zeuner MT, Cottrell GS, Widera D, Heilemann M. Quantitative single-molecule imaging of TLR4 reveals ligand-specific receptor dimerization. Sci Signal 2017; 10:10/503/eaan1308. [DOI: 10.1126/scisignal.aan1308] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Pakhomov AA, Martynov VI, Orsa AN, Bondarenko AA, Chertkova RV, Lukyanov KA, Petrenko AG, Deyev IE. Fluorescent protein Dendra2 as a ratiometric genetically encoded pH-sensor. Biochem Biophys Res Commun 2017; 493:1518-1521. [PMID: 28986251 DOI: 10.1016/j.bbrc.2017.09.170] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 09/30/2017] [Indexed: 10/18/2022]
Abstract
Fluorescent protein Dendra2 is a monomeric GFP-like protein that belongs to the group of Kaede-like photoconvertible fluorescent proteins with irreversible photoconversion from a green- to red-emitting state when exposed to violet-blue light. In an acidic environment, photoconverted Dendra2 turns green due to protonation of the phenolic group of the chromophore with pKa of about 7.5. Thus, photoconverted form of Dendra2 can be potentially used as a ratiometric pH-sensor in the physiological pH range. However, incomplete photoconversion makes ratiometric measurements irreproducible when using standard filter sets. Here, we describe the method to detect fluorescence of only photoconverted Dendra2 form, but not nonconverted green Dendra2. We show that the 350 nm excitation light induces solely the fluorescence of photoconverted protein. By measuring the red to green fluorescence ratio, we determined intracellular pH in live CHO and HEK 293 cells. Thus, Dendra2 can be used as a novel ratiometric genetically encoded pH sensor with emission maxima in the green-red spectral region, which is suitable for application in live cells.
Collapse
Affiliation(s)
- Alexey A Pakhomov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Vladimir I Martynov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Alexander N Orsa
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Alena A Bondarenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Rita V Chertkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Konstantin A Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Alexander G Petrenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Igor E Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
32
|
Mohr MA, Kobitski AY, Sabater LR, Nienhaus K, Obara CJ, Lippincott-Schwartz J, Nienhaus GU, Pantazis P. Rational Engineering of Photoconvertible Fluorescent Proteins for Dual-Color Fluorescence Nanoscopy Enabled by a Triplet-State Mechanism of Primed Conversion. Angew Chem Int Ed Engl 2017; 56:11628-11633. [DOI: 10.1002/anie.201706121] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Manuel Alexander Mohr
- Department for Biosystems Science and Engineering (D-BSSE); Eidgenössische Technische Hochschule (ETH) Zurich; 4058 Basel Switzerland
- Howard Hughes Medical Institute; Janelia Research Campus; Ashburn VA 20147 USA
| | - Andrei Yu. Kobitski
- Institute of Applied Physics; Karlsruhe Institute of Technology (KIT); 76131 Karlsruhe Germany
| | - Lluc Rullan Sabater
- Department for Biosystems Science and Engineering (D-BSSE); Eidgenössische Technische Hochschule (ETH) Zurich; 4058 Basel Switzerland
| | - Karin Nienhaus
- Institute of Applied Physics; Karlsruhe Institute of Technology (KIT); 76131 Karlsruhe Germany
| | | | | | - Gerd Ulrich Nienhaus
- Institute of Applied Physics; Karlsruhe Institute of Technology (KIT); 76131 Karlsruhe Germany
- Institute of Toxicology and Genetics; Karlsruhe Institute of Technology (KIT); 76344 Eggenstein-Leopoldshafen Germany
- Institute of Nanotechnology; Karlsruhe Institute of Technology (KIT); 76344 Eggenstein-Leopoldshafen Germany
- Department of Physics; University of Illinois at Urbana-Champaign; Urbana IL 61801 USA
| | - Periklis Pantazis
- Department for Biosystems Science and Engineering (D-BSSE); Eidgenössische Technische Hochschule (ETH) Zurich; 4058 Basel Switzerland
| |
Collapse
|
33
|
Mohr MA, Kobitski AY, Sabater LR, Nienhaus K, Obara CJ, Lippincott-Schwartz J, Nienhaus GU, Pantazis P. Rational Engineering of Photoconvertible Fluorescent Proteins for Dual-Color Fluorescence Nanoscopy Enabled by a Triplet-State Mechanism of Primed Conversion. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Manuel Alexander Mohr
- Department for Biosystems Science and Engineering (D-BSSE); Eidgenössische Technische Hochschule (ETH) Zurich; 4058 Basel Switzerland
- Howard Hughes Medical Institute; Janelia Research Campus; Ashburn VA 20147 USA
| | - Andrei Yu. Kobitski
- Institute of Applied Physics; Karlsruhe Institute of Technology (KIT); 76131 Karlsruhe Germany
| | - Lluc Rullan Sabater
- Department for Biosystems Science and Engineering (D-BSSE); Eidgenössische Technische Hochschule (ETH) Zurich; 4058 Basel Switzerland
| | - Karin Nienhaus
- Institute of Applied Physics; Karlsruhe Institute of Technology (KIT); 76131 Karlsruhe Germany
| | | | | | - Gerd Ulrich Nienhaus
- Institute of Applied Physics; Karlsruhe Institute of Technology (KIT); 76131 Karlsruhe Germany
- Institute of Toxicology and Genetics; Karlsruhe Institute of Technology (KIT); 76344 Eggenstein-Leopoldshafen Germany
- Institute of Nanotechnology; Karlsruhe Institute of Technology (KIT); 76344 Eggenstein-Leopoldshafen Germany
- Department of Physics; University of Illinois at Urbana-Champaign; Urbana IL 61801 USA
| | - Periklis Pantazis
- Department for Biosystems Science and Engineering (D-BSSE); Eidgenössische Technische Hochschule (ETH) Zurich; 4058 Basel Switzerland
| |
Collapse
|
34
|
Bourgeois D. Deciphering Structural Photophysics of Fluorescent Proteins by Kinetic Crystallography. Int J Mol Sci 2017; 18:ijms18061187. [PMID: 28574447 PMCID: PMC5486010 DOI: 10.3390/ijms18061187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 01/02/2023] Open
Abstract
Because they enable labeling of biological samples in a genetically-encoded manner, Fluorescent Proteins (FPs) have revolutionized life sciences. Photo-transformable fluorescent proteins (PTFPs), in particular, recently attracted wide interest, as their fluorescence state can be actively modulated by light, a property central to the emergence of super-resolution microscopy. PTFPs, however, exhibit highly complex photophysical behaviours that are still poorly understood, hampering the rational engineering of variants with improved performances. We show that kinetic crystallography combined with in crystallo optical spectroscopy, modeling approaches and single-molecule measurements constitutes a powerful tool to decipher processes such as photoactivation, photoconversion, photoswitching, photoblinking and photobleaching. Besides potential applications for the design of enhanced PTFPs, these investigations provide fundamental insight into photoactivated protein dynamics.
Collapse
Affiliation(s)
- Dominique Bourgeois
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CNRS, CEA, CNRS, IBS, F-38000 Grenoble, France.
| |
Collapse
|
35
|
Lopez A, Lee SE, Wojta K, Ramos EM, Klein E, Chen J, Boxer AL, Gorno-Tempini ML, Geschwind DH, Schlotawa L, Ogryzko NV, Bigio EH, Rogalski E, Weintraub S, Mesulam MM, Fleming A, Coppola G, Miller BL, Rubinsztein DC. A152T tau allele causes neurodegeneration that can be ameliorated in a zebrafish model by autophagy induction. Brain 2017; 140:1128-1146. [PMID: 28334843 PMCID: PMC5382950 DOI: 10.1093/brain/awx005] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/05/2016] [Indexed: 11/28/2022] Open
Abstract
Mutations in the gene encoding tau (MAPT) cause frontotemporal dementia spectrum disorders. A rare tau variant p.A152T was reported as a risk factor for frontotemporal dementia spectrum and Alzheimer’s disease in an initial case-control study. Such findings need replication in an independent cohort. We analysed an independent multinational cohort comprising 3100 patients with neurodegenerative disease and 4351 healthy control subjects and found p.A152T associated with significantly higher risk for clinically defined frontotemporal dementia and progressive supranuclear palsy syndrome. To assess the functional and biochemical consequences of this variant, we generated transgenic zebrafish models expressing wild-type or A152T-tau, where A152T caused neurodegeneration and proteasome compromise. Impaired proteasome activity may also enhance accumulation of other proteins associated with this variant. We increased A152T clearance kinetics by both pharmacological and genetic upregulation of autophagy and ameliorated the disease pathology observed in A152T-tau fish. Thus, autophagy-upregulating therapies may be a strategy for the treatment for tauopathies.
Collapse
Affiliation(s)
- Ana Lopez
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Suzee E Lee
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Kevin Wojta
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Eliana Marisa Ramos
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Eric Klein
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jason Chen
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | | | - Daniel H Geschwind
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Lars Schlotawa
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Nikolay V Ogryzko
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Eileen H Bigio
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Chicago, IL 60611, USA
| | - Emily Rogalski
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Chicago, IL 60611, USA
| | - Sandra Weintraub
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Chicago, IL 60611, USA
| | - Marsel M Mesulam
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Chicago, IL 60611, USA
| | | | - Angeleen Fleming
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Giovanni Coppola
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - David C Rubinsztein
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| |
Collapse
|
36
|
Zutterman F, Liégeois V, Champagne B. Simulation of the UV/Visible Absorption Spectra of Fluorescent Protein Chromophore Models. CHEMPHOTOCHEM 2017. [DOI: 10.1002/cptc.201700002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Freddy Zutterman
- Laboratoire de Chimie Théorique, Unité de Chimie-Physique Théorique et Structurale; Université de Namur; rue de Bruxelles, 61 B-5000 Namur Belgium
| | - Vincent Liégeois
- Laboratoire de Chimie Théorique, Unité de Chimie-Physique Théorique et Structurale; Université de Namur; rue de Bruxelles, 61 B-5000 Namur Belgium
| | - Benoît Champagne
- Laboratoire de Chimie Théorique, Unité de Chimie-Physique Théorique et Structurale; Université de Namur; rue de Bruxelles, 61 B-5000 Namur Belgium
| |
Collapse
|
37
|
Fricke F, Beaudouin J, Malkusch S, Eils R, Heilemann M. Quantitative Single-Molecule Localization Microscopy (qSMLM) of Membrane Proteins Based on Kinetic Analysis of Fluorophore Blinking Cycles. Methods Mol Biol 2017; 1663:115-126. [PMID: 28924663 DOI: 10.1007/978-1-4939-7265-4_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Photoswitchable or photoactivatable fluorophores are the key in single-molecule localization microscopy. Next to providing fluorescence images with subdiffraction spatial resolution, additional information is available from observing single fluorophores over time. This includes the characteristic photophysical phenomenon of "blinking" that is exhibited by single fluorescent proteins or fluorophores and follows well-defined kinetic laws. Analyzing the kinetics of "blinking" allows determining the number of fluorophores in a multi-molecular complex. As such, quantitative information at the molecular level can be extracted, representing a tremendously useful extension of single-molecule super-resolution microscopy. This concept is in particular useful to study homo- and heterooligomeric signaling protein complexes in the plasma membrane of an intact cell with molecular resolution. Here, we provide an experimental framework for deciphering the stoichiometry of membrane proteins on the basis of SMLM and photoswitching statistics.
Collapse
Affiliation(s)
- Franziska Fricke
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 7, Frankfurt am Main, 60438, Germany
| | - Joel Beaudouin
- Department for Bioinformatics and Functional Genomics, Bioquant and Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 267, Heidelberg, 69120, Germany
- Institut de Biologie Structurale, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, F-38000, Grenoble, France
| | - Sebastian Malkusch
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 7, Frankfurt am Main, 60438, Germany
| | - Roland Eils
- Department for Bioinformatics and Functional Genomics, Bioquant and Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 267, Heidelberg, 69120, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 7, Frankfurt am Main, 60438, Germany.
- Single Molecule Biology, Bioquant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, 69120, Germany.
- Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, Heidelberg, 69120, Germany.
| |
Collapse
|
38
|
Bach JN, Giacomelli G, Bramkamp M. Sample Preparation and Choice of Fluorophores for Single and Dual Color Photo-Activated Localization Microscopy (PALM) with Bacterial Cells. Methods Mol Biol 2017; 1563:129-141. [PMID: 28324606 DOI: 10.1007/978-1-4939-6810-7_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Photo-activated localization microscopy (PALM) is one of the light microscopy techniques providing highest resolution. Single photo-activatable or photo-switchable fluorescent molecules are stochastically excited. The point spread function of this event is recorded and the exact fluorophore position is calculated. This chapter describes how bacterial samples can be prepared for PALM to achieve routinely a resolution of ≤30 nm using fluorophores such as mNeonGreen, Dendra2, and PAmCherry. It is also explained how to perform multicolor PALM and combine it with total internal reflection (TIRF) microscopy to increase resolution.
Collapse
Affiliation(s)
- Juri N Bach
- Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Str. 2-4, Planegg-Martinsried, Munich, 82152, Germany
| | - Giacomo Giacomelli
- Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Str. 2-4, Planegg-Martinsried, Munich, 82152, Germany
| | - Marc Bramkamp
- Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Str. 2-4, Planegg-Martinsried, Munich, 82152, Germany.
| |
Collapse
|
39
|
Nienhaus K, Nienhaus GU. Chromophore photophysics and dynamics in fluorescent proteins of the GFP family. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:443001. [PMID: 27604321 DOI: 10.1088/0953-8984/28/44/443001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Proteins of the green fluorescent protein (GFP) family are indispensable for fluorescence imaging experiments in the life sciences, particularly of living specimens. Their essential role as genetically encoded fluorescence markers has motivated many researchers over the last 20 years to further advance and optimize these proteins by using protein engineering. Amino acids can be exchanged by site-specific mutagenesis, starting with naturally occurring proteins as templates. Optical properties of the fluorescent chromophore are strongly tuned by the surrounding protein environment, and a targeted modification of chromophore-protein interactions requires a profound knowledge of the underlying photophysics and photochemistry, which has by now been well established from a large number of structural and spectroscopic experiments and molecular-mechanical and quantum-mechanical computations on many variants of fluorescent proteins. Nevertheless, such rational engineering often does not meet with success and thus is complemented by random mutagenesis and selection based on the optical properties. In this topical review, we present an overview of the key structural and spectroscopic properties of fluorescent proteins. We address protein-chromophore interactions that govern ground state optical properties as well as processes occurring in the electronically excited state. Special emphasis is placed on photoactivation of fluorescent proteins. These light-induced reactions result in large structural changes that drastically alter the fluorescence properties of the protein, which enables some of the most exciting applications, including single particle tracking, pulse chase imaging and super-resolution imaging. We also present a few examples of fluorescent protein application in live-cell imaging experiments.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Wolfgang Gaede-Straße 1, 76131 Karlsruhe, Germany
| | | |
Collapse
|
40
|
|
41
|
Pletneva NV, Pletnev S, Pakhomov AA, Chertkova RV, Martynov VI, Muslinkina L, Dauter Z, Pletnev VZ. Crystal structure of the fluorescent protein from Dendronephthya sp. in both green and photoconverted red forms. Acta Crystallogr D Struct Biol 2016; 72:922-32. [PMID: 27487823 PMCID: PMC4973210 DOI: 10.1107/s205979831601038x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/27/2016] [Indexed: 11/10/2022] Open
Abstract
The fluorescent protein from Dendronephthya sp. (DendFP) is a member of the Kaede-like group of photoconvertible fluorescent proteins with a His62-Tyr63-Gly64 chromophore-forming sequence. Upon irradiation with UV and blue light, the fluorescence of DendFP irreversibly changes from green (506 nm) to red (578 nm). The photoconversion is accompanied by cleavage of the peptide backbone at the C(α)-N bond of His62 and the formation of a terminal carboxamide group at the preceding Leu61. The resulting double C(α)=C(β) bond in His62 extends the conjugation of the chromophore π system to include imidazole, providing the red fluorescence. Here, the three-dimensional structures of native green and photoconverted red forms of DendFP determined at 1.81 and 2.14 Å resolution, respectively, are reported. This is the first structure of photoconverted red DendFP to be reported to date. The structure-based mutagenesis of DendFP revealed an important role of positions 142 and 193: replacement of the original Ser142 and His193 caused a moderate red shift in the fluorescence and a considerable increase in the photoconversion rate. It was demonstrated that hydrogen bonding of the chromophore to the Gln116 and Ser105 cluster is crucial for variation of the photoconversion rate. The single replacement Gln116Asn disrupts the hydrogen bonding of Gln116 to the chromophore, resulting in a 30-fold decrease in the photoconversion rate, which was partially restored by a further Ser105Asn replacement.
Collapse
Affiliation(s)
- Nadya V. Pletneva
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Sergei Pletnev
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne, IL 60439, USA
- Basic Research Program, Leidos Biomedical Research Inc., Argonne, IL 60439, USA
| | - Alexey A. Pakhomov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Rita V. Chertkova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladimir I. Martynov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Liya Muslinkina
- Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, Kazan, Russian Federation
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne, IL 60439, USA
| | - Vladimir Z. Pletnev
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
42
|
Nemet I, Ropelewski P, Imanishi Y. Applications of phototransformable fluorescent proteins for tracking the dynamics of cellular components. Photochem Photobiol Sci 2016; 14:1787-806. [PMID: 26345171 DOI: 10.1039/c5pp00174a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the past few decades, fluorescent proteins have revolutionized the field of cell biology. Phototransformable fluorescent proteins are capable of changing their excitation and emission spectra after being exposed to specific wavelength(s) of light. The majority of phototransformable fluorescent proteins have originated from marine organisms. Genetic engineering of these proteins has made available many choices for different colors, modes of conversion, and other biophysical properties. Their phototransformative property has allowed the highlighting and tracking of subpopulations of cells, organelles, and proteins in living systems. Furthermore, phototransformable fluorescent proteins have offered new methods for superresolution fluorescence microscopy and optogenetics manipulation of proteins. One of the major advantages of phototransformable fluorescent proteins is their applicability for visualizing newly synthesized proteins that are en route to their final destinations. In this paper, we will discuss the biological applications of phototransformable fluorescent proteins with special emphasis on the application of tracking membrane proteins in vertebrate photoreceptor cells.
Collapse
Affiliation(s)
- Ina Nemet
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
43
|
Kratochvil HT, Ha DG, Zanni MT. Counting tagged molecules one by one: Quantitative photoactivation and bleaching of photoactivatable fluorophores. J Chem Phys 2016; 143:104201. [PMID: 26374025 DOI: 10.1063/1.4929991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Determining the number of molecules in a given assembly, such as the number of proteins in a toxic aggregate, is often critical to understanding chemistry and function. Herein, we report a variation of a limitless method for counting photoactivatable fluorescent dyes in which single dye molecules are photoswitched to a fluorescent state, counted, and then irreversibly photobleached. We use this method to count the number of CAGE 552 covalently bound to the surface of 500 nm polystyrene beads. Activation of CAGE 552 was achieved with a 405 nm laser pulse. Once activated, the dye was excited with 532 nm light, and the fluorescence emission was collected with a CCD camera. The results from the fluorescence experiments were then compared to bulk fluorescence measurements to assess the error in counting. There are other ways of counting molecules, such as photobleaching and statistical analysis of reversible switchable chromophores. The method reported here provides a lower bound to the number of chromophores, with no upper limit to the number of molecules that can be quantified.
Collapse
Affiliation(s)
- Huong T Kratochvil
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Dong G Ha
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
44
|
Harris KP, Zhang YV, Piccioli ZD, Perrimon N, Littleton JT. The postsynaptic t-SNARE Syntaxin 4 controls traffic of Neuroligin 1 and Synaptotagmin 4 to regulate retrograde signaling. eLife 2016; 5. [PMID: 27223326 PMCID: PMC4880446 DOI: 10.7554/elife.13881] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/25/2016] [Indexed: 12/14/2022] Open
Abstract
Postsynaptic cells can induce synaptic plasticity through the release of activity-dependent retrograde signals. We previously described a Ca(2+)-dependent retrograde signaling pathway mediated by postsynaptic Synaptotagmin 4 (Syt4). To identify proteins involved in postsynaptic exocytosis, we conducted a screen for candidates that disrupted trafficking of a pHluorin-tagged Syt4 at Drosophila neuromuscular junctions (NMJs). Here we characterize one candidate, the postsynaptic t-SNARE Syntaxin 4 (Syx4). Analysis of Syx4 mutants reveals that Syx4 mediates retrograde signaling, modulating the membrane levels of Syt4 and the transsynaptic adhesion protein Neuroligin 1 (Nlg1). Syx4-dependent trafficking regulates synaptic development, including controlling synaptic bouton number and the ability to bud new varicosities in response to acute neuronal stimulation. Genetic interaction experiments demonstrate Syx4, Syt4, and Nlg1 regulate synaptic growth and plasticity through both shared and parallel signaling pathways. Our findings suggest a conserved postsynaptic SNARE machinery controls multiple aspects of retrograde signaling and cargo trafficking within the postsynaptic compartment.
Collapse
Affiliation(s)
- Kathryn P Harris
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Yao V Zhang
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Zachary D Piccioli
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, United States.,Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
45
|
Franek M, Suchánková J, Sehnalová P, Krejčí J, Legartová S, Kozubek S, Večeřa J, Sorokin DV, Bártová E. Advanced Image Acquisition and Analytical Techniques for Studies of Living Cells and Tissue Sections. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:326-341. [PMID: 26903193 DOI: 10.1017/s1431927616000052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Studies on fixed samples or genome-wide analyses of nuclear processes are useful for generating snapshots of a cell population at a particular time point. However, these experimental approaches do not provide information at the single-cell level. Genome-wide studies cannot assess variability between individual cells that are cultured in vitro or originate from different pathological stages. Immunohistochemistry and immunofluorescence are fundamental experimental approaches in clinical laboratories and are also widely used in basic research. However, the fixation procedure may generate artifacts and prevents monitoring of the dynamics of nuclear processes. Therefore, live-cell imaging is critical for studying the kinetics of basic nuclear events, such as DNA replication, transcription, splicing, and DNA repair. This review is focused on the advanced microscopy analyses of the cells, with a particular focus on live cells. We note some methodological innovations and new options for microscope systems that can also be used to study tissue sections. Cornerstone methods for the biophysical research of living cells, such as fluorescence recovery after photobleaching and fluorescence resonance energy transfer, are also discussed, as are studies on the effects of radiation at the individual cellular level.
Collapse
Affiliation(s)
- Michal Franek
- Institute of Biophysics,Academy of Sciences of the Czech Republic,v.v.i.,Královopolská 135,612 65 Brno,Czech Republic
| | - Jana Suchánková
- Institute of Biophysics,Academy of Sciences of the Czech Republic,v.v.i.,Královopolská 135,612 65 Brno,Czech Republic
| | - Petra Sehnalová
- Institute of Biophysics,Academy of Sciences of the Czech Republic,v.v.i.,Královopolská 135,612 65 Brno,Czech Republic
| | - Jana Krejčí
- Institute of Biophysics,Academy of Sciences of the Czech Republic,v.v.i.,Královopolská 135,612 65 Brno,Czech Republic
| | - Soňa Legartová
- Institute of Biophysics,Academy of Sciences of the Czech Republic,v.v.i.,Královopolská 135,612 65 Brno,Czech Republic
| | - Stanislav Kozubek
- Institute of Biophysics,Academy of Sciences of the Czech Republic,v.v.i.,Královopolská 135,612 65 Brno,Czech Republic
| | | | | | - Eva Bártová
- Institute of Biophysics,Academy of Sciences of the Czech Republic,v.v.i.,Královopolská 135,612 65 Brno,Czech Republic
| |
Collapse
|
46
|
GRIFFITHS N, JAIPARGAS EA, WOZNY M, BARTON K, MATHUR N, DELFOSSE K, MATHUR J. Photo-convertible fluorescent proteins as tools for fresh insights on subcellular interactions in plants. J Microsc 2016; 263:148-57. [DOI: 10.1111/jmi.12383] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 12/22/2015] [Indexed: 12/25/2022]
Affiliation(s)
- N. GRIFFITHS
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology; University of Guelph; Guelph ON Canada
| | - E.-A. JAIPARGAS
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology; University of Guelph; Guelph ON Canada
| | - M.R. WOZNY
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology; University of Guelph; Guelph ON Canada
| | - K.A. BARTON
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology; University of Guelph; Guelph ON Canada
| | - N. MATHUR
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology; University of Guelph; Guelph ON Canada
| | - K. DELFOSSE
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology; University of Guelph; Guelph ON Canada
| | - J. MATHUR
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology; University of Guelph; Guelph ON Canada
| |
Collapse
|
47
|
Berardozzi R, Adam V, Martins A, Bourgeois D. Arginine 66 Controls Dark-State Formation in Green-to-Red Photoconvertible Fluorescent Proteins. J Am Chem Soc 2016; 138:558-65. [PMID: 26675944 DOI: 10.1021/jacs.5b09923] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photoactivated localization microscopy (PALM) is a powerful technique to investigate cellular nanostructures quantitatively and dynamically. However, the use of PALM for molecular counting or single-particle tracking remains limited by the propensity of photoconvertible fluorescent protein markers (PCFPs) to repeatedly enter dark states. By designing the single mutants mEos2-A69T and Dendra2-T69A, we completely swapped the blinking behaviors of mEos2 and Dendra2, two popular PCFPs. We combined X-ray crystallography and single-molecule microscopy to show that blinking in mEos2 and Dendra2 is largely controlled by the orientation of arginine 66, a highly conserved residue in Anthozoan PCFPs. The Arg66 side-chain conformation affects the bleaching and the on-to-off transition quantum yields, as well as the fraction of molecules entering long-lived dark states, resulting in widely different apparent blinking behaviors that largely modulate the efficiency of current blinking correction procedures. The present work provides mechanistic insight into the complex photophysics of Anthozoan PCFPs and will facilitate future engineering of bright and low-blinking variants suitable for PALM.
Collapse
Affiliation(s)
- Romain Berardozzi
- Institut de Biologie Structurale, Université Grenoble Alpes , CEA, CNRS, 38044 Grenoble, France
| | - Virgile Adam
- Institut de Biologie Structurale, Université Grenoble Alpes , CEA, CNRS, 38044 Grenoble, France
| | - Alexandre Martins
- Institut de Biologie Structurale, Université Grenoble Alpes , CEA, CNRS, 38044 Grenoble, France
| | - Dominique Bourgeois
- Institut de Biologie Structurale, Université Grenoble Alpes , CEA, CNRS, 38044 Grenoble, France
| |
Collapse
|
48
|
Fricke F, Beaudouin J, Eils R, Heilemann M. One, two or three? Probing the stoichiometry of membrane proteins by single-molecule localization microscopy. Sci Rep 2015; 5:14072. [PMID: 26358640 PMCID: PMC4642553 DOI: 10.1038/srep14072] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/18/2015] [Indexed: 12/18/2022] Open
Abstract
Probing the oligomeric state of abundant molecules, such as membrane proteins in intact cells, is essential, but has not been straightforward. We address this challenge with a simple counting strategy that is capable of reporting the oligomeric state of dense, membrane-bound protein complexes. It is based on single-molecule localization microscopy to super-resolve protein structures in intact cells and basic quantitative evaluation. We validate our method with membrane-bound monomeric CD86 and dimeric cytotoxic T-lymphocyte-associated protein as model proteins and confirm their oligomeric states. We further detect oligomerization of CD80 and vesicular stomatitis virus glycoprotein and propose coexistence of monomers and dimers for CD80 and trimeric assembly of the viral protein at the cell membrane. This approach should prove valuable for researchers striving for reliable molecular counting in cells.
Collapse
Affiliation(s)
- Franziska Fricke
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Joel Beaudouin
- Department for Bioinformatics and Functional Genomics, Bioquant and Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, and Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Roland Eils
- Department for Bioinformatics and Functional Genomics, Bioquant and Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, and Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| |
Collapse
|
49
|
In vivo single-cell labeling by confined primed conversion. Nat Methods 2015; 12:645-8. [PMID: 25984699 DOI: 10.1038/nmeth.3405] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 04/11/2015] [Indexed: 11/09/2022]
Abstract
Spatially confined green-to-red photoconversion of fluorescent proteins with high-power, pulsed laser illumination is negligible, thus precluding optical selection of single cells in vivo. We report primed conversion, in which low-power, dual-wavelength, continuous-wave illumination results in pronounced photoconversion. With a straightforward addition to a conventional confocal microscope, we show confined primed conversion in living zebrafish and reveal the complex anatomy of individual neurons packed between neighboring cells.
Collapse
|
50
|
Don Paul C, Traore DAK, Olsen S, Devenish RJ, Close DW, Bell TDM, Bradbury A, Wilce MCJ, Prescott M. X-Ray Crystal Structure and Properties of Phanta, a Weakly Fluorescent Photochromic GFP-Like Protein. PLoS One 2015; 10:e0123338. [PMID: 25923520 PMCID: PMC4414407 DOI: 10.1371/journal.pone.0123338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/02/2015] [Indexed: 01/07/2023] Open
Abstract
Phanta is a reversibly photoswitching chromoprotein (ΦF, 0.003), useful for pcFRET, that was isolated from a mutagenesis screen of the bright green fluorescent eCGP123 (ΦF, 0.8). We have investigated the contribution of substitutions at positions His193, Thr69 and Gln62, individually and in combination, to the optical properties of Phanta. Single amino acid substitutions at position 193 resulted in proteins with very low ΦF, indicating the importance of this position in controlling the fluorescence efficiency of the variant proteins. The substitution Thr69Val in Phanta was important for supressing the formation of a protonated chromophore species observed in some His193 substituted variants, whereas the substitution Gln62Met did not significantly contribute to the useful optical properties of Phanta. X-ray crystal structures for Phanta (2.3 Å), eCGP123T69V (2.0 Å) and eCGP123H193Q (2.2 Å) in their non-photoswitched state were determined, revealing the presence of a cis-coplanar chromophore. We conclude that changes in the hydrogen-bonding network supporting the cis-chromophore, and its contacts with the surrounding protein matrix, are responsible for the low fluorescence emission of eCGP123 variants containing a His193 substitution.
Collapse
Affiliation(s)
- Craig Don Paul
- Department of Neuro- and Sensory Physiology, University Medicine, Göttingen, 37073, Göttingen, Germany
| | - Daouda A. K. Traore
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton campus, Victoria, 3800, Australia
| | - Seth Olsen
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Rodney J. Devenish
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton campus, Victoria, 3800, Australia
| | - Devin W. Close
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States of America
| | - Toby D. M. Bell
- School of Chemistry, Monash University, Clayton campus, Victoria, 3800, Australia
| | - Andrew Bradbury
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States of America
| | - Matthew C. J. Wilce
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton campus, Victoria, 3800, Australia
- * E-mail: (MP); (MCJW)
| | - Mark Prescott
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton campus, Victoria, 3800, Australia
- * E-mail: (MP); (MCJW)
| |
Collapse
|