1
|
Fluorescence imaging for visualizing the bioactive molecules of lipid peroxidation within biological systems. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
2
|
Tarallo A, Damiano C, Strollo S, Minopoli N, Indrieri A, Polishchuk E, Zappa F, Nusco E, Fecarotta S, Porto C, Coletta M, Iacono R, Moracci M, Polishchuk R, Medina DL, Imbimbo P, Monti DM, De Matteis MA, Parenti G. Correction of oxidative stress enhances enzyme replacement therapy in Pompe disease. EMBO Mol Med 2021; 13:e14434. [PMID: 34606154 PMCID: PMC8573602 DOI: 10.15252/emmm.202114434] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023] Open
Abstract
Pompe disease is a metabolic myopathy due to acid alpha-glucosidase deficiency. In addition to glycogen storage, secondary dysregulation of cellular functions, such as autophagy and oxidative stress, contributes to the disease pathophysiology. We have tested whether oxidative stress impacts on enzyme replacement therapy with recombinant human alpha-glucosidase (rhGAA), currently the standard of care for Pompe disease patients, and whether correction of oxidative stress may be beneficial for rhGAA therapy. We found elevated oxidative stress levels in tissues from the Pompe disease murine model and in patients' cells. In cells, stress levels inversely correlated with the ability of rhGAA to correct the enzymatic deficiency. Antioxidants (N-acetylcysteine, idebenone, resveratrol, edaravone) improved alpha-glucosidase activity in rhGAA-treated cells, enhanced enzyme processing, and improved mannose-6-phosphate receptor localization. When co-administered with rhGAA, antioxidants improved alpha-glucosidase activity in tissues from the Pompe disease mouse model. These results indicate that oxidative stress impacts on the efficacy of enzyme replacement therapy in Pompe disease and that manipulation of secondary abnormalities may represent a strategy to improve the efficacy of therapies for this disorder.
Collapse
Affiliation(s)
- Antonietta Tarallo
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Translational Medical SciencesFederico II UniversityNaplesItaly
| | - Carla Damiano
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Translational Medical SciencesFederico II UniversityNaplesItaly
| | - Sandra Strollo
- Telethon Institute of Genetics and MedicinePozzuoliItaly
| | - Nadia Minopoli
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Translational Medical SciencesFederico II UniversityNaplesItaly
| | - Alessia Indrieri
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Institute for Genetic and Biomedical Research (IRGB)National Research Council (CNR)MilanItaly
| | | | - Francesca Zappa
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Present address:
Department of Molecular, Cellular, and Developmental BiologyUniversity of CaliforniaSanta BarbaraCAUSA
| | - Edoardo Nusco
- Telethon Institute of Genetics and MedicinePozzuoliItaly
| | - Simona Fecarotta
- Department of Translational Medical SciencesFederico II UniversityNaplesItaly
| | - Caterina Porto
- Department of Translational Medical SciencesFederico II UniversityNaplesItaly
| | - Marcella Coletta
- Department of Translational Medical SciencesFederico II UniversityNaplesItaly
- Present address:
IInd Division of NeurologyMultiple Sclerosis CenterUniversity of Campania "Luigi Vanvitelli"NaplesItaly
| | - Roberta Iacono
- Department of BiologyUniversity of Naples "Federico II", Complesso Universitario di Monte S. AngeloNaplesItaly
- Institute of Biosciences and BioResources ‐ National Research Council of ItalyNaplesItaly
| | - Marco Moracci
- Department of BiologyUniversity of Naples "Federico II", Complesso Universitario di Monte S. AngeloNaplesItaly
- Institute of Biosciences and BioResources ‐ National Research Council of ItalyNaplesItaly
| | | | - Diego Luis Medina
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Translational Medical SciencesFederico II UniversityNaplesItaly
| | - Paola Imbimbo
- Department of Chemical SciencesFederico II UniversityNaplesItaly
| | | | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Molecular Medicine and Medical BiotechnologiesFederico II UniversityNaplesItaly
| | - Giancarlo Parenti
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Translational Medical SciencesFederico II UniversityNaplesItaly
| |
Collapse
|
3
|
Matsuoka Y, Yamada KI. Detection and structural analysis of lipid-derived radicals in vitro and in vivo. Free Radic Res 2021; 55:441-449. [PMID: 33504242 DOI: 10.1080/10715762.2021.1881500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Lipids can be oxidized by reactive oxygen species, resulting in lipid peroxidation and the formation of reactive metabolites such as lipid-derived electrophiles. These products have been reported to induce inflammation, angiogenesis, and ferroptosis. Lipid peroxidation can produce many different products, each of which performs a different function, and which can be challenging to detect in vivo. The initial products of lipid oxidation are lipid-derived radicals, which can cause extensive chain reactions leading to lipid peroxidation. Hence, the ability to detect lipid radicals may provide information about this important class of molecules and the mechanism by which they cause cellular and tissue damage in a wide range of oxidative conditions. In this review, we report recent scientific advances in the detection of lipid-derived radicals in vitro and in cultured cells. We also introduce the possibility of visualization and structural analysis of lipid-derived radicals generated not only in in cells but also in animal tissue samples from oxidative disease models, using fluorescence-based lipid radicals' detection probes. We anticipate that the various innovative techniques summarized in this paper will be applied and further developed to clarify the role of lipid peroxidation in the pathogenesis of oxidative stress-associated diseases.
Collapse
Affiliation(s)
- Yuta Matsuoka
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Ken-Ichi Yamada
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Foret MK, Lincoln R, Do Carmo S, Cuello AC, Cosa G. Connecting the "Dots": From Free Radical Lipid Autoxidation to Cell Pathology and Disease. Chem Rev 2020; 120:12757-12787. [PMID: 33211489 DOI: 10.1021/acs.chemrev.0c00761] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Our understanding of lipid peroxidation in biology and medicine is rapidly evolving, as it is increasingly implicated in various diseases but also recognized as a key part of normal cell function, signaling, and death (ferroptosis). Not surprisingly, the root and consequences of lipid peroxidation have garnered increasing attention from multiple disciplines in recent years. Here we "connect the dots" between the fundamental chemistry underpinning the cascade reactions of lipid peroxidation (enzymatic or free radical), the reactive nature of the products formed (lipid-derived electrophiles), and the biological targets and mechanisms associated with these products that culminate in cellular responses. We additionally bring light to the use of highly sensitive, fluorescence-based methodologies. Stemming from the foundational concepts in chemistry and biology, these methodologies enable visualizing and quantifying each reaction in the cascade in a cellular and ultimately tissue context, toward deciphering the connections between the chemistry and physiology of lipid peroxidation. The review offers a platform in which the chemistry and biomedical research communities can access a comprehensive summary of fundamental concepts regarding lipid peroxidation, experimental tools for the study of such processes, as well as the recent discoveries by leading investigators with an emphasis on significant open questions.
Collapse
Affiliation(s)
- Morgan K Foret
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Richard Lincoln
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Gonzalo Cosa
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| |
Collapse
|
5
|
Martínez SR, Durantini AM, Becerra MC, Cosa G. Real-Time Single-Cell Imaging Reveals Accelerating Lipid Peroxyl Radical Formation in Escherichia coli Triggered by a Fluoroquinolone Antibiotic. ACS Infect Dis 2020; 6:2468-2477. [PMID: 32786297 DOI: 10.1021/acsinfecdis.0c00317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The formation of reactive oxygen species (ROS) induced by bactericidal antibiotics has been associated with a common, nonspecific mechanism of cellular death. Herein, we report real-time single-cell fluorescence studies on Escherichia coli stained with a fluorogenic probe for lipid peroxyl radicals showing the generation of this form of ROS when exposed to the minimum inhibitory concentration (MIC) and 10× MIC of the fluoroquinolone antibiotic ciprofloxacin (3 and 30 μM, respectively). Single-cell intensity-time trajectories show an induction period followed by an accelerating phase for cells treated with antibiotic, where initial and maximum intensity achieved following 3.5 h of incubation with antibiotic showed dose-dependent average values. A large fraction of bacteria remains viable after the studies, indicating ROS formation is occurring a priori of cell death. Punctate structures are observed, consistent with membrane blebbing. The addition of a membrane embedding lipid peroxyl radical scavenger, an α-tocopherol analogue, to the media increased the MIC of ciprofloxacin. Lipid peroxyl radical formation precedes E. coli cell death and may be invoked in a cascade event including membrane disruption and consequent cell wall permeabilization. Altogether, our work illustrates that lipid peroxidation is caused by ciprofloxacin in E. coli and suppressed by α-tocopherol analogues. Lipid peroxidation may be invoked in a cascade event including membrane disruption and consequent cell wall permeabilization. Our work provides a methodology to assess antibiotic-induced membrane peroxidation at the single-cell level; this methodology provides opportunities to explore the scope and nature of lipid peroxidation in antibiotic-induced cell lethality.
Collapse
Affiliation(s)
- Sol R. Martínez
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- IMBIV-CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba, Haya de la Torre S/N, Córdoba X5000, Argentina
| | - Andrés M. Durantini
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - María C. Becerra
- IMBIV-CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba, Haya de la Torre S/N, Córdoba X5000, Argentina
| | - Gonzalo Cosa
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
6
|
Greene LE, Lincoln R, Cosa G. Tuning Photoinduced Electron Transfer Efficiency of Fluorogenic BODIPY-α
-Tocopherol Analogues. Photochem Photobiol 2018; 95:192-201. [DOI: 10.1111/php.13062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/14/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Lana E. Greene
- Department of Chemistry; Quebec Centre for Advanced Materials (QCAM/CQMF); McGill University; Montreal QC Canada
| | - Richard Lincoln
- Department of Chemistry; Quebec Centre for Advanced Materials (QCAM/CQMF); McGill University; Montreal QC Canada
| | - Gonzalo Cosa
- Department of Chemistry; Quebec Centre for Advanced Materials (QCAM/CQMF); McGill University; Montreal QC Canada
| |
Collapse
|
7
|
Greene LE, Lincoln R, Cosa G. Spatio-temporal monitoring of lipid peroxyl radicals in live cell studies combining fluorogenic antioxidants and fluorescence microscopy methods. Free Radic Biol Med 2018; 128:124-136. [PMID: 29649566 DOI: 10.1016/j.freeradbiomed.2018.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 12/28/2022]
Abstract
Lipid peroxidation of polyunsaturated fatty acids in cells may occur via their catalytic autoxidation through peroxyl radicals under oxidative stress conditions. Lipid peroxidation is related to a number of pathologies, and may be invoked in new forms of regulated cell death, yet it may also have beneficial roles in cell signaling cascades. Antioxidants are a natural line of defense against lipid peroxidation, and may accordingly impact the biological outcome associated with the redox chemistry of lipid peroxidation. Critical to unraveling the physiological and pathological role of lipid peroxidation is the development of novel probes with the partition, chemical sensitivity and more importantly, molecular specificity, enabling the spatial and temporal imaging of peroxyl radicals in the lipid membranes of live cells, reporting on the redox status of the cell membrane. This review describes our recent progress to visualize lipid peroxidation in model membrane systems and in live cell studies. Our work portrays the mechanistic insight leading to the development of a highly sensitive probe to monitor lipid peroxyl radicals (LOO•). It also describes technical aspects including reagents and fluorescence microscopy methodologies to consider in order to achieve the much sought after monitoring of rates of lipid peroxyl radical production in live cell studies, be it under oxidative stress but also under cell homeostasis. This review seeks to bring attention to the study of lipid redox reactions and to lay the groundwork for the adoption of fluorogenic antioxidant probeshancement and maximum intensity recorded in turn provide a benchmark to estimate, when compared to the control BODIPY dye lacking the intramolecular PeT based switch, the overall exte and related fluorescence microscopy methods toward gaining rich spatiotemporal information on lipid peroxidation in live cells.
Collapse
Affiliation(s)
- Lana E Greene
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM/CQMF), McGill University, 801 Sherbrooke Street West, Montreal, QC, Canada H3A 0B8
| | - Richard Lincoln
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM/CQMF), McGill University, 801 Sherbrooke Street West, Montreal, QC, Canada H3A 0B8
| | - Gonzalo Cosa
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM/CQMF), McGill University, 801 Sherbrooke Street West, Montreal, QC, Canada H3A 0B8.
| |
Collapse
|
8
|
Liras M, Simoncelli S, Rivas-Aravena A, García O, Scaiano JC, Alarcon EI, Aspée A. Nitroxide amide-BODIPY probe behavior in fibroblasts analyzed by advanced fluorescence microscopy. Org Biomol Chem 2018; 14:4023-6. [PMID: 27065020 DOI: 10.1039/c6ob00533k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A novel synthesized nitroxide amide-BODIPY prefluorescent probe was used to study cellular redox balance that modulates nitroxide/hydroxylamine ratio in cultured human fibroblasts. FLIM quantitatively differentiated between nitroxide states of the cytoplasm-localized probe imaged by TIRF, monitoring nitroxide depletion by hydrogen peroxide; eluding incorrect interpretation if only fluorescence intensity is considered.
Collapse
Affiliation(s)
- M Liras
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Juan de la Cierva 3, 28006, Madrid, España and Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N6N5, Canada
| | - S Simoncelli
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N6N5, Canada and INQUIMAE and Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
| | - A Rivas-Aravena
- Laboratorio de Radiobiología Molecular y Celular, Departamento de Aplicaciones Nucleares, Comisión Chilena de Energía Nuclear, Santiago, Chile
| | - O García
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Juan de la Cierva 3, 28006, Madrid, España
| | - J C Scaiano
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N6N5, Canada
| | - E I Alarcon
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N6N5, Canada and Bio-nanomaterials Chemistry and Engineering Laboratory, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, Ontario K1Y 4W7, Canada.
| | - A Aspée
- Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40 Correo 33, Santiago, Chile.
| |
Collapse
|
9
|
|
10
|
Greene LE, Lincoln R, Cosa G. Rate of Lipid Peroxyl Radical Production during Cellular Homeostasis Unraveled via Fluorescence Imaging. J Am Chem Soc 2017; 139:15801-15811. [DOI: 10.1021/jacs.7b08036] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Lana E. Greene
- Department of Chemistry and Centre
for Self Assembled Chemical Structures (CSACS/CRMAA), McGill University, 801
Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Richard Lincoln
- Department of Chemistry and Centre
for Self Assembled Chemical Structures (CSACS/CRMAA), McGill University, 801
Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Gonzalo Cosa
- Department of Chemistry and Centre
for Self Assembled Chemical Structures (CSACS/CRMAA), McGill University, 801
Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
11
|
Wang XL, Sun R, Zhu WJ, Sha XL, Ge JF. Reversible Absorption and Emission Responses of Nile Blue and Azure A Derivatives in Extreme Acidic and Basic Conditions. J Fluoresc 2017; 27:819-827. [PMID: 28168517 DOI: 10.1007/s10895-016-2017-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/29/2016] [Indexed: 11/29/2022]
Abstract
Oxazinium derivatives have recently played an important role in bioanalysis attributing to the distinguished properties, thus a detailed study of the structure-property relationship is especially significant. Herein, pH-sensitive optical properties of Nile Blue (1a), N-monoalkyl-Nile Blue (1b) and Azure A (1c) have been carried out in extreme acid and base conditions. Dyes 1a and 1c showed colorimetric changes by the protonation of nitrogen atom in strong acidic condition (pH < 2.0), and dyes 1a - c exhibited colorimetric changes by equilibrium between amino and imide groups in very strong basic case (pH > 7.6). Besides, their fluorescent properties were closed to ON - OFF and OFF - ON emissions at 640-820 nm under strong acidic and basic conditions. Moreover, the absorption and emission properties were reversible, and there were no remarkable optical intensity changes of dyes 1a - c under subacidic and neutral solutions (pH = 3.0-7.0). The (TD) DFT calculations were used to optimize the most stable structures of their corresponding protonated and deprotonated forms, and their absorption and emission properties were also explained. Their fluorescent properties nearly ON-OFF and OFF - ON in strong acidic and basic conditions at near-infrared region will give the possible application in pH detection for extreme conditions. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Xiu-Li Wang
- College of Chemistry, Chemical Engineering and Material Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou, 215123, People's Republic of China
| | - Ru Sun
- College of Chemistry, Chemical Engineering and Material Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Wei-Jin Zhu
- College of Chemistry, Chemical Engineering and Material Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou, 215123, People's Republic of China
| | - Xin-Long Sha
- College of Chemistry, Chemical Engineering and Material Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou, 215123, People's Republic of China
| | - Jian-Feng Ge
- College of Chemistry, Chemical Engineering and Material Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
12
|
Belzile MN, Godin R, Durantini AM, Cosa G. Monitoring Chemical and Biological Electron Transfer Reactions with a Fluorogenic Vitamin K Analogue Probe. J Am Chem Soc 2016; 138:16388-16397. [PMID: 27998090 DOI: 10.1021/jacs.6b09735] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mei-Ni Belzile
- Department of Chemistry and
Center for Self-Assembled Chemical Structures, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Robert Godin
- Department of Chemistry and
Center for Self-Assembled Chemical Structures, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Andrés M. Durantini
- Department of Chemistry and
Center for Self-Assembled Chemical Structures, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Gonzalo Cosa
- Department of Chemistry and
Center for Self-Assembled Chemical Structures, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| |
Collapse
|
13
|
Kowada T, Maeda H, Kikuchi K. BODIPY-based probes for the fluorescence imaging of biomolecules in living cells. Chem Soc Rev 2016; 44:4953-72. [PMID: 25801415 DOI: 10.1039/c5cs00030k] [Citation(s) in RCA: 892] [Impact Index Per Article: 99.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fluorescence imaging techniques have been widely used to visualize biological molecules and phenomena. In particular, several studies on the development of small-molecule fluorescent probes have been carried out, because their fluorescence properties can be easily tuned by synthetic chemical modification. For this reason, various fluorescent probes have been developed for targeting biological components, such as proteins, peptides, amino acids, and ions, to the interior and exterior of cells. In this review, we cover advances in the development of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-based fluorescent probes for biological studies over the past decade.
Collapse
Affiliation(s)
- Toshiyuki Kowada
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan.
| | | | | |
Collapse
|
14
|
Durantini AM, Greene LE, Lincoln R, Martínez SR, Cosa G. Reactive Oxygen Species Mediated Activation of a Dormant Singlet Oxygen Photosensitizer: From Autocatalytic Singlet Oxygen Amplification to Chemicontrolled Photodynamic Therapy. J Am Chem Soc 2016; 138:1215-25. [DOI: 10.1021/jacs.5b10288] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Andrés M. Durantini
- Department
of Chemistry and Center for Self-Assembled Chemical Structures (CSACS-CRMAA), McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Lana E. Greene
- Department
of Chemistry and Center for Self-Assembled Chemical Structures (CSACS-CRMAA), McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Richard Lincoln
- Department
of Chemistry and Center for Self-Assembled Chemical Structures (CSACS-CRMAA), McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Sol R. Martínez
- Department
of Chemistry and Center for Self-Assembled Chemical Structures (CSACS-CRMAA), McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Instituto
Multidisciplinario de Biología Vegetal (IMBIV), CONICET, and
Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Gonzalo Cosa
- Department
of Chemistry and Center for Self-Assembled Chemical Structures (CSACS-CRMAA), McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
15
|
Bacellar IOL, Tsubone TM, Pavani C, Baptista MS. Photodynamic Efficiency: From Molecular Photochemistry to Cell Death. Int J Mol Sci 2015; 16:20523-59. [PMID: 26334268 PMCID: PMC4613217 DOI: 10.3390/ijms160920523] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/18/2015] [Accepted: 08/24/2015] [Indexed: 12/11/2022] Open
Abstract
Photodynamic therapy (PDT) is a clinical modality used to treat cancer and infectious diseases. The main agent is the photosensitizer (PS), which is excited by light and converted to a triplet excited state. This latter species leads to the formation of singlet oxygen and radicals that oxidize biomolecules. The main motivation for this review is to suggest alternatives for achieving high-efficiency PDT protocols, by taking advantage of knowledge on the chemical and biological processes taking place during and after photosensitization. We defend that in order to obtain specific mechanisms of cell death and maximize PDT efficiency, PSes should oxidize specific molecular targets. We consider the role of subcellular localization, how PS photochemistry and photophysics can change according to its nanoenvironment, and how can all these trigger specific cell death mechanisms. We propose that in order to develop PSes that will cause a breakthrough enhancement in the efficiency of PDT, researchers should first consider tissue and intracellular localization, instead of trying to maximize singlet oxygen quantum yields in in vitro tests. In addition to this, we also indicate many open questions and challenges remaining in this field, hoping to encourage future research.
Collapse
Affiliation(s)
- Isabel O L Bacellar
- Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil.
| | - Tayana M Tsubone
- Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil.
| | - Christiane Pavani
- Programa de Pós Graduação em Biofotônica Aplicada às Ciências da Saúde, Universidade Nove de Julho, São Paulo 01504-001, Brazil.
| | - Mauricio S Baptista
- Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil.
| |
Collapse
|
16
|
Macia N, Heyne B. Using photochemistry to understand and control the production of reactive oxygen species in biological environments. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2015.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Li B, Pratt DA. Methods for determining the efficacy of radical-trapping antioxidants. Free Radic Biol Med 2015; 82:187-202. [PMID: 25660993 DOI: 10.1016/j.freeradbiomed.2015.01.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 01/10/2023]
Abstract
Hydrocarbon autoxidation is the free radical chain reaction primarily responsible for the oxidative degradation of organic materials, including those that make up cells, tissues, and organs. The identification of compounds that slow this process (antioxidants) and the quantitation of their efficacies have long been goals of academic and industrial researchers. Antioxidants are generally divided into two types: preventive and radical-trapping (also commonly referred to as chain-breaking). Preventive antioxidants slow the rate of initiation of autoxidation, whereas radical-trapping antioxidants slow the rate of propagation by reacting with chain-propagating peroxyl radicals. The purpose of this review is to provide a comprehensive overview of different approaches to measure the kinetics of the reactions of radical-trapping antioxidants with peroxyl radicals, and their use to study the inhibition of hydrocarbon (lipid) autoxidation in homogeneous solution, as well as biphasic media (lipid bilayers) and cell culture. Direct and indirect approaches are presented and advantages and disadvantages of each are discussed in order to facilitate method selection for investigators seeking to address particular questions in this immensely popular field.
Collapse
Affiliation(s)
- Bo Li
- Department of Chemistry, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Derek A Pratt
- Department of Chemistry, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|
18
|
Godin R, Liu HW, Smith L, Cosa G. Dye lipophilicity and retention in lipid membranes: implications for single-molecule spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:11138-11146. [PMID: 25158129 DOI: 10.1021/la5021669] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Fluorescence studies of individual lipid vesicles rely on the proper positioning of probes in the lipid milieu. This is true for both positional tags and chemoselective fluorogenic probes that undergo chemical modification following reaction with an analyte of interest within the lipid environment. The present report describes lipophilicity and localization estimations for a series of BODIPY dyes bearing substituents of varying hydrophobicity. We also studied fluorogenic trap-reporter probes that undergo fluorescence emission enhancement upon trapping of reactive oxygen species (ROS), including lipid peroxyl radicals. We show that caution has to be taken to extrapolate ensemble partition measurements of dyes to the single-molecule regime as a result of the dramatically different lipid concentration prevailing in ensemble versus single-molecule experiments. We show that the mole fraction of dyes that remains embedded in liposomes during a typical single-molecule experiment may be accurately determined from a ratiometric single-particle imaging analysis. We further demonstrate that fluorescence correlation spectroscopy (FCS) provides a very rapid and reliable estimate of the lipophilic nature of a given dye under highly dilute single-molecule-like conditions. Our combined single-particle spectroscopy and FCS experiments suggest that the minimal mole fraction of membrane-associated dyes (x(m)) as determined from FCS experiments is about 0.5 for adequate dye retention during single-molecule imaging in lipid membranes. Our work further highlights the dramatic effect that chemical modifications can have on chemoselective fluorogenic probe localization.
Collapse
Affiliation(s)
- Robert Godin
- Department of Chemistry and Centre for Self-Assembled Chemical Structures (CSACS/CRMAA), McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | | | | | | |
Collapse
|
19
|
Celastrol targets proteostasis and acts synergistically with a heat-shock protein 90 inhibitor to kill human glioblastoma cells. Cell Death Dis 2014; 5:e1216. [PMID: 24810052 PMCID: PMC4047902 DOI: 10.1038/cddis.2014.182] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/06/2014] [Accepted: 03/24/2014] [Indexed: 12/31/2022]
Abstract
Glioblastoma multiforme is a devastating disease of the central nervous system and, at present, no effective therapeutic interventions have been identified. Celastrol, a natural occurring triterpene, exhibits potent anti-tumor activity against gliomas in xenograft mouse models. In this study, we describe the cell death mechanism employed by celastrol and identify secondary targets for effective combination therapy against glioblastoma cell survival. In contrast to the previously proposed reactive oxygen species (ROS)-dependent mechanism, cell death in human glioblastoma cells is shown here to be mediated by alternate signal transduction pathways involving, but not fully dependent on, poly(ADP-ribose) polymerase-1 and caspase-3. Our studies indicate that celastrol promotes proteotoxic stress, supported by two feedback mechanisms: (i) impairment of protein quality control as revealed by accumulation of polyubiquitinated aggregates and the canonical autophagy substrate, p62, and (ii) the induction of heat-shock proteins, HSP72 and HSP90. The Michael adduct of celastrol and N-acetylcysteine, 6-N-acetylcysteinyldihydrocelastrol, had no effect on p62, nor on HSP72 expression, confirming a thiol-dependent mechanism. Restriction of protein folding stress with cycloheximide was protective, while combination with autophagy inhibitors did not sensitize cells to celastrol-mediated cytotoxicity. Collectively, these findings imply that celastrol targets proteostasis by disrupting sulfyhydryl homeostasis, independently of ROS, in human glioblastoma cells. This study further emphasizes that targeting proteotoxic stress responses by inhibiting HSP90 with 17-N-Allylamino-17-demethoxygeldanamycin sensitizes human glioblastoma to celastrol treatment, thereby serving as a novel synergism to overcome drug resistance.
Collapse
|
20
|
Godin R, Liu HW, Cosa G. Ambient condition oxidation in individual liposomes observed at the single molecule level. Chem Sci 2014. [DOI: 10.1039/c4sc00033a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A ratiometric method based on a fluorogenic α-tocopherol analogue reveals oxidation occurring under ambient conditions during liposome preparation.
Collapse
Affiliation(s)
- Robert Godin
- Department of Chemistry and Center for Self-Assembled Chemical Structures (CSACS/CRMAA)
- McGill University
- Montreal, Canada
| | - Hsiao-Wei Liu
- Department of Chemistry and Center for Self-Assembled Chemical Structures (CSACS/CRMAA)
- McGill University
- Montreal, Canada
| | - Gonzalo Cosa
- Department of Chemistry and Center for Self-Assembled Chemical Structures (CSACS/CRMAA)
- McGill University
- Montreal, Canada
| |
Collapse
|
21
|
Krumova K, Greene LE, Cosa G. Fluorogenic α-Tocopherol Analogue for Monitoring the Antioxidant Status within the Inner Mitochondrial Membrane of Live Cells. J Am Chem Soc 2013; 135:17135-43. [DOI: 10.1021/ja408227f] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Katerina Krumova
- Department
of Chemistry and
Center for Self-Assembled Chemical Structures (CSACS-CRMAA), McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Lana E. Greene
- Department
of Chemistry and
Center for Self-Assembled Chemical Structures (CSACS-CRMAA), McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Gonzalo Cosa
- Department
of Chemistry and
Center for Self-Assembled Chemical Structures (CSACS-CRMAA), McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
22
|
Qi H, Teesdale JJ, Pupillo RC, Rosenthal J, Bard AJ. Synthesis, electrochemistry, and electrogenerated chemiluminescence of two BODIPY-appended bipyridine homologues. J Am Chem Soc 2013; 135:13558-66. [PMID: 23980850 DOI: 10.1021/ja406731f] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Two new 2,2'-bipyridine (bpy) derivatives containing ancillary BODIPY chromophores attached at the 5- and 5'-positions (BB3) or 6- and 6'-positions (BB4) were prepared and characterized. In this work, the basic photophysics, electrochemistry, and electrogenerated chemiluminescence (ECL) of BB3 and BB4 are compared with those previously reported for a related bpy-BODIPY derivative (BB2) (J. Phys. Chem. C 2011, 115, 17993-18001). Cyclic voltammetry revealed that BB3 and BB4 display reversible 2e(-) oxidation and reduction waves, which consist of two closely spaced (50-70 mV) 1e(-) events. This redox behavior is consistent with the frontier molecular orbitals calculated for BB3 and BB4 and indicates that the 2,2'-bipyridine spacer of each bpy-BODIPY homologue does not facilitate efficient electronic communication between the tethered indacene units. In the presence of a coreactant such as tri-n-propylamine (TPA) or benzoyl peroxide (BPO), BB3 and BB4 exhibit strong ECL and produce spectra that are very similar to their corresponding photoluminescence profiles. The ECL signal obtained under annihilation conditions, however, is significantly different and is characterized by two distinct bands. One of these bands is centered at ∼570 nm and is attributed to emission via an S- or T-route. The second band occurs at longer wavelengths and is centered around ∼740 nm. The shape and concentration dependence of this long-wavelength ECL signal is not indicative of emission from an excimer or aggregate, but rather it suggests that a new emissive species is formed from the bpy-BODIPY luminophores during the annihilation process.
Collapse
Affiliation(s)
- Honglan Qi
- Center for Electrochemistry, Department of Chemistry and Biochemistry, The University of Texas , Austin, Texas 78712, United States
| | | | | | | | | |
Collapse
|
23
|
Krumova K, Friedland S, Cosa G. How lipid unsaturation, peroxyl radical partitioning, and chromanol lipophilic tail affect the antioxidant activity of α-tocopherol: direct visualization via high-throughput fluorescence studies conducted with fluorogenic α-tocopherol analogues. J Am Chem Soc 2012; 134:10102-13. [PMID: 22568598 DOI: 10.1021/ja301680m] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The preparation of two highly sensitive fluorogenic α-tocopherol (TOH) analogues which undergo >30-fold fluorescence intensity enhancement upon reaction with peroxyl radicals is reported. The probes consist of a chromanol moiety coupled to the meso position of a BODIPY fluorophore, where the use of a methylene linker (BODIPY-2,2,5,7,8-pentamethyl-6-hydroxy-chroman adduct, H(2)B-PMHC) vs an ester linker (meso-methanoyl BODIPY-6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid, H(2)B-TOH) enables tuning their reactivity toward H-atom abstraction by peroxyl radicals. The development of a high-throughput fluorescence assay for monitoring kinetics of peroxyl radical reactions in liposomes is subsequently described where the evolution of the fluorescence intensity over time provides a rapid, facile method to conduct competitive kinetic studies in the presence of TOH and its analogues. A quantitative treatment is formulated for the temporal evolution of the intensity in terms of relative rate constants of H-atom abstraction (k(inh)) from the various tocopherol analogues. Combined, the new probes, the fluorescence assay, and the data analysis provide a new method to obtain, in a rapid, parallel format, relative antioxidant activities in phospholipid membranes. The method is exemplified with four chromanol-based antioxidant compounds differing in their aliphatic tails (TOH, PMHC, H(2)B-PMHC, and H(2)B-TOH). Studies were conducted in six different liposome solutions prepared from poly- and mono-unsaturated and saturated (fluid vs gel phase) lipids in the presence of either hydrophilic or lipophilic peroxyl radicals. A number of key insights into the chemistry of the TOH antioxidants in lipid membranes are provided: (1) The relative antioxidant activities of chromanols in homogeneous solution, arising from their inherent chemical reactivity, readily translate to the microheterogeneous environment at the water/lipid interface; thus similar values for k(inh)(H(2)B-PMHC)/k(inh)(H(2)B-TOH) in the range of 2-3 are recorded both in homogeneous solution and in liposome suspensions with hydrophilic or lipophilic peroxyl radicals. (2) The relative antioxidant activity between tocopherol analogues with the same inherent chemical reactivity but bearing short (PMHC) or long (TOH) aliphatic tails, k(inh)(PMHC)/k(inh)(TOH), is ~8 in the presence of hydrophilic peroxyl radicals, regardless of the nature of the lipid membrane into which they are embedded. (3) Antioxidants embedded in saturated lipids do not efficiently scavenge hydrophilic peroxyl radicals; under these conditions wastage reactions among peroxyl radicals become important, and this translates into larger times for antioxidant consumption. (4) Lipophilic peroxyl radicals show reduced discrimination between antioxidants bearing long and short aliphatic tails, with k(inh)(PMHC)/k(inh)(TOH) in the range of 3-4 for most lipid membranes. (5) Lipophilic peroxyl radicals are scavenged with the same efficiency by all four antioxidants studied, regardless of the nature of their aliphatic tail or the lipid membrane into which they are embedded. These data underpin the key role the lipid environment plays in modulating the rate of reaction of antioxidants characterized by similar inherent chemical reactivity (arising from a conserved chromanol moiety) but differing in their membrane mobility (structural differences in the lipophilic tail). Altogether, a novel, facile method of study, new insights, and a quantitative understanding on the critical role of lipid diversity in modulating antioxidant activity in the lipid milieu are reported.
Collapse
Affiliation(s)
- Katerina Krumova
- Department of Chemistry and Center for Self Assembled Chemical Structures, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 2K6, Canada
| | | | | |
Collapse
|
24
|
Lagarde M, Bernoud-Hubac N, Guichardant M. Expanding the horizons of lipidomics. Towards fluxolipidomics. Mol Membr Biol 2012; 29:222-8. [PMID: 22594701 DOI: 10.3109/09687688.2012.689378] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This short review takes into consideration the status of lipidomics as issued from almost a decade of development. Because of the huge number of molecular species analyzed, there is a trend in subdividing lipidomics according to subdomains, in particular relating to the function of molecules. It is also pointed out that lipid imaging without the use of exogenous probes will help making relationships between molecular structures and the topography of lipid assemblies, especially in cellular compartments. Finally, a fluxomics approach is proposed for lipid molecular species, both in terms of compartments and biochemical metabolism. The example of fluxolipidomics of essential fatty acids toward their enzyme-dependent oxygenated metabolites and further toward their degradation products is developed.
Collapse
Affiliation(s)
- Michel Lagarde
- UMR 1060 INSERM-CarMeN, IMBL, INSA-Lyon, Villeurbanne 60621, France.
| | | | | |
Collapse
|
25
|
Suzuki S, Kozaki M, Nozaki K, Okada K. Recent progress in controlling photophysical processes of donor–acceptor arrays involving perylene diimides and boron-dipyrromethenes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2011. [DOI: 10.1016/j.jphotochemrev.2011.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Liu KM, Tsai MS, Jan MS, Chau CM, Wang WJ. Convenient one-pot procedure for synthesizing 4,4′-dimethoxy-boradiaza-s-indacene dyes and their application to cell labeling. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.08.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Borozenko O, Godin R, Lau KL, Mah W, Cosa G, Skene WG, Giasson S. Monitoring in Real-Time the Degrafting of Covalently Attached Fluorescent Polymer Brushes Grafted to Silica Substrates—Effects of pH and Salt. Macromolecules 2011. [DOI: 10.1021/ma2013755] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Olga Borozenko
- Department of Chemistry Université de Montréal, C.P. 6128, succursale Centre-Ville, Montréal, QC, Canada, H3C 3J7
| | - Robert Godin
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, Canada, H3A 2K6
| | - Kai Lin Lau
- Department of Chemistry Université de Montréal, C.P. 6128, succursale Centre-Ville, Montréal, QC, Canada, H3C 3J7
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, Canada, H3A 2K6
| | - Wayne Mah
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, Canada, H3A 2K6
| | - Gonzalo Cosa
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, Canada, H3A 2K6
| | - W. G. Skene
- Department of Chemistry Université de Montréal, C.P. 6128, succursale Centre-Ville, Montréal, QC, Canada, H3C 3J7
| | - Suzanne Giasson
- Department of Chemistry Université de Montréal, C.P. 6128, succursale Centre-Ville, Montréal, QC, Canada, H3C 3J7
| |
Collapse
|
28
|
Abstract
This critical review covers the advances made using the 4-bora-3a,4a-diaza-s-indacene (BODIPY) scaffold as a fluorophore in the design, synthesis and application of fluorescent indicators for pH, metal ions, anions, biomolecules, reactive oxygen species, reactive nitrogen species, redox potential, chemical reactions and various physical phenomena. The sections of the review describing the criteria for rational design of fluorescent indicators and the mathematical expressions for analyzing spectrophotometric and fluorometric titrations are applicable to all fluorescent probes (206 references).
Collapse
Affiliation(s)
- Noël Boens
- Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200f - bus 02404, 3001 Heverlee (Leuven), Belgium.
| | | | | |
Collapse
|
29
|
A new in vivo model system to assess the toxicity of semiconductor nanocrystals. Int J Biomater 2011; 2011:792854. [PMID: 21822433 PMCID: PMC3103900 DOI: 10.1155/2011/792854] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/02/2011] [Indexed: 12/05/2022] Open
Abstract
In the emerging area of nanotechnology, a key issue is related to the potential impacts of the novel nanomaterials on the environment and human health, so that this technology can be used with minimal risk. Specifically designed to combine on a single structure multipurpose tags and properties, smart nanomaterials need a comprehensive characterization of both chemicophysical properties and adequate toxicological evaluation, which is a challenging endeavour; the in vitro toxicity assays that are often employed for nanotoxicity assessments do not accurately predict in vivo response. To overcome these limitations and to evaluate toxicity characteristics of cadmium telluride quantum dots in relation to surface coatings, we have employed the freshwater polyp Hydra vulgaris as a model system. We assessed in vivo acute and sublethal toxicity by scoring for alteration of morphological traits, population growth rates, and influence on the regenerative capabilities providing new investigation clues for nanotoxicology purposes.
Collapse
|
30
|
Lalancette-Hébert M, Moquin A, Choi AO, Kriz J, Maysinger D. Lipopolysaccharide-QD micelles induce marked induction of TLR2 and lipid droplet accumulation in olfactory bulb microglia. Mol Pharm 2010; 7:1183-94. [PMID: 20459083 DOI: 10.1021/mp1000372] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The intranasal entry of biological and artificial nanoparticles can induce inflammatory responses both locally and more widely in surrounding tissues. The aim of this study was to assess the microglia activation induced by nanoparticles with different surfaces in (i) a transgenic mouse (Toll-like receptor (TLR)-2-luciferase (Luc) reporter) which allowed the biophotonic imaging of microglial activation/innate immune response after intranasal delivery of nanoparticles and (ii) in microglial dispersed cells in vitro. Cadmium selenide nanoparticles (quantum dots, QD), surface-exchanged with lipopolysaccharide (LPS) to form micelles, were tested to assess microglia activation and lipid droplet formation in both model systems. In vivo imaging revealed a robust increase in the extent of microglial activation/TLR2 response, initially in the olfactory bulb, but also in other more caudal brain regions. The increased TLR2 expression was complemented with enhanced CD68 expression in activated microglia in the same regions. Intense in vitro microglial activation by LPS-QD micelles was accompanied by a significant enhancement of nitric oxide production and formation of large lipid droplets, suggesting the possibility of this organelle acting as an inflammatory biomarker in response to nanoparticles, and not simply as a storage site in fat tissues.
Collapse
Affiliation(s)
- Mélanie Lalancette-Hébert
- Department of Psychiatry and Neuroscience, Centre de Recherche du CHUL, Faculty of Medicine, Laval University, Quebec, QC, Canada
| | | | | | | | | |
Collapse
|
31
|
Krumova K, Cosa G. Bodipy dyes with tunable redox potentials and functional groups for further tethering: preparation, electrochemical, and spectroscopic characterization. J Am Chem Soc 2010; 132:17560-9. [PMID: 21090723 DOI: 10.1021/ja1075663] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The preparation, spectroscopic, and electrochemical characterization of a family of 16 new bodipy dyes with tunable redox potentials and versatile functional groups is reported. Electron-withdrawing or -donating groups (Et, H, Cl, or CN) at positions C2 and C6 enabled tuning the redox potentials within a ca. 0.7 eV window without significantly affecting either the HOMO-LUMO gap or the absorption and emission spectra. Hydroxymethyl or formyl groups at the meso (C8) position in turn provided a handle for covalent tethering to receptors and biomolecules of interest, which dispenses with the more commonly used meso-aryl moiety as a means to tag molecules. The dyes can thus be coupled to both electrophiles and nucleophiles. Importantly, it is shown that meso-formyl bodipy dyes are nonemissive and have significantly lower molar extinction coefficients compared to their meso-hydroxymethyl and meso-acetoxymethyl counterparts (which in turn are bright, with emission quantum yields in the range of 0.7-1). The nonemissive meso-formyl bodipy dyes thus provide unique opportunities as fluorogenic probes of nucleophilic attack and as fluorescent labeling agents where uncoupled fluorophores will not contribute to the fluorescence background. Overall, the new bodipy dyes reported here are promising candidates for the preparation of fluorescent sensors relying on photoinduced electron transfer and may find use in a number of fluorescent-labeling protocols.
Collapse
Affiliation(s)
- Katerina Krumova
- Department of Chemistry and Center for Self Assembled Chemical Structures, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 2K6, Canada
| | | |
Collapse
|
32
|
Biological Membranes Are Nanostructures that Require Internal Heat and Imaginary Temperature as New, Unique Physiological Parameters Related to Biological Catalysts. Cell Biochem Biophys 2010; 59:133-46. [DOI: 10.1007/s12013-010-9134-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Atkinson J, Harroun T, Wassall SR, Stillwell W, Katsaras J. The location and behavior of alpha-tocopherol in membranes. Mol Nutr Food Res 2010; 54:641-51. [PMID: 20166146 DOI: 10.1002/mnfr.200900439] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vitamin E (alpha-tocopherol) has long been recognized as the major antioxidant in biological membranes, and yet many structurally related questions persist of how the vitamin functions. For example, the very low levels of alpha-tocopherol reported for whole cell extracts question how this molecule can successfully protect the comparatively enormous quantities of PUFA-containing phospholipids found in membranes that are highly susceptible to oxidative attack. The contemporary realization that membranes laterally segregate into regions of distinct lipid composition (domains), we propose, provides the answer. We hypothesize alpha-tocopherol partitions into domains that are enriched in polyunsaturated phospholipids, amplifying the concentration of the vitamin in the place where it is most needed. These highly disordered domains depleted in cholesterol are analogous, but organizationally antithetical, to the well-studied lipid rafts. We review here the ideas that led to our hypothesis. Experimental evidence in support of the formation of PUFA-rich domains in model membranes is presented, focusing upon docosahexaenoic acid that is the most unsaturated fatty acid commonly found. Physical methodologies are then described to elucidate the nature of the interaction of alpha-tocopherol with PUFA and to establish that the vitamin and PUFA-containing phospholipids co-localize in non-raft domains.
Collapse
Affiliation(s)
- Jeffrey Atkinson
- Department of Chemistry, Brock University, St. Catharines, Ont., Canada.
| | | | | | | | | |
Collapse
|