1
|
Waddell GL, Drew EE, Rupp HP, Hansen SD. Mechanisms controlling membrane recruitment and activation of the autoinhibited SHIP1 inositol 5-phosphatase. J Biol Chem 2023; 299:105022. [PMID: 37423304 PMCID: PMC10448276 DOI: 10.1016/j.jbc.2023.105022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023] Open
Abstract
Signal transduction downstream of growth factor and immune receptor activation relies on the production of phosphatidylinositol-(3,4,5)-trisphosphate (PI(3,4,5)P3) lipids by PI3K. Regulating the strength and duration of PI3K signaling in immune cells, Src homology 2 domain-containing inositol 5-phosphatase 1 (SHIP1) controls the dephosphorylation of PI(3,4,5)P3 to generate phosphatidylinositol-(3,4)-bisphosphate. Although SHIP1 has been shown to regulate neutrophil chemotaxis, B-cell signaling, and cortical oscillations in mast cells, the role that lipid and protein interactions serve in controlling SHIP1 membrane recruitment and activity remains unclear. Using single-molecule total internal reflection fluorescence microscopy, we directly visualized membrane recruitment and activation of SHIP1 on supported lipid bilayers and the cellular plasma membrane. We find that localization of the central catalytic domain of SHIP1 is insensitive to dynamic changes in PI(3,4,5)P3 and phosphatidylinositol-(3,4)-bisphosphate both in vitro and in vivo. Very transient SHIP1 membrane interactions were detected only when membranes contained a combination of phosphatidylserine and PI(3,4,5)P3 lipids. Molecular dissection reveals that SHIP1 is autoinhibited with the N-terminal Src homology 2 domain playing a critical role in suppressing phosphatase activity. Robust SHIP1 membrane localization and relief of autoinhibition can be achieved through interactions with immunoreceptor-derived phosphopeptides presented either in solution or conjugated to a membrane. Overall, this work provides new mechanistic details concerning the dynamic interplay between lipid-binding specificity, protein-protein interactions, and the activation of autoinhibited SHIP1.
Collapse
Affiliation(s)
- Grace L Waddell
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA; Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Emma E Drew
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA; Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Henry P Rupp
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA; Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Scott D Hansen
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA; Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA.
| |
Collapse
|
2
|
Waddell GL, Drew EE, Rupp HP, Hansen SD. Mechanisms controlling membrane recruitment and activation of autoinhibited SHIP1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.30.538895. [PMID: 37205499 PMCID: PMC10187190 DOI: 10.1101/2023.04.30.538895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Signal transduction downstream of growth factor and immune receptor activation relies on the production of phosphatidylinositol-(3,4,5)-trisphosphate (PI(3,4,5)P 3 ) lipids by phosphoinositide-3-kinase (PI3K). Regulating the strength and duration of PI3K signaling in immune cells, Src homology 2 domain-containing inositol 5-phosphatase 1 (SHIP1) controls the dephosphorylation of PI(3,4,5)P 3 to generate PI(3,4)P 2 . Although SHIP1 has been shown to regulate neutrophil chemotaxis, B-cell signaling, and cortical oscillations in mast cells, the role that lipid and protein interactions serve in controlling SHIP1 membrane recruitment and activity remains unclear. Using single molecule TIRF microscopy, we directly visualized membrane recruitment and activation of SHIP1 on supported lipid bilayers and the cellular plasma membrane. We find that SHIP1's interactions with lipids are insensitive to dynamic changes in PI(3,4,5)P 3 both in vitro and in vivo. Very transient SHIP1 membrane interactions were detected only when membranes contained a combination of phosphatidylserine (PS) and PI(3,4,5)P 3 lipids. Molecular dissection reveals that SHIP1 is autoinhibited with the N-terminal SH2 domain playing a critical role in suppressing phosphatase activity. Robust SHIP1 membrane localization and relief of autoinhibition can be achieved through interactions with immunoreceptor derived phosphopeptides presented either in solution or conjugated to supported membranes. Overall, this work provides new mechanistic details concerning the dynamic interplay between lipid binding specificity, protein-protein interactions, and activation of autoinhibited SHIP1.
Collapse
|
3
|
Rajadurai CV, Havrylov S, Coelho PP, Ratcliffe CDH, Zaoui K, Huang BH, Monast A, Chughtai N, Sangwan V, Gertler FB, Siegel PM, Park M. 5'-Inositol phosphatase SHIP2 recruits Mena to stabilize invadopodia for cancer cell invasion. J Cell Biol 2016; 214:719-34. [PMID: 27597754 PMCID: PMC5021089 DOI: 10.1083/jcb.201501003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 08/05/2016] [Indexed: 12/11/2022] Open
Abstract
Invadopodia are membrane protrusions used by cancer cells to remodel and invade the extracellular matrix. Here, Rajadurai et al. show that the lipid phosphatase SHIP2 recruits the Ena/VASP-family actin regulatory protein Mena to stabilize invadopodia membrane protrusions and promote cell invasion. Invadopodia are specialized membrane protrusions that support degradation of extracellular matrix (ECM) by cancer cells, allowing invasion and metastatic spread. Although early stages of invadopodia assembly have been elucidated, little is known about maturation of invadopodia into structures competent for ECM proteolysis. The localized conversion of phosphatidylinositol(3,4,5)-triphosphate and accumulation of phosphatidylinositol(3,4)-bisphosphate at invadopodia is a key determinant for invadopodia maturation. Here we investigate the role of the 5′-inositol phosphatase, SHIP2, and reveal an unexpected scaffold function of SHIP2 as a prerequisite for invadopodia-mediated ECM degradation. Through biochemical and structure-function analyses, we identify specific interactions between SHIP2 and Mena, an Ena/VASP-family actin regulatory protein. We demonstrate that SHIP2 recruits Mena, but not VASP, to invadopodia and that disruption of SHIP2–Mena interaction in cancer cells leads to attenuated capacity for ECM degradation and invasion in vitro, as well as reduced metastasis in vivo. Together, these findings identify SHIP2 as a key modulator of carcinoma invasiveness and a target for metastatic disease.
Collapse
Affiliation(s)
- Charles V Rajadurai
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A1, Canada Department of Biochemistry, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Serhiy Havrylov
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Paula P Coelho
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A1, Canada Department of Biochemistry, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Colin D H Ratcliffe
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A1, Canada Department of Biochemistry, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Kossay Zaoui
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Bruce H Huang
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A1, Canada Department of Biochemistry, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Anie Monast
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Naila Chughtai
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Veena Sangwan
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A1, Canada Department of Oncology, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Frank B Gertler
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Peter M Siegel
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A1, Canada Department of Biochemistry, McGill University, Montréal, Québec H3A 1A1, Canada Department of Medicine, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Morag Park
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A1, Canada Department of Biochemistry, McGill University, Montréal, Québec H3A 1A1, Canada Department of Medicine, McGill University, Montréal, Québec H3A 1A1, Canada Department of Oncology, McGill University, Montréal, Québec H3A 1A1, Canada
| |
Collapse
|
4
|
Yang Q, Ma Y, Liu Y, Liang W, Chen X, Ren Z, Wang H, Singhal PC, Ding G. Angiotensin II down-regulates nephrin-Akt signaling and induces podocyte injury: roleof c-Abl. Mol Biol Cell 2015; 27:197-208. [PMID: 26510503 PMCID: PMC4694757 DOI: 10.1091/mbc.e15-04-0223] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 10/23/2015] [Indexed: 11/17/2022] Open
Abstract
Ang II plays a vital role in the initiation and progression of proteinuric kidney diseases, but the mechanism is still elusive. It is shown that c-Abl is a molecular chaperone of nephrin signaling and the SHIP2-Akt pathway, and released c-Abl from nephrin is involved in Ang II–induced podocyte injury. Recent studies have shown that nephrin plays a vital role in angiotensin II (Ang II)–induced podocyte injury and thus contributes to the onset of proteinuria and the progression of renal diseases, but its specific mechanism remains unclear. c-Abl is an SH2/SH3 domain–containing nonreceptor tyrosine kinase that is involved in cell survival and regulation of the cytoskeleton. Phosphorylated nephrin is able to interact with molecules containing SH2/SH3 domains, suggesting that c-Abl may be a downstream molecule of nephrin signaling. Here we report that Ang II–infused rats developed proteinuria and podocyte damage accompanied by nephrin dephosphorylation and minimal interaction between nephrin and c-Abl. In vitro, Ang II induced podocyte injury and nephrin and Akt dephosphorylation, which occurred in tandem with minimal interaction between nephrin and c-Abl. Moreover, Ang II promoted c-Abl phosphorylation and interaction between c-Abl and SH2 domain–containing 5′-inositol phosphatase 2 (SHIP2). c-Abl small interfering RNA (siRNA) and STI571 (c-Abl inhibitor) provided protection against Ang II–induced podocyte injury, suppressed the Ang II-induced c-Abl–SHIP2 interaction and SHIP2 phosphorylation, and maintained a stable level of nephrin phosphorylation. These results indicate that c-Abl is a molecular chaperone of nephrin signaling and the SHIP2-Akt pathway and that the released c-Abl contributes to Ang II–induced podocyte injury.
Collapse
Affiliation(s)
- Qian Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yiqiong Ma
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yipeng Liu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xinghua Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhilong Ren
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Huiming Wang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Pravin C Singhal
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra North Shore-Long Island Medical School, Great Neck, NY 11021
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
5
|
Belle L, Ali N, Lonic A, Li X, Paltridge JL, Roslan S, Herrmann D, Conway JRW, Gehling FK, Bert AG, Crocker LA, Tsykin A, Farshid G, Goodall GJ, Timpson P, Daly RJ, Khew-Goodall Y. The tyrosine phosphatase PTPN14 (Pez) inhibits metastasis by altering protein trafficking. Sci Signal 2015; 8:ra18. [PMID: 25690013 DOI: 10.1126/scisignal.2005547] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Factors secreted by tumor cells shape the local microenvironment to promote invasion and metastasis, as well as condition the premetastatic niche to enable secondary-site colonization and growth. In addition to this secretome, tumor cells have increased abundance of growth-promoting receptors at the cell surface. We found that the tyrosine phosphatase PTPN14 (also called Pez, which is mutated in various cancers) suppressed metastasis by reducing intracellular protein trafficking through the secretory pathway. Knocking down PTPN14 in tumor cells or injecting the peritoneum of mice with conditioned medium from PTPN14-deficient cell cultures promoted the growth and metastasis of breast cancer xenografts. Loss of catalytically functional PTPN14 increased the secretion of growth factors and cytokines, such as IL-8 (interleukin-8), and increased the abundance of EGFR (epidermal growth factor receptor) at the cell surface of breast cancer cells and of FLT4 (vascular endothelial growth factor receptor 3) at the cell surface of primary lymphatic endothelial cells. We identified RIN1 (Ras and Rab interactor 1) and PRKCD (protein kinase C-δ) as binding partners and substrates of PTPN14. Similar to cells overexpressing PTPN14, receptor trafficking to the cell surface was inhibited in cells that lacked PRKCD or RIN1 or expressed a nonphosphorylatable RIN1 mutant, and cytokine secretion was decreased in cells treated with PRKCD inhibitors. Invasive breast cancer tissue had decreased expression of PTPN14, and patient survival was worse when tumors had increased expression of the genes encoding RIN1 or PRKCD. Thus, PTPN14 prevents metastasis by restricting the trafficking of both soluble and membrane-bound proteins.
Collapse
Affiliation(s)
- Leila Belle
- Centre for Cancer Biology, an Alliance between SA Pathology and University of South Australia, Adelaide, South Australia 5000, Australia. Discipline of Biochemistry, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Naveid Ali
- Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Ana Lonic
- Centre for Cancer Biology, an Alliance between SA Pathology and University of South Australia, Adelaide, South Australia 5000, Australia. Department of Medicine, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Xiaochun Li
- Centre for Cancer Biology, an Alliance between SA Pathology and University of South Australia, Adelaide, South Australia 5000, Australia
| | - James L Paltridge
- Centre for Cancer Biology, an Alliance between SA Pathology and University of South Australia, Adelaide, South Australia 5000, Australia. Discipline of Biochemistry, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Suraya Roslan
- Centre for Cancer Biology, an Alliance between SA Pathology and University of South Australia, Adelaide, South Australia 5000, Australia
| | - David Herrmann
- Cancer Research Program, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - James R W Conway
- Cancer Research Program, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Freya K Gehling
- Centre for Cancer Biology, an Alliance between SA Pathology and University of South Australia, Adelaide, South Australia 5000, Australia
| | - Andrew G Bert
- Centre for Cancer Biology, an Alliance between SA Pathology and University of South Australia, Adelaide, South Australia 5000, Australia
| | - Lesley A Crocker
- Centre for Cancer Biology, an Alliance between SA Pathology and University of South Australia, Adelaide, South Australia 5000, Australia
| | - Anna Tsykin
- Centre for Cancer Biology, an Alliance between SA Pathology and University of South Australia, Adelaide, South Australia 5000, Australia
| | - Gelareh Farshid
- Division of Tissue Pathology, SA Pathology, Adelaide, South Australia 5000, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, an Alliance between SA Pathology and University of South Australia, Adelaide, South Australia 5000, Australia. Department of Medicine, The University of Adelaide, Adelaide, South Australia 5005, Australia. School and Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Paul Timpson
- Cancer Research Program, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Roger J Daly
- Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia. Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Yeesim Khew-Goodall
- Centre for Cancer Biology, an Alliance between SA Pathology and University of South Australia, Adelaide, South Australia 5000, Australia. Discipline of Biochemistry, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia 5005, Australia. Department of Medicine, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
6
|
Mokhtari D, Al-Amin A, Turpaev K, Li T, Idevall-Hagren O, Li J, Wuttke A, Fred RG, Ravassard P, Scharfmann R, Tengholm A, Welsh N. Imatinib mesilate-induced phosphatidylinositol 3-kinase signalling and improved survival in insulin-producing cells: role of Src homology 2-containing inositol 5'-phosphatase interaction with c-Abl. Diabetologia 2013; 56:1327-38. [PMID: 23462796 DOI: 10.1007/s00125-013-2868-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/01/2013] [Indexed: 01/26/2023]
Abstract
AIMS/HYPOTHESIS It is not clear how small tyrosine kinase inhibitors, such as imatinib mesilate, protect against diabetes and beta cell death. The aim of this study was to determine whether imatinib, as compared with the non-cAbl-inhibitor sunitinib, affects pro-survival signalling events in the phosphatidylinositol 3-kinase (PI3K) pathway. METHODS Human EndoC-βH1 cells, murine beta TC-6 cells and human pancreatic islets were used for immunoblot analysis of insulin receptor substrate (IRS)-1, Akt and extracellular signal-regulated kinase (ERK) phosphorylation. Phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] plasma membrane concentrations were assessed in EndoC-βH1 and MIN6 cells using evanescent wave microscopy. Src homology 2-containing inositol 5'-phosphatase 2 (SHIP2) tyrosine phosphorylation and phosphatase and tensin homologue deleted on chromosome 10 (PTEN) serine phosphorylation, as well as c-Abl co-localisation with SHIP2, were studied in HEK293 and EndoC-βH1 cells by immunoprecipitation and immunoblot analysis. Gene expression was assessed using RT-PCR. Cell viability was measured using vital staining. RESULTS Imatinib stimulated ERK(thr202/tyr204) phosphorylation in a c-Abl-dependent manner. Imatinib, but not sunitinib, also stimulated IRS-1(tyr612), Akt(ser473) and Akt(thr308) phosphorylation. This effect was paralleled by oscillatory bursts in plasma membrane PI(3,4,5)P3 levels. Wortmannin induced a decrease in PI(3,4,5)P3 levels, which was slower in imatinib-treated cells than in control cells, indicating an effect on PI(3,4,5)P3-degrading enzymes. In line with this, imatinib decreased the phosphorylation of SHIP2 but not of PTEN. c-Abl co-immunoprecipitated with SHIP2 and its binding to SHIP2 was largely reduced by imatinib but not by sunitinib. Imatinib increased total β-catenin levels and cell viability, whereas sunitinib exerted negative effects on cell viability. CONCLUSIONS/INTERPRETATION Imatinib inhibition of c-Abl in beta cells decreases SHIP2 activity, which results in enhanced signalling downstream of PI3 kinase.
Collapse
Affiliation(s)
- D Mokhtari
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Biomedicum, PO Box 571, 751 23 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Phosphoinositide signalling molecules interact with a plethora of effector proteins to regulate cell proliferation and survival, vesicular trafficking, metabolism, actin dynamics and many other cellular functions. The generation of specific phosphoinositide species is achieved by the activity of phosphoinositide kinases and phosphatases, which phosphorylate and dephosphorylate, respectively, the inositol headgroup of phosphoinositide molecules. The phosphoinositide phosphatases can be classified as 3-, 4- and 5-phosphatases based on their specificity for dephosphorylating phosphates from specific positions on the inositol head group. The SAC phosphatases show less specificity for the position of the phosphate on the inositol ring. The phosphoinositide phosphatases regulate PI3K/Akt signalling, insulin signalling, endocytosis, vesicle trafficking, cell migration, proliferation and apoptosis. Mouse knockout models of several of the phosphoinositide phosphatases have revealed significant physiological roles for these enzymes, including the regulation of embryonic development, fertility, neurological function, the immune system and insulin sensitivity. Importantly, several phosphoinositide phosphatases have been directly associated with a range of human diseases. Genetic mutations in the 5-phosphatase INPP5E are causative of the ciliopathy syndromes Joubert and MORM, and mutations in the 5-phosphatase OCRL result in Lowe's syndrome and Dent 2 disease. Additionally, polymorphisms in the 5-phosphatase SHIP2 confer diabetes susceptibility in specific populations, whereas reduced protein expression of SHIP1 is reported in several human leukaemias. The 4-phosphatase, INPP4B, has recently been identified as a tumour suppressor in human breast and prostate cancer. Mutations in one SAC phosphatase, SAC3/FIG4, results in the degenerative neuropathy, Charcot-Marie-Tooth disease. Indeed, an understanding of the precise functions of phosphoinositide phosphatases is not only important in the context of normal human physiology, but to reveal the mechanisms by which these enzyme families are implicated in an increasing repertoire of human diseases.
Collapse
|
8
|
Johnson H, Del Rosario AM, Bryson BD, Schroeder MA, Sarkaria JN, White FM. Molecular characterization of EGFR and EGFRvIII signaling networks in human glioblastoma tumor xenografts. Mol Cell Proteomics 2012; 11:1724-40. [PMID: 22964225 DOI: 10.1074/mcp.m112.019984] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a malignant primary brain tumor with a mean survival of 15 months with the current standard of care. Genetic profiling efforts have identified the amplification, overexpression, and mutation of the wild-type (wt) epidermal growth factor receptor tyrosine kinase (EGFR) in ≈ 50% of GBM patients. The genetic aberration of wtEGFR is frequently accompanied by the overexpression of a mutant EGFR known as EGFR variant III (EGFRvIII, de2-7EGFR, ΔEGFR), which is expressed in 30% of GBM tumors. The molecular mechanisms of tumorigenesis driven by EGFRvIII overexpression in human tumors have not been fully elucidated. To identify specific therapeutic targets for EGFRvIII driven tumors, it is important to gather a broad understanding of EGFRvIII specific signaling. Here, we have characterized signaling through the quantitative analysis of protein expression and tyrosine phosphorylation across a panel of glioblastoma tumor xenografts established from patient surgical specimens expressing wtEGFR or overexpressing wtEGFR (wtEGFR+) or EGFRvIII (EGFRvIII+). S100A10 (p11), major vault protein, guanylate-binding protein 1(GBP1), and carbonic anhydrase III (CAIII) were identified to have significantly increased expression in EGFRvIII expressing xenograft tumors relative to wtEGFR xenograft tumors. Increased expression of these four individual proteins was found to be correlated with poor survival in patients with GBM; the combination of these four proteins represents a prognostic signature for poor survival in gliomas. Integration of protein expression and phosphorylation data has uncovered significant heterogeneity among the various tumors and has highlighted several novel pathways, related to EGFR trafficking, activated in glioblastoma. The pathways and proteins identified in these tumor xenografts represent potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Hannah Johnson
- Department of Bioengineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Phosphoinositides play an essential role in insulin signaling, serving as a localization signal for a variety of proteins that participate in the regulation of cellular growth and metabolism. This chapter will examine the regulation and localization of phosphoinositide species, and will explore the roles of these lipids in insulin action. We will also discuss the changes in phosphoinositide metabolism that occur in various pathophysiological states such as insulin resistance and diabetes.
Collapse
Affiliation(s)
- Dave Bridges
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
10
|
Mukherjee O, Weingarten L, Padberg I, Pracht C, Sinha R, Hochdörfer T, Kuppig S, Backofen R, Reth M, Huber M. The SH2-domain of SHIP1 interacts with the SHIP1 C-terminus: impact on SHIP1/Ig-α interaction. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:206-14. [PMID: 22182704 DOI: 10.1016/j.bbamcr.2011.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/03/2011] [Accepted: 11/07/2011] [Indexed: 10/14/2022]
Abstract
The SH2-containing inositol 5'-phosphatase, SHIP1, negatively regulates signal transduction from the B cell antigen receptor (BCR). The mode of coupling between SHIP1 and the BCR has not been elucidated so far. In comparison to wild-type cells, B cells expressing a mutant IgD- or IgM-BCR containing a C-terminally truncated Ig-α respond to pervanadate stimulation with markedly reduced tyrosine phosphorylation of SHIP1 and augmented activation of protein kinase B. This indicates that SHIP1 is capable of interacting with the C-terminus of Ig-α. Employing a system of fluorescence resonance energy transfer in S2 cells, we can clearly demonstrate interaction between the SH2-domain of SHIP1 and Ig-α. Furthermore, a fluorescently labeled SH2-domain of SHIP1 translocates to the plasma membrane in an Ig-α-dependent manner. Interestingly, whereas the SHIP1 SH2-domain can be pulled-down with phospho-peptides corresponding to the immunoreceptor tyrosine-based activation motif (ITAM) of Ig-α from detergent lysates, no interaction between full-length SHIP1 and the phosphorylated Ig-α ITAM can be observed. Further studies show that the SH2-domain of SHIP1 can bind to the C-terminus of the SHIP1 molecule, most probably by inter- as well as intra-molecular means, and that this interaction regulates the association between different forms of SHIP1 and Ig-α.
Collapse
Affiliation(s)
- Oindrilla Mukherjee
- RWTH Aachen University, Medical Faculty, Department of Biochemistry and Molecular Immunology, Institute of Biochemistry and Molecular Biology, 52074 Aachen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Evidence of SHIP2 Ser132 phosphorylation, its nuclear localization and stability. Biochem J 2011; 439:391-401. [DOI: 10.1042/bj20110173] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PtdIns(3,4,5)P3 and PtdIns(3,4)P2 are major signalling molecules in mammalian cell biology. PtdIns(3,4)P2 can be produced by PI3Ks [PI (phosphoinositide) 3-kinases], but also by PI 5-phosphatases including SHIP2 [SH2 (Src homology 2)-domain-containing inositol phosphatase 2]. Proteomic studies in human cells revealed that SHIP2 can be phosphorylated at more than 20 sites, but their individual function is unknown. In a model of PTEN (phosphatase and tensin homologue deleted on chromosome 10)-null astrocytoma cells, lowering SHIP2 expression leads to increased PtdIns(3,4,5)P3 levels and Akt phosphorylation. MS analysis identified SHIP2 phosphosites on Ser132, Thr1254 and Ser1258; phosphotyrosine-containing sites were undetectable. By immunostaining, total SHIP2 concentrated in the perinuclear area and in the nucleus, whereas SHIP2 phosphorylated on Ser132 was in the cytoplasm, the nucleus and nuclear speckles, depending on the cell cycle stage. SHIP2 phosphorylated on Ser132 demonstrated PtdIns(4,5)P2 phosphatase activity. Endogenous phospho-SHIP2 (Ser132) showed an overlap with PtdIns(4,5)P2 staining in nuclear speckles. SHIP2 S132A was less sensitive to C-terminal degradation and more resistant to calpain as compared with wild-type enzyme. We have identified nuclear lamin A/C as a novel SHIP2 interactor. We suggest that the function of SHIP2 is different at the plasma membrane where it recognizes PtdIns(3,4,5)P3, and in the nucleus where it may interact with PtdIns(4,5)P2, particularly in speckles.
Collapse
|
12
|
Hyvönen ME, Saurus P, Wasik A, Heikkilä E, Havana M, Trokovic R, Saleem M, Holthöfer H, Lehtonen S. Lipid phosphatase SHIP2 downregulates insulin signalling in podocytes. Mol Cell Endocrinol 2010; 328:70-9. [PMID: 20654688 DOI: 10.1016/j.mce.2010.07.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 06/24/2010] [Accepted: 07/12/2010] [Indexed: 11/15/2022]
Abstract
Podocyte injury plays an important role in the development of diabetic nephropathy. Podocytes are insulin-responsive and can develop insulin resistance, but the mechanisms are unknown. To study the role of CD2-associated protein (CD2AP) in podocyte injury, we performed a yeast two-hybrid screening on a glomerular library, and found that CD2AP bound to SH2-domain-containing inositol polyphosphate 5-phosphatase 2 (SHIP2), a negative regulator of insulin signalling. SHIP2 interacts with CD2AP in glomeruli and is expressed in podocytes, where it translocates to plasma membrane after insulin stimulation. Overexpression of SHIP2 in cultured podocytes reduces Akt activation in response to insulin, and promotes apoptosis. SHIP2 is upregulated in glomeruli of insulin resistant obese Zucker rats. These results indicate that SHIP2 downregulates insulin signalling in podocytes. The upregulation of SHIP2 in Zucker rat glomeruli prior to the age of onset of proteinuria suggests a possible role for SHIP2 in the development of podocyte injury.
Collapse
Affiliation(s)
- Mervi E Hyvönen
- Department of Pathology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
IMPORTANCE OF THE FIELD Inositol polyphosphate 5-phosphatase (SHIP2) is an important negative regulator of intracellular phosphatidylinositol phosphate, a key second messenger of various intracellular signaling pathways. The functional upregulation of SHIP2 results in signaling blockade, leading to related disorders. AREAS COVERED IN THIS REVIEW We first summarize the role of SHIP2 in the regulation of insulin signaling and type 2 diabetes, including remarkable advances in pharmacological approaches. In addition, this review highlights new findings regarding the involvement of SHIP2 in a number of diseases, including cancer, neurodegenerative diseases, and atherosclerosis. WHAT THE READER WILL GAIN Recently identified small-molecule inhibitors of SHIP2 phosphatase activity emphasize the potential therapeutic value of SHIP2. In addition, currently available evidence demonstrates the importance of the scaffolding-type protein function of SHIP2. Understanding this interesting function will help clarify the complicated involvement of SHIP2 in various disorders. TAKE HOME MESSAGE Recent studies have demonstrated that SHIP2 is a promising therapeutic target for not only type 2 diabetes, but also cancer, neurodegenerative diseases, and atherosclerosis. Targeting SHIP2 through specific small-molecule inhibitors will have beneficial effects on these diseases.
Collapse
Affiliation(s)
- Akira Suwa
- Astellas Pharma, Inc., Pharmacology Research Labs, Drug Discovery Research, 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan.
| | | | | |
Collapse
|
14
|
Zhang J, Ravichandran KS, Garrison JC. A key role for the phosphorylation of Ser440 by the cyclic AMP-dependent protein kinase in regulating the activity of the Src homology 2 domain-containing Inositol 5'-phosphatase (SHIP1). J Biol Chem 2010; 285:34839-49. [PMID: 20810657 DOI: 10.1074/jbc.m110.128827] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Src homology 2 domain-containing inositol 5'-phosphatase 1 (SHIP1) dephosphorylates phosphatidylinositol 3,4,5-trisphosphate to phophatidylinositol 3,4-bisphosphate in hematopoietic cells to regulate multiple cell signaling pathways. SHIP1 can be phosphorylated by the cyclic AMP-dependent protein kinase (PKA), resulting in an increase in SHIP1 activity (Zhang, J., Walk, S. F., Ravichandran, K. S., and Garrison, J. C. (2009) J. Biol. Chem. 284, 20070-20078). Using a combination of approaches, we identified the serine residue regulating SHIP1 activity. After mass spectrometric identification of 17 serine and threonine residues on SHIP1 as being phosphorylated by PKA in vitro, studies with truncation mutants of SHIP1 narrowed the phosphorylation site to the catalytic region between residues 400 and 866. Of the two candidate phosphorylation sites located in this region (Ser(440) and Ser(774)), only mutation of Ser(440) to Ala abolished the ability of PKA to phosphorylate the purified, catalytic domain of SHIP1 (residues 401-866). Mutation of Ser(440) to Ala in full-length SHIP1 abrogated the ability of PKA to increase the activity of SHIP1 in mammalian cells. Using flow cytometry, we found that the PKA activator, Sp-adenosine 3',5'-cyclic monophosphorothioate triethylammonium salt hydrate (Sp-cAMPS) blunted the phosphorylation of Akt downstream of B cell antigen receptor engagement in SHIP1-null DT40 B lymphocytes expressing native mouse SHIP1. The inhibitory effect of Sp-cAMPS was absent in cells expressing the S440A mutant of SHIP1. These results suggest that activation of SHIP1 by PKA via phosphorylation on Ser(440) is an important regulatory event in hematopoietic cells.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
15
|
De Schutter J, Guillabert A, Imbault V, Degraef C, Erneux C, Communi D, Pirson I. SHIP2 (SH2 domain-containing inositol phosphatase 2) SH2 domain negatively controls SHIP2 monoubiquitination in response to epidermal growth factor. J Biol Chem 2009; 284:36062-36076. [PMID: 19880507 DOI: 10.1074/jbc.m109.064923] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SH2 domain containing inositol 5-phosphatase SHIP2 contains several interacting domains that are important for scaffolding properties. We and others have previously reported that SHIP2 interacts with the E3 ubiquitin ligase c-Cbl. Here, we identified human SHIP2 monoubiquitination on lysine 315. SHIP2 could also be polyubiquitinated but was not degraded by the 26 S proteasome. Furthermore, we identified a ubiquitin-interacting motif at the C-terminal end of SHIP2 that confers ubiquitin binding capacity. However, this ubiquitin-interacting motif is dispensable for its monoubiquitination. We showed that neither c-Cbl nor Nedd4-1 play the role of ubiquitin ligase for SHIP2. Strikingly, monoubiquitination of the DeltaSH2-SHIP2 mutant (lacking the N-terminal SH2 domain) is strongly increased, suggesting an intrinsic inhibitory effect of the SHIP2 SH2 domain on its monoubiquitination. Moreover, SHIP2 monoubiquitination was increased upon 30 min of epidermal growth factor stimulation. This correlates with the loss of interaction between the SHIP2 SH2 domain and c-Cbl. In this model, c-Cbl could mask the monoubiquitination site and thereby prevent SHIP2 monoubiquitination. The present study thus reveals an unexpected and novel role of SHIP2 SH2 domain in the regulation of its newly identified monoubiquitination.
Collapse
Affiliation(s)
- Julie De Schutter
- Institute of Interdisciplinary Research, School of Medicine, Free University of Brussels, Campus Erasme, Building C, Route de Lennik 808, B-1070 Brussels, Belgium
| | - Aude Guillabert
- Institute of Interdisciplinary Research, School of Medicine, Free University of Brussels, Campus Erasme, Building C, Route de Lennik 808, B-1070 Brussels, Belgium
| | - Virginie Imbault
- Institute of Interdisciplinary Research, School of Medicine, Free University of Brussels, Campus Erasme, Building C, Route de Lennik 808, B-1070 Brussels, Belgium
| | - Chantal Degraef
- Institute of Interdisciplinary Research, School of Medicine, Free University of Brussels, Campus Erasme, Building C, Route de Lennik 808, B-1070 Brussels, Belgium
| | - Christophe Erneux
- Institute of Interdisciplinary Research, School of Medicine, Free University of Brussels, Campus Erasme, Building C, Route de Lennik 808, B-1070 Brussels, Belgium
| | - David Communi
- Institute of Interdisciplinary Research, School of Medicine, Free University of Brussels, Campus Erasme, Building C, Route de Lennik 808, B-1070 Brussels, Belgium
| | - Isabelle Pirson
- Institute of Interdisciplinary Research, School of Medicine, Free University of Brussels, Campus Erasme, Building C, Route de Lennik 808, B-1070 Brussels, Belgium.
| |
Collapse
|