1
|
Brasnett C, Squires AM, Smith AJ, Seddon AM. Lipid doping of the sponge (L 3) mesophase. SOFT MATTER 2023; 19:6569-6577. [PMID: 37603381 DOI: 10.1039/d3sm00578j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The polymorphism of lipid aggregates has long attracted detailed study due to the myriad factors that determine the final mesophase observed. This study is driven by the need to understand mesophase behaviour for a number of applications, such as drug delivery and membrane protein crystallography. In the case of the latter, the role of the so-called 'sponge' (L3) mesophase has been often noted, but not extensively studied by itself. The L3 mesophase can be formed in monoolein/water systems on the addition of butanediol to water, which partitions the headgroup region of the membrane, and decreases its elastic moduli. Like cubic mesophases, it is bicontinuous, but unlike them, has no long-range translational symmetry. In our present study, we show that the formation of the L3 phase can delicately depend on the addition of dopant lipids to the mesophase. While electrostatically neutral molecules similar in shape to monoolein (DOPE, cholesterol) have little effect on the general mesophase behaviour, others (DOPC, DDM) significantly reduce the composition at which it can form. Additionally, we show that by combining cholesterol with the anionic lipid DOPG, it is possible to form the largest stable L3 mesophases observed to date, with characteristic lengths over 220 Å.
Collapse
Affiliation(s)
| | - Adam M Squires
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | - Andrew J Smith
- Diamond House, Diamond Light Source Ltd, Harwell Science and Innovation Campus, Fermi Ave., Didcot, OX11 0DE, UK
| | - Annela M Seddon
- School of Physics, University of Bristol, Tyndall Avenue, Bristol, BS8 1FD, UK.
- Bristol Centre for Functional Nanomaterials, School of Physics, University of Bristol, Tyndall Avenue, Bristol, BS8 1FD, UK
| |
Collapse
|
2
|
Sugo Y, Ishikita H. Mechanism of Asparagine-Mediated Proton Transfer in Photosynthetic Reaction Centers. Biochemistry 2023; 62:1544-1552. [PMID: 37083399 PMCID: PMC10194076 DOI: 10.1021/acs.biochem.3c00013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/29/2023] [Indexed: 04/22/2023]
Abstract
In photosynthetic reaction centers from purple bacteria (PbRCs), light-induced charge separation leads to the reduction of the terminal electron acceptor quinone, QB. The reduction of QB to QB•- is followed by protonation via Asp-L213 and Ser-L223 in PbRC from Rhodobacter sphaeroides. However, Asp-L213 is replaced with nontitratable Asn-L222 and Asn-L213 in PbRCs from Thermochromatium tepidum and Blastochloris viridis, respectively. Here, we investigated the energetics of proton transfer along the asparagine-involved H-bond network using a quantum mechanical/molecular mechanical approach. The potential energy profile for the H-bond between H3O+ and the carbonyl O site of Asn-L222 shows that the proton is predominantly localized at the Asn-L222 moiety in the T. tepidum PbRC protein environment, easily forming the enol species. The release of the proton from the amide -NH2 site toward Ser-L232 via tautomerization suffers from the energy barrier. Upon reorientation of Asn-L222, the enol -OH site forms a short low-barrier H-bond with Ser-L232, facilitating protonation of QB•- in a Grotthuss-like mechanism. This is a basis of how asparagine or glutamine side chains function as acceptors/donors in proton transfer pathways.
Collapse
Affiliation(s)
- Yu Sugo
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
3
|
Fufina TY, Tretchikova OA, Khristin AM, Khatypov RA, Vasilieva LG. Properties of Mutant Photosynthetic Reaction Centers of Purple Non-Sulfur Bacteria Cereibacter sphaeroides with M206 Ile→Gln Substitution. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1149-1158. [PMID: 36273883 DOI: 10.1134/s000629792210008x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/14/2022] [Accepted: 08/14/2022] [Indexed: 06/16/2023]
Abstract
In the structure of photosynthetic reaction center (RC) of the purple bacterium Cereibacter sphaeroides the highly conserved amino acid residue Ile-M206 is located near the bacteriochlorophyll dimer P, which is the primary electron donor, and the monomeric bacteriochlorophyll BA, which is the nearest electron acceptor. Since Ile-M206 is close to the C2-acetyl group of bacteriochlorophyll PB, the hydroxyl group of Tyr-M210, and to the C9-keto group of bacteriochlorophyll BA, as well as to the water molecule near the latter group, this site can be used for introducing mutations in order to study mechanisms of primary photochemical processes in the RC. Previously it was shown that the Ile→Glu substitution at the M204 position (analog of M206 in the RC of C. sphaeroides) in the RC of the closely related purple non-sulfur bacterium Rhodobacter capsulatus significantly affected kinetics of the P+HA- state formation, whereas the M204 Ile→Gln substitution led to the loss of BChl BA molecule from the complex structure. In the present work, it is shown that the single I(M206)Q or double I(M206)Q + F(M208)A amino acid substitutions in the RC of C. sphaeroides do not change the pigment composition and do not markedly influence redox potential of the primary electron donor. However, substitution of Ile M206 by Gln affected positions and amplitudes of the absorption bands of bacteriochlorophylls, increased lifetime of the primary electron donor P* excited state from 3.1 ps to 22 ps, and decreased quantum yield of the P+QA- state formation to 60%. These data suggest significant changes in the pigment-protein interactions in the vicinity of the primary electron donor P and the nearest electron acceptor BA. A considerable decrease was also noticed in the resistance of the mutant RC to thermal denaturation, which was more pronounced in the RC with the double substitution I(M206)Q + F(M208)A. This was likely associated with the disruption of the dense packing of the protein near bacteriochlorophylls PB and BA. Possible reasons for different effects of identical mutations on the properties of two highly homologous RCs from closely related purple non-sulfur bacteria are discussed.
Collapse
Affiliation(s)
- Tatiana Yu Fufina
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Olga A Tretchikova
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Anton M Khristin
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Ravil A Khatypov
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Lyudmila G Vasilieva
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
4
|
Båth P, Banacore A, Börjesson P, Bosman R, Wickstrand C, Safari C, Dods R, Ghosh S, Dahl P, Ortolani G, Björg Ulfarsdottir T, Hammarin G, García Bonete MJ, Vallejos A, Ostojić L, Edlund P, Linse JB, Andersson R, Nango E, Owada S, Tanaka R, Tono K, Joti Y, Nureki O, Luo F, James D, Nass K, Johnson PJM, Knopp G, Ozerov D, Cirelli C, Milne C, Iwata S, Brändén G, Neutze R. Lipidic cubic phase serial femtosecond crystallography structure of a photosynthetic reaction centre. Acta Crystallogr D Struct Biol 2022; 78:698-708. [PMID: 35647917 PMCID: PMC9159286 DOI: 10.1107/s2059798322004144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/19/2022] [Indexed: 03/28/2024] Open
Abstract
Serial crystallography is a rapidly growing method that can yield structural insights from microcrystals that were previously considered to be too small to be useful in conventional X-ray crystallography. Here, conditions for growing microcrystals of the photosynthetic reaction centre of Blastochloris viridis within a lipidic cubic phase (LCP) crystallization matrix that employ a seeding protocol utilizing detergent-grown crystals with a different crystal packing are described. LCP microcrystals diffracted to 2.25 Å resolution when exposed to XFEL radiation, which is an improvement of 0.15 Å over previous microcrystal forms. Ubiquinone was incorporated into the LCP crystallization media and the resulting electron density within the mobile QB pocket is comparable to that of other cofactors within the structure. As such, LCP microcrystallization conditions will facilitate time-resolved diffraction studies of electron-transfer reactions to the mobile quinone, potentially allowing the observation of structural changes associated with the two electron-transfer reactions leading to complete reduction of the ubiquinone ligand.
Collapse
Affiliation(s)
- Petra Båth
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Analia Banacore
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Per Börjesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Robert Bosman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Cecilia Wickstrand
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Cecilia Safari
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Robert Dods
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Swagatha Ghosh
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Peter Dahl
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Giorgia Ortolani
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Tinna Björg Ulfarsdottir
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Greger Hammarin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - María-José García Bonete
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Adams Vallejos
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Lucija Ostojić
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Petra Edlund
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Johanna-Barbara Linse
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Rebecka Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Rie Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Fangjia Luo
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Daniel James
- SwissFEL, Paul Scherrer Institute, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
| | - Karol Nass
- SwissFEL, Paul Scherrer Institute, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
| | - Philip J. M. Johnson
- SwissFEL, Paul Scherrer Institute, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
| | - Gregor Knopp
- SwissFEL, Paul Scherrer Institute, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
| | - Dmitry Ozerov
- SwissFEL, Paul Scherrer Institute, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
| | - Claudio Cirelli
- SwissFEL, Paul Scherrer Institute, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
| | - Christopher Milne
- SwissFEL, Paul Scherrer Institute, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| |
Collapse
|
5
|
Guéguen N, Maréchal E. Origin of cyanobacterial thylakoids via a non-vesicular glycolipid phase transition and their impact on the Great Oxygenation Event. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2721-2734. [PMID: 35560194 DOI: 10.1093/jxb/erab429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/16/2021] [Indexed: 06/15/2023]
Abstract
The appearance of oxygenic photosynthesis in cyanobacteria is a major event in evolution. It had an irreversible impact on the Earth, promoting the Great Oxygenation Event (GOE) ~2.4 billion years ago. Ancient cyanobacteria predating the GOE were Gloeobacter-type cells lacking thylakoids, which hosted photosystems in their cytoplasmic membrane. The driver of the GOE was proposed to be the transition from unicellular to filamentous cyanobacteria. However, the appearance of thylakoids expanded the photosynthetic surface to such an extent that it introduced a multiplier effect, which would be more coherent with an impact on the atmosphere. Primitive thylakoids self-organize as concentric parietal uninterrupted multilayers. There is no robust evidence for an origin of thylakoids via a vesicular-based scenario. This review reports studies supporting that hexagonal II-forming glucolipids and galactolipids at the periphery of the cytosolic membrane could be turned, within nanoseconds and without any external source of energy, into membrane multilayers. Comparison of lipid biosynthetic pathways shows that ancient cyanobacteria contained only one anionic lamellar-forming lipid, phosphatidylglycerol. The acquisition of sulfoquinovosyldiacylglycerol biosynthesis correlates with thylakoid emergence, possibly enabling sufficient provision of anionic lipids to trigger a hexagonal II-to-lamellar phase transition. With this non-vesicular lipid-phase transition, a framework is also available to re-examine the role of companion proteins in thylakoid biogenesis.
Collapse
Affiliation(s)
- Nolwenn Guéguen
- Laboratoire de Physiologie Cellulaire et Végétale; INRAE, CNRS, CEA, Université Grenoble Alpes; IRIG; CEA Grenoble, 17 rue des Martyrs, 38000 Grenoble, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale; INRAE, CNRS, CEA, Université Grenoble Alpes; IRIG; CEA Grenoble, 17 rue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
6
|
Ultrafast structural changes within a photosynthetic reaction centre. Nature 2021; 589:310-314. [PMID: 33268896 DOI: 10.1038/s41586-020-3000-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/28/2020] [Indexed: 01/29/2023]
Abstract
Photosynthetic reaction centres harvest the energy content of sunlight by transporting electrons across an energy-transducing biological membrane. Here we use time-resolved serial femtosecond crystallography1 using an X-ray free-electron laser2 to observe light-induced structural changes in the photosynthetic reaction centre of Blastochloris viridis on a timescale of picoseconds. Structural perturbations first occur at the special pair of chlorophyll molecules of the photosynthetic reaction centre that are photo-oxidized by light. Electron transfer to the menaquinone acceptor on the opposite side of the membrane induces a movement of this cofactor together with lower amplitude protein rearrangements. These observations reveal how proteins use conformational dynamics to stabilize the charge-separation steps of electron-transfer reactions.
Collapse
|
7
|
Membrane protein crystallography in the era of modern structural biology. Biochem Soc Trans 2020; 48:2505-2524. [DOI: 10.1042/bst20200066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
The aim of structural biology has been always the study of biological macromolecules structures and their mechanistic behaviour at molecular level. To achieve its goal, multiple biophysical methods and approaches have become part of the structural biology toolbox. Considered as one of the pillars of structural biology, X-ray crystallography has been the most successful method for solving three-dimensional protein structures at atomic level to date. It is however limited by the success in obtaining well-ordered protein crystals that diffract at high resolution. This is especially true for challenging targets such as membrane proteins (MPs). Understanding structure-function relationships of MPs at the biochemical level is vital for medicine and drug discovery as they play critical roles in many cellular processes. Though difficult, structure determination of MPs by X-ray crystallography has significantly improved in the last two decades, mainly due to many relevant technological and methodological developments. Today, numerous MP crystal structures have been solved, revealing many of their mechanisms of action. Yet the field of structural biology has also been through significant technological breakthroughs in recent years, particularly in the fields of single particle electron microscopy (cryo-EM) and X-ray free electron lasers (XFELs). Here we summarise the most important advancements in the field of MP crystallography and the significance of these developments in the present era of modern structural biology.
Collapse
|
8
|
Selikhanov G, Fufina T, Vasilieva L, Betzel C, Gabdulkhakov A. Novel approaches for the lipid sponge phase crystallization of the Rhodobacter sphaeroides photosynthetic reaction center. IUCRJ 2020; 7:1084-1091. [PMID: 33209319 PMCID: PMC7642779 DOI: 10.1107/s2052252520012142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
With the recent developments in the field of free-electron-laser-based serial femtosecond crystallography, the necessity to obtain a large number of high-quality crystals has emerged. In this work crystallization techniques were selected, tested and optimized for the lipid mesophase crystallization of the Rhodobacter sphaeroides membrane pigment-protein complex, known as the photosynthetic reaction center (RC). Novel approaches for lipid sponge phase crystallization in comparatively large volumes using Hamilton gas-tight glass syringes and plastic pipetting tips are described. An analysis of RC crystal structures obtained by lipid mesophase crystallization revealed non-native ligands that displaced the native electron-transfer cofactors (carotenoid sphero-idene and a ubi-quinone molecule) from their binding pockets. These ligands were identified and were found to be lipids that are major mesophase components. The selection of distinct co-crystallization conditions with the missing cofactors facilitated the restoration of sphero-idene in its binding site.
Collapse
Affiliation(s)
- Georgii Selikhanov
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, Puschino, Moscow region 142290, Russian Federation
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya 2, Puschino, Moscow region 142290, Russian Federation
| | - Tatiana Fufina
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya 2, Puschino, Moscow region 142290, Russian Federation
| | - Lyudmila Vasilieva
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya 2, Puschino, Moscow region 142290, Russian Federation
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, University of Hamburg, at Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, Hamburg, 22607, Germany
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, Hamburg, 22761, Germany
| | - Azat Gabdulkhakov
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, Puschino, Moscow region 142290, Russian Federation
| |
Collapse
|
9
|
Miller LC, Zhao L, Canniffe DP, Martin D, Liu LN. Unfolding pathway and intermolecular interactions of the cytochrome subunit in the bacterial photosynthetic reaction center. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148204. [PMID: 32305414 PMCID: PMC7322399 DOI: 10.1016/j.bbabio.2020.148204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/15/2020] [Accepted: 04/14/2020] [Indexed: 11/25/2022]
Abstract
Precise folding of photosynthetic proteins and organization of multicomponent assemblies to form functional entities are fundamental to efficient photosynthetic electron transfer. The bacteriochlorophyll b-producing purple bacterium Blastochloris viridis possesses a simplified photosynthetic apparatus. The light-harvesting (LH) antenna complex surrounds the photosynthetic reaction center (RC) to form the RC-LH1 complex. A non-membranous tetraheme cytochrome (4Hcyt) subunit is anchored at the periplasmic surface of the RC, functioning as the electron donor to transfer electrons from mobile electron carriers to the RC. Here, we use atomic force microscopy (AFM) and single-molecule force spectroscopy (SMFS) to probe the long-range organization of the photosynthetic apparatus from Blc. viridis and the unfolding pathway of the 4Hcyt subunit in its native supramolecular assembly with its functional partners. AFM images reveal that the RC-LH1 complexes are densely organized in the photosynthetic membranes, with restricted lateral protein diffusion. Unfolding of the 4Hcyt subunit represents a multi-step process and the unfolding forces of the 4Hcyt α-helices are approximately 121 picoNewtons. Pulling of 4Hcyt could also result in the unfolding of the RC L subunit that binds with the N-terminus of 4Hcyt, suggesting strong interactions between RC subunits. This study provides new insights into the protein folding and interactions of photosynthetic multicomponent complexes, which are essential for their structural and functional integrity to conduct photosynthetic electron flow. AFM and single-molecule force spectroscopy reveal the membrane organization and unfolding process of Blastochloris viridis RC RC-light-harvesting 1 complexes are densely organized in photosynthetic membranes, with restricted lateral diffusion Unfolding of the non-membranous cytochrome (4Hcyt) subunit represents a multi-step process; The average unfolding forces of the 4Hcyt α-helices are ~121 pN; Pulling of 4Hcyt from the RC suggests strong interactions (> 150 pN) between 4Hcyt and L subunits in the RC structure.
Collapse
Affiliation(s)
- Leanne C Miller
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom; Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom
| | - Longsheng Zhao
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom; State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Daniel P Canniffe
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - David Martin
- Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom; College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
10
|
Structure and Functional Characterization of Membrane Integral Proteins in the Lipid Cubic Phase. J Mol Biol 2020; 432:5104-5123. [PMID: 32113953 DOI: 10.1016/j.jmb.2020.02.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 12/19/2022]
Abstract
The lipid cubic phase (LCP) has been used extensively as a medium for crystallizing membrane proteins. It is an attractive environment in which to perform such studies because it incorporates a lipid bilayer. It is therefore considered a useful and a faithful biomembrane mimetic. Here, we bring together evidence that supports this view. Biophysical characterizations are described demonstrating that the cubic phase is a porous medium into and out of which water-soluble molecules can diffuse for binding to and reaction with reconstituted proteins. The proteins themselves are shown to be functionally reconstituted into and to have full mobility in the bilayered membrane, a prerequisite for LCP crystallogenesis. Spectroscopic methods have been used to characterize the conformation and disposition of proteins in the mesophase. Procedures for performing activity assays on enzymes directly in the cubic phase have been reported. Specific examples described here include a kinase and two transferases, where quantitative kinetics and mechanism-defining measurements were performed directly or via a coupled assay system. Finally, ligand-binding assays are described, where binding to proteins in the mesophase membrane was monitored directly by eye and indirectly by fluorescence quenching, enabling binding constant determinations for targets with affinity values in the micromolar and nanomolar range. These results make a convincing case that the lipid bilayer of the cubic mesophase is an excellent membrane mimetic and a suitable medium in which to perform not only crystallogenesis but also biochemical and biophysical characterizations of membrane proteins.
Collapse
|
11
|
Andersson R, Safari C, Båth P, Bosman R, Shilova A, Dahl P, Ghosh S, Dunge A, Kjeldsen-Jensen R, Nan J, Shoeman RL, Kloos M, Doak RB, Mueller U, Neutze R, Brändén G. Well-based crystallization of lipidic cubic phase microcrystals for serial X-ray crystallography experiments. Acta Crystallogr D Struct Biol 2019; 75:937-946. [PMID: 31588925 PMCID: PMC6779076 DOI: 10.1107/s2059798319012695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
Serial crystallography is having an increasing impact on structural biology. This emerging technique opens up new possibilities for studying protein structures at room temperature and investigating structural dynamics using time-resolved X-ray diffraction. A limitation of the method is the intrinsic need for large quantities of well ordered micrometre-sized crystals. Here, a method is presented to screen for conditions that produce microcrystals of membrane proteins in the lipidic cubic phase using a well-based crystallization approach. A key advantage over earlier approaches is that the progress of crystal formation can be easily monitored without interrupting the crystallization process. In addition, the protocol can be scaled up to efficiently produce large quantities of crystals for serial crystallography experiments. Using the well-based crystallization methodology, novel conditions for the growth of showers of microcrystals of three different membrane proteins have been developed. Diffraction data are also presented from the first user serial crystallography experiment performed at MAX IV Laboratory.
Collapse
Affiliation(s)
- Rebecka Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden
| | - Cecilia Safari
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden
| | - Petra Båth
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden
| | - Robert Bosman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden
| | | | - Peter Dahl
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden
| | - Swagatha Ghosh
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden
| | - Andreas Dunge
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, SE-431 50 Gothenburg, Sweden
| | - Rasmus Kjeldsen-Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark
| | - Jie Nan
- MAX IV Laboratory, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Robert L. Shoeman
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Marco Kloos
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - R. Bruce Doak
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Uwe Mueller
- MAX IV Laboratory, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden
| | - Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
12
|
Nagatsuma S, Gotou K, Yamashita T, Yu LJ, Shen JR, Madigan M, Kimura Y, Wang-Otomo ZY. Phospholipid distributions in purple phototrophic bacteria and LH1-RC core complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:461-468. [DOI: 10.1016/j.bbabio.2019.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/06/2019] [Accepted: 04/07/2019] [Indexed: 02/06/2023]
|
13
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
14
|
Yu LJ, Suga M, Wang-Otomo ZY, Shen JR. Novel features of LH1-RC from Thermochromatium tepidum revealed from its atomic resolution structure. FEBS J 2018; 285:4359-4366. [PMID: 30328658 DOI: 10.1111/febs.14679] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/09/2018] [Indexed: 11/28/2022]
Abstract
Light-harvesting-1 (LH1)-reaction center (RC) super-complex is a membrane protein-pigment complex existing in purple photosynthetic bacteria, where LH1 absorbs light energy and transfers them rapidly and efficiently to RC to initiate the charge separation and electron transfer reactions. The structure of LH1-RC has been reported at relatively low resolutions from several different species of bacteria previously, but was solved at an atomic resolution recently from a thermophilic photosynthetic bacterium Thermochromatium tepidum. This high-resolution structure revealed the detailed organization of the super-complex including a number of unique features that are important for its functioning, such as a more intact RC structure, transporting routes for quinones to replace the bound QB as well as for the in-and-out of the closed LH1 ring, detailed coordinating environment of the Ca2+ ions in LH1 important for the remarkable red shift of the absorption spectrum, as well as for the enhanced thermostability. These results thus greatly advance our understanding on the mechanisms of energy transfer, quinone exchange, the red shift in the LH1-Qy transition and the enhanced thermal stability, in this super-complex.
Collapse
Affiliation(s)
- Long-Jiang Yu
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Japan
| | - Michihiro Suga
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Japan
| | | | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Japan
| |
Collapse
|
15
|
Yu LJ, Suga M, Wang-Otomo ZY, Shen JR. Structure of photosynthetic LH1-RC supercomplex at 1.9 Å resolution. Nature 2018; 556:209-213. [PMID: 29618814 DOI: 10.1038/s41586-018-0002-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 02/23/2018] [Indexed: 11/09/2022]
Abstract
Light-harvesting complex 1 (LH1) and the reaction centre (RC) form a membrane-protein supercomplex that performs the primary reactions of photosynthesis in purple photosynthetic bacteria. The structure of the LH1-RC complex can provide information on the arrangement of protein subunits and cofactors; however, so far it has been resolved only at a relatively low resolution. Here we report the crystal structure of the calcium-ion-bound LH1-RC supercomplex of Thermochromatium tepidum at a resolution of 1.9 Å. This atomic-resolution structure revealed several new features about the organization of protein subunits and cofactors. We describe the loop regions of RC in their intact states, the interaction of these loop regions with the LH1 subunits, the exchange route for the bound quinone QB with free quinone molecules, the transport of free quinones between the inside and outside of the LH1 ring structure, and the detailed calcium-ion-binding environment. This structure provides a solid basis for the detailed examination of the light reactions that occur during bacterial photosynthesis.
Collapse
Affiliation(s)
- Long-Jiang Yu
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Michihiro Suga
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
| |
Collapse
|
16
|
Dods R, Båth P, Arnlund D, Beyerlein KR, Nelson G, Liang M, Harimoorthy R, Berntsen P, Malmerberg E, Johansson L, Andersson R, Bosman R, Carbajo S, Claesson E, Conrad CE, Dahl P, Hammarin G, Hunter MS, Li C, Lisova S, Milathianaki D, Robinson J, Safari C, Sharma A, Williams G, Wickstrand C, Yefanov O, Davidsson J, DePonte DP, Barty A, Brändén G, Neutze R. From Macrocrystals to Microcrystals: A Strategy for Membrane Protein Serial Crystallography. Structure 2017; 25:1461-1468.e2. [PMID: 28781082 DOI: 10.1016/j.str.2017.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/19/2017] [Accepted: 07/06/2017] [Indexed: 01/13/2023]
Abstract
Serial protein crystallography was developed at X-ray free-electron lasers (XFELs) and is now also being applied at storage ring facilities. Robust strategies for the growth and optimization of microcrystals are needed to advance the field. Here we illustrate a generic strategy for recovering high-density homogeneous samples of microcrystals starting from conditions known to yield large (macro) crystals of the photosynthetic reaction center of Blastochloris viridis (RCvir). We first crushed these crystals prior to multiple rounds of microseeding. Each cycle of microseeding facilitated improvements in the RCvir serial femtosecond crystallography (SFX) structure from 3.3-Å to 2.4-Å resolution. This approach may allow known crystallization conditions for other proteins to be adapted to exploit novel scientific opportunities created by serial crystallography.
Collapse
Affiliation(s)
- Robert Dods
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Petra Båth
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - David Arnlund
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Kenneth R Beyerlein
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Garrett Nelson
- Department of Physics, Arizona State University, Tempe, AZ, USA
| | - Mengling Liang
- Linac Coherent Light Source, Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory, Menlo Park, CA, USA
| | - Rajiv Harimoorthy
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Peter Berntsen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| | - Erik Malmerberg
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Linda Johansson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; The Bridge Institute, Department of Chemistry, University of Southern California, Los Angeles, CA 90089-3303, USA
| | - Rebecka Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Robert Bosman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Sergio Carbajo
- Linac Coherent Light Source, Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory, Menlo Park, CA, USA
| | - Elin Claesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | | | - Peter Dahl
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Greger Hammarin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Mark S Hunter
- Linac Coherent Light Source, Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory, Menlo Park, CA, USA
| | - Chufeng Li
- Department of Physics, Arizona State University, Tempe, AZ, USA
| | - Stella Lisova
- Department of Physics, Arizona State University, Tempe, AZ, USA
| | - Despina Milathianaki
- Linac Coherent Light Source, Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory, Menlo Park, CA, USA
| | - Joseph Robinson
- Linac Coherent Light Source, Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory, Menlo Park, CA, USA
| | - Cecilia Safari
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Amit Sharma
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Garth Williams
- Linac Coherent Light Source, Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory, Menlo Park, CA, USA
| | - Cecilia Wickstrand
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Jan Davidsson
- Department of Photochemistry and Molecular Science, Uppsala University, Uppsala, Sweden
| | - Daniel P DePonte
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Anton Barty
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
17
|
Sharma A, Johansson L, Dunevall E, Wahlgren WY, Neutze R, Katona G. Asymmetry in serial femtosecond crystallography data. Acta Crystallogr A Found Adv 2017; 73:93-101. [PMID: 28248658 PMCID: PMC5332129 DOI: 10.1107/s2053273316018696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/22/2016] [Indexed: 12/05/2022] Open
Abstract
Serial crystallography is an increasingly important approach to protein crystallography that exploits both X-ray free-electron laser (XFEL) and synchrotron radiation. Serial crystallography recovers complete X-ray diffraction data by processing and merging diffraction images from thousands of randomly oriented non-uniform microcrystals, of which all observations are partial Bragg reflections. Random fluctuations in the XFEL pulse energy spectrum, variations in the size and shape of microcrystals, integrating over millions of weak partial observations and instabilities in the XFEL beam position lead to new types of experimental errors. The quality of Bragg intensity estimates deriving from serial crystallography is therefore contingent upon assumptions made while modeling these data. Here it is observed that serial femtosecond crystallography (SFX) Bragg reflections do not follow a unimodal Gaussian distribution and it is recommended that an idealized assumption of single Gaussian peak profiles be relaxed to incorporate apparent asymmetries when processing SFX data. The phenomenon is illustrated by re-analyzing data collected from microcrystals of the Blastochloris viridis photosynthetic reaction center and comparing these intensity observations with conventional synchrotron data. The results show that skewness in the SFX observations captures the essence of the Wilson plot and an empirical treatment is suggested that can help to separate the diffraction Bragg intensity from the background.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, Gothenburg 40530, Sweden
| | - Linda Johansson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, Gothenburg 40530, Sweden
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Elin Dunevall
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, Gothenburg 40530, Sweden
| | - Weixiao Y. Wahlgren
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, Gothenburg 40530, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, Gothenburg 40530, Sweden
| | - Gergely Katona
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, Gothenburg 40530, Sweden
| |
Collapse
|
18
|
Chatron N, Chalmond B, Trouvé A, Benoît E, Caruel H, Lattard V, Tchertanov L. Identification of the functional states of human vitamin K epoxide reductase from molecular dynamics simulations. RSC Adv 2017. [DOI: 10.1039/c7ra07463h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The functionally-related states of hVKORC1 predicted from MD conformations were assigned by probing their affinity to vitamin K and validated through analysis of its binding energy with VKAs.
Collapse
Affiliation(s)
- N. Chatron
- Centre de Mathématiques et de Leurs Applications (CMLA)
- ENS Cachan
- CNRS
- Université Paris-Saclay
- Cachan
| | - B. Chalmond
- Centre de Mathématiques et de Leurs Applications (CMLA)
- ENS Cachan
- CNRS
- Université Paris-Saclay
- Cachan
| | - A. Trouvé
- Centre de Mathématiques et de Leurs Applications (CMLA)
- ENS Cachan
- CNRS
- Université Paris-Saclay
- Cachan
| | - E. Benoît
- USC 1233 INRA-Vetagro Sup
- Veterinary School of Lyon
- Marcy l'Etoile
- France
| | | | - V. Lattard
- USC 1233 INRA-Vetagro Sup
- Veterinary School of Lyon
- Marcy l'Etoile
- France
| | - L. Tchertanov
- Centre de Mathématiques et de Leurs Applications (CMLA)
- ENS Cachan
- CNRS
- Université Paris-Saclay
- Cachan
| |
Collapse
|
19
|
Neutze R. Opportunities and challenges for time-resolved studies of protein structural dynamics at X-ray free-electron lasers. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130318. [PMID: 24914150 PMCID: PMC4052859 DOI: 10.1098/rstb.2013.0318] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
X-ray free-electron lasers (XFELs) are revolutionary X-ray sources. Their time structure, providing X-ray pulses of a few tens of femtoseconds in duration; and their extreme peak brilliance, delivering approximately 1012 X-ray photons per pulse and facilitating sub-micrometre focusing, distinguish XFEL sources from synchrotron radiation. In this opinion piece, I argue that these properties of XFEL radiation will facilitate new discoveries in life science. I reason that time-resolved serial femtosecond crystallography and time-resolved wide angle X-ray scattering are promising areas of scientific investigation that will be advanced by XFEL capabilities, allowing new scientific questions to be addressed that are not accessible using established methods at storage ring facilities. These questions include visualizing ultrafast protein structural dynamics on the femtosecond to picosecond time-scale, as well as time-resolved diffraction studies of non-cyclic reactions. I argue that these emerging opportunities will stimulate a renaissance of interest in time-resolved structural biochemistry.
Collapse
Affiliation(s)
- Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, PO Box 462, 40530 Gothenburg, Sweden
| |
Collapse
|
20
|
Fenalti G, Abola EE, Wang C, Wu B, Cherezov V. Fluorescence Recovery After Photobleaching in Lipidic Cubic Phase (LCP-FRAP). Methods Enzymol 2015; 557:417-37. [DOI: 10.1016/bs.mie.2014.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
21
|
Johansson LC, Arnlund D, Katona G, White TA, Barty A, DePonte DP, Shoeman RL, Wickstrand C, Sharma A, Williams GJ, Aquila A, Bogan MJ, Caleman C, Davidsson J, Doak RB, Frank M, Fromme R, Galli L, Grotjohann I, Hunter MS, Kassemeyer S, Kirian RA, Kupitz C, Liang M, Lomb L, Malmerberg E, Martin AV, Messerschmidt M, Nass K, Redecke L, Seibert MM, Sjöhamn J, Steinbrener J, Stellato F, Wang D, Wahlgren WY, Weierstall U, Westenhoff S, Zatsepin NA, Boutet S, Spence JCH, Schlichting I, Chapman HN, Fromme P, Neutze R. Structure of a photosynthetic reaction centre determined by serial femtosecond crystallography. Nat Commun 2014; 4:2911. [PMID: 24352554 PMCID: PMC3905732 DOI: 10.1038/ncomms3911] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 11/08/2013] [Indexed: 11/22/2022] Open
Abstract
Serial femtosecond crystallography is an X-ray free-electron-laser-based method with considerable potential to have an impact on challenging problems in structural biology. Here we present X-ray diffraction data recorded from microcrystals of the Blastochloris viridis photosynthetic reaction centre to 2.8 Å resolution and determine its serial femtosecond crystallography structure to 3.5 Å resolution. Although every microcrystal is exposed to a dose of 33 MGy, no signs of X-ray-induced radiation damage are visible in this integral membrane protein structure. Serial femtosecond crystallography is an X-ray free-electron-laser-based method that uses X-ray bursts to determine protein structures. Here the authors present the structure of a photosynthetic reaction centre, an integral membrane protein, achieved with no sign of X-ray-induced radiation damage.
Collapse
Affiliation(s)
- Linda C Johansson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - David Arnlund
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Gergely Katona
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Thomas A White
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Anton Barty
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Daniel P DePonte
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Robert L Shoeman
- 1] Max-Planck-Institut für Medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany [2] Max Planck Advanced Study Group, Center for Free-Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany
| | - Cecilia Wickstrand
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Amit Sharma
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Garth J Williams
- Linac Coherent Light Source, LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, 94025 California, USA
| | - Andrew Aquila
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Michael J Bogan
- PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, 94025 California, USA
| | - Carl Caleman
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Jan Davidsson
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - R Bruce Doak
- Department of Physics, Arizona State University, Tempe, 85287 Arizona, USA
| | - Matthias Frank
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, 94550 California, USA
| | - Raimund Fromme
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, 85287-1604 Arizona, USA
| | - Lorenzo Galli
- 1] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany [2] Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Ingo Grotjohann
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, 85287-1604 Arizona, USA
| | - Mark S Hunter
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, 85287-1604 Arizona, USA
| | - Stephan Kassemeyer
- 1] Max-Planck-Institut für Medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany [2] Max Planck Advanced Study Group, Center for Free-Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany
| | - Richard A Kirian
- Department of Physics, Arizona State University, Tempe, 85287 Arizona, USA
| | - Christopher Kupitz
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, 85287-1604 Arizona, USA
| | - Mengning Liang
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Lukas Lomb
- 1] Max-Planck-Institut für Medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany [2] Max Planck Advanced Study Group, Center for Free-Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany
| | - Erik Malmerberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Andrew V Martin
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Marc Messerschmidt
- Linac Coherent Light Source, LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, 94025 California, USA
| | - Karol Nass
- 1] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany [2] Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Lars Redecke
- Joint Laboratory for Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University of Hamburg and Institute of Biochemistry, University of Lübeck at DESY, 22607 Hamburg, Germany
| | - M Marvin Seibert
- Linac Coherent Light Source, LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, 94025 California, USA
| | - Jennie Sjöhamn
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Jan Steinbrener
- 1] Max-Planck-Institut für Medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany [2] Max Planck Advanced Study Group, Center for Free-Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany
| | - Francesco Stellato
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Dingjie Wang
- Department of Physics, Arizona State University, Tempe, 85287 Arizona, USA
| | - Weixaio Y Wahlgren
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Uwe Weierstall
- Department of Physics, Arizona State University, Tempe, 85287 Arizona, USA
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Nadia A Zatsepin
- Department of Physics, Arizona State University, Tempe, 85287 Arizona, USA
| | - Sébastien Boutet
- Linac Coherent Light Source, LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, 94025 California, USA
| | - John C H Spence
- Department of Physics, Arizona State University, Tempe, 85287 Arizona, USA
| | - Ilme Schlichting
- 1] Max-Planck-Institut für Medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany [2] Max Planck Advanced Study Group, Center for Free-Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany
| | - Henry N Chapman
- 1] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany [2] Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Petra Fromme
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, 85287-1604 Arizona, USA
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
22
|
Feld GK, Frank M. Enabling membrane protein structure and dynamics with X-ray free electron lasers. Curr Opin Struct Biol 2014; 27:69-78. [PMID: 24930119 DOI: 10.1016/j.sbi.2014.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 10/25/2022]
Abstract
Determining the three-dimensional structures and dynamics of membrane proteins remains one of the great challenges of modern biology. The recent availability of X-ray free electron laser (XFEL) light sources has opened the door to a new and revolutionary approach to performing X-ray analysis of these important biomolecules. Recent advances in sample delivery, data reduction, and phasing have enabled the high-resolution structural probing of membrane proteins at room temperature. While considerable challenges remain, the recent developments described in this review may ultimately provide structural biologists with powerful tools for obtaining unprecedented atomic-scale and dynamic visualization of membrane proteins at near-physiological conditions.
Collapse
Affiliation(s)
- Geoffrey K Feld
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Matthias Frank
- Physics Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| |
Collapse
|
23
|
The binding of quinone to the photosynthetic reaction centers: kinetics and thermodynamics of reactions occurring at the QB-site in zwitterionic and anionic liposomes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:301-15. [PMID: 24824111 DOI: 10.1007/s00249-014-0963-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/07/2014] [Accepted: 04/25/2014] [Indexed: 12/29/2022]
Abstract
Liposomes represent a versatile biomimetic environment for studying the interaction between integral membrane proteins and hydrophobic ligands. In this paper, the quinone binding to the QB-site of the photosynthetic reaction centers (RC) from Rhodobacter sphaeroides has been investigated in liposomes prepared with either the zwitterionic phosphatidylcholine (PC) or the negatively charged phosphatidylglycerol (PG) to highlight the role of the different phospholipid polar heads. Quinone binding (K Q) and interquinone electron transfer (L AB) equilibrium constants in the two type of liposomes were obtained by charge recombination reaction of QB-depleted RC in the presence of increasing amounts of ubiquinone-10 over the temperature interval 6-35 °C. The kinetic of the charge recombination reactions has been fitted by numerically solving the ordinary differential equations set associated with a detailed kinetic scheme involving electron transfer reactions coupled with quinone release and uptake. The entire set of traces at each temperature was accurately fitted using the sole quinone release constants (both in a neutral and a charge separated state) as adjustable parameters. The temperature dependence of the quinone exchange rate at the QB-site was, hence, obtained. It was found that the quinone exchange regime was always fast for PC while it switched from slow to fast in PG as the temperature rose above 20 °C. A new method was introduced in this paper for the evaluation of constant K Q using the area underneath the charge recombination traces as the indicator of the amount of quinone bound to the QB-site.
Collapse
|
24
|
Lundholm I, Wahlgren WY, Piccirilli F, Di Pietro P, Duelli A, Berntsson O, Lupi S, Perucchi A, Katona G. Terahertz absorption of illuminated photosynthetic reaction center solution: a signature of photoactivation? RSC Adv 2014. [DOI: 10.1039/c4ra03787a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
25
|
Saif Hasan S, Baniulis D, Yamashita E, Zhalnina MV, Zakharov SD, Stofleth JT, Cramer WA. Methods for studying interactions of detergents and lipids with α-helical and β-barrel integral membrane proteins. ACTA ACUST UNITED AC 2013; 74:29.7.1-29.7.30. [PMID: 24510648 DOI: 10.1002/0471140864.ps2907s74] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Methods for studying interactions of protein with lipids and detergents are described for representatives of two major classes of membrane proteins: (1) the α-helical hetero-oligomeric integral cytochrome b6 f complex of oxygenic photosynthesis from cyanobacteria, and (2) the outer membrane β-barrel proteins BtuB and OmpF from Gram-negative Escherichia coli bacteria. Details are presented on the use of detergents for purification and crystallization of the b6 f complex as well as a method for lipid exchange. The positions of detergent and lipid molecules, which define eight potential lipid-binding sites in the b6 f complex, are described. Differences in detergent strategies for isolation and crystallization of β-barrel proteins relative to those for oligomeric helical membrane proteins are discussed, and purification and assessment of protein quality by circular dichroism (CD) is presented.
Collapse
Affiliation(s)
- S Saif Hasan
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Danas Baniulis
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana.,Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Babtai, Kaunas Region, Lithuania
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Mariya V Zhalnina
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Stanislav D Zakharov
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana.,Institute of Basic Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - Jason T Stofleth
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana.,Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California
| | - William A Cramer
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
26
|
Hasan SS, Cramer WA. Lipid functions in cytochrome bc complexes: an odd evolutionary transition in a membrane protein structure. Philos Trans R Soc Lond B Biol Sci 2013; 367:3406-11. [PMID: 23148267 DOI: 10.1098/rstb.2012.0058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lipid-binding sites and properties were compared in the hetero-oligomeric cytochrome (cyt) b(6)f and the yeast bc(1) complexes that function, respectively, in photosynthetic and respiratory electron transport. Seven lipid-binding sites in the monomeric unit of the dimeric cyanobacterial b(6)f complex overlap four sites in the Chlamydomonas reinhardtii algal b(6)f complex and four in the yeast bc(1) complex. The proposed lipid functions include: (i) interfacial-interhelix mediation between (a) the two 8-subunit monomers of the dimeric complex, (b) between the core domain (cyt b, subunit IV) and the six trans membrane helices of the peripheral domain (cyt f, iron-sulphur protein (ISP), and four small subunits in the boundary 'picket fence'); (ii) stabilization of the ISP domain-swapped trans-membrane helix; (iii) neutralization of basic residues in the single helix of cyt f and of the ISP; (iv) a 'latch' to photosystem I provided by the β-carotene chain protruding through the 'picket fence'; (v) presence of a lipid and chlorophyll a chlorin ring in b(6)f in place of the eighth helix in the bc(1) cyt b polypeptide. The question is posed of the function of the lipid substitution in relation to the evolutionary change between the eight and seven helix structures of the cyt b polypeptide. On the basis of the known n-side activation of light harvesting complex II (LHCII) kinase by the p-side level of plastoquinol, one possibility is that the change was directed by the selective advantage of p- to n-side trans membrane signalling functions in b(6)f, with the lipid either mediating this function or substituting for the trans membrane helix of a signalling protein lost in crystallization.
Collapse
Affiliation(s)
- S Saif Hasan
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
27
|
Khmelnitskiy AY, Khatypov RA, Khristin AM, Leonova MM, Vasilieva LG, Shuvalov VA. Charge separation in Rhodobacter sphaeroides mutant reaction centers with increased midpoint potential of the primary electron donor. BIOCHEMISTRY (MOSCOW) 2013; 78:60-7. [DOI: 10.1134/s0006297913010070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Effects of dehydration on light-induced conformational changes in bacterial photosynthetic reaction centers probed by optical and differential FTIR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:328-39. [PMID: 23103449 DOI: 10.1016/j.bbabio.2012.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/16/2012] [Accepted: 10/19/2012] [Indexed: 11/22/2022]
Abstract
Following light-induced electron transfer between the primary donor (P) and quinone acceptor (Q(A)) the bacterial photosynthetic reaction center (RC) undergoes conformational relaxations which stabilize the primary charge separated state P(+)Q(A)(-). Dehydration of RCs from Rhodobacter sphaeroides hinders these conformational dynamics, leading to acceleration of P(+)Q(A)(-) recombination kinetics [Malferrari et al., J. Phys. Chem. B 115 (2011) 14732-14750]. To clarify the structural basis of the conformational relaxations and the involvement of bound water molecules, we analyzed light-induced P(+)Q(A)(-)/PQ(A) difference FTIR spectra of RC films at two hydration levels (relative humidity r=76% and r=11%). Dehydration reduced the amplitude of bands in the 3700-3550cm(-1) region, attributed to water molecules hydrogen bonded to the RC, previously proposed to stabilize the charge separation by dielectric screening [Iwata et al., Biochemistry 48 (2009) 1220-1229]. Other features of the FTIR difference spectrum were affected by partial depletion of the hydration shell (r=11%), including contributions from modes of P (9-keto groups), and from NH or OH stretching modes of amino acidic residues, absorbing in the 3550-3150cm(-1) range, a region so far not examined in detail for bacterial RCs. To probe in parallel the effects of dehydration on the RC conformational relaxations, we analyzed by optical absorption spectroscopy the kinetics of P(+)Q(A)(-) recombination following the same photoexcitation used in FTIR measurements (20s continuous illumination). The results suggest a correlation between the observed FTIR spectral changes and the conformational rearrangements which, in the hydrated system, strongly stabilize the P(+)Q(A)(-) charge separated state over the second time scale.
Collapse
|
29
|
Neutze R, Moffat K. Time-resolved structural studies at synchrotrons and X-ray free electron lasers: opportunities and challenges. Curr Opin Struct Biol 2012; 22:651-9. [PMID: 23021004 PMCID: PMC3520507 DOI: 10.1016/j.sbi.2012.08.006] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/27/2012] [Accepted: 08/31/2012] [Indexed: 11/19/2022]
Abstract
X-ray free electron lasers (XFELs) are potentially revolutionary X-ray sources because of their very short pulse duration, extreme peak brilliance and high spatial coherence, features that distinguish them from today's synchrotron sources. We review recent time-resolved Laue diffraction and time-resolved wide angle X-ray scattering (WAXS) studies at synchrotron sources, and initial static studies at XFELs. XFELs have the potential to transform the field of time-resolved structural biology, yet many challenges arise in devising and adapting hardware, experimental design and data analysis strategies to exploit their unusual properties. Despite these challenges, we are confident that XFEL sources are poised to shed new light on ultrafast protein reaction dynamics.
Collapse
Affiliation(s)
- Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530 Gothenburg, Sweden.
| | | |
Collapse
|
30
|
Salon JA, Lodowski DT, Palczewski K. The significance of G protein-coupled receptor crystallography for drug discovery. Pharmacol Rev 2012; 63:901-37. [PMID: 21969326 DOI: 10.1124/pr.110.003350] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Crucial as molecular sensors for many vital physiological processes, seven-transmembrane domain G protein-coupled receptors (GPCRs) comprise the largest family of proteins targeted by drug discovery. Together with structures of the prototypical GPCR rhodopsin, solved structures of other liganded GPCRs promise to provide insights into the structural basis of the superfamily's biochemical functions and assist in the development of new therapeutic modalities and drugs. One of the greatest technical and theoretical challenges to elucidating and exploiting structure-function relationships in these systems is the emerging concept of GPCR conformational flexibility and its cause-effect relationship for receptor-receptor and receptor-effector interactions. Such conformational changes can be subtle and triggered by relatively small binding energy effects, leading to full or partial efficacy in the activation or inactivation of the receptor system at large. Pharmacological dogma generally dictates that these changes manifest themselves through kinetic modulation of the receptor's G protein partners. Atomic resolution information derived from increasingly available receptor structures provides an entrée to the understanding of these events and practically applying it to drug design. Supported by structure-activity relationship information arising from empirical screening, a unified structural model of GPCR activation/inactivation promises to both accelerate drug discovery in this field and improve our fundamental understanding of structure-based drug design in general. This review discusses fundamental problems that persist in drug design and GPCR structural determination.
Collapse
Affiliation(s)
- John A Salon
- Department of Molecular Structure, Amgen Incorporated, Thousand Oaks, California, USA
| | | | | |
Collapse
|
31
|
Efremov RG, Sazanov LA. Structure of Escherichia coli OmpF porin from lipidic mesophase. J Struct Biol 2012; 178:311-8. [PMID: 22484237 DOI: 10.1016/j.jsb.2012.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 03/13/2012] [Accepted: 03/20/2012] [Indexed: 10/28/2022]
Abstract
Outer membrane protein F, a major component of the Escherichia coli outer membrane, was crystallized for the first time in lipidic mesophase of monoolein in novel space groups, P1 and H32. Due to ease of its purification and crystallization OmpF can be used as a benchmark protein for establishing membrane protein crystallization in meso, as a "membrane lyzozyme". The packing of porin trimers in the crystals of space group H32 is similar to natural outer membranes, providing the first high-resolution insight into the close to native packing of OmpF. Surprisingly, interaction between trimers is mediated exclusively by lipids, without direct protein-protein contacts. Multiple ordered lipids are observed and many of them occupy identical positions independently of the space group, identifying preferential interaction sites of lipid acyl chains. Presence of ordered aliphatic chains close to a positively charged area on the porin surface suggests a position for a lipopolysaccharide binding site on the surface of the major E. coli porins.
Collapse
Affiliation(s)
- Rouslan G Efremov
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | | |
Collapse
|
32
|
New insights into the structure of the reaction centre from Blastochloris viridis: evolution in the laboratory. Biochem J 2012; 442:27-37. [PMID: 22054235 DOI: 10.1042/bj20111540] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Newly determined crystal structures of the photosynthetic RC (reaction centre) from two substrains of the non-sulfur purple bacterium Blastochloris viridis strain DSM 133, together with analysis of their gene sequences, has revealed intraspecies evolutionary changes over a period of 14 years. Over 100 point mutations were identified between these two substrains in the four genes encoding the protein subunits of the RC, of which approximately one-fifth resulted in a total of 16 amino acid changes. The most interesting difference was in the M subunit where the change from a leucine residue to glycine in the carotenoid-binding pocket allowed NS5 (1,2-dihydroneurosporene) to adopt a more sterically favoured conformation, similar to the carotenoid conformation found in other related RCs. The results of the present study, together with a high rate of mutations in laboratory bacterial cultures described recently, suggest that bacteria evolve faster than has been generally recognized. The possibility that amino acid changes occur within protein sequences, without exhibiting any immediately observable phenotype, should be taken into account in studies that involve long-term continuous growth of pure bacterial cultures. The Blc. viridis RC is often studied with sophisticated biophysical techniques and changes such as those described here may well affect their outcome. In other words, there is a danger that laboratory-to-laboratory variation could well be due to different groups not realising that they are actually working with slightly different proteins. A way around this problem is suggested.
Collapse
|
33
|
Padayatti P, Palczewska G, Sun W, Palczewski K, Salom D. Imaging of protein crystals with two-photon microscopy. Biochemistry 2012; 51:1625-37. [PMID: 22324807 DOI: 10.1021/bi201682q] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Second-order nonlinear optical imaging of chiral crystals (SONICC), which portrays second-harmonic generation (SHG) by noncentrosymmetric crystals, is emerging as a powerful imaging technique for protein crystals in media opaque to visible light because of its high signal-to-noise ratio. Here we report the incorporation of both SONICC and two-photon excited fluorescence (TPEF) into one imaging system that allows visualization of crystals as small as ~10 μm in their longest dimension. Using this system, we then documented an inverse correlation between the level of symmetry in examined crystals and the intensity of their SHG. Moreover, because of blue-green TPEF exhibited by most tested protein crystals, we also could identify and image SHG-silent protein crystals. Our experimental data suggest that the TPEF in protein crystals is mainly caused by the oxidation of tryptophan residues. Additionally, we found that unspecific fluorescent dyes are able to bind to lysozyme crystals and enhance their detection by TPEF. We finally confirmed that the observed fluorescence was generated by a two-photon rather than a three-photon process. The capability for imaging small protein crystals in turbid or opaque media with nondamaging infrared light in a single system makes the combination of SHG and intrinsic visible TPEF a powerful tool for nondestructive protein crystal identification and characterization during crystallization trials.
Collapse
|
34
|
Lipidic phase membrane protein serial femtosecond crystallography. Nat Methods 2012; 9:263-5. [PMID: 22286383 DOI: 10.1038/nmeth.1867] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 12/16/2011] [Indexed: 11/08/2022]
Abstract
X-ray free electron laser (X-FEL)-based serial femtosecond crystallography is an emerging method with potential to rapidly advance the challenging field of membrane protein structural biology. Here we recorded interpretable diffraction data from micrometer-sized lipidic sponge phase crystals of the Blastochloris viridis photosynthetic reaction center delivered into an X-FEL beam using a sponge phase micro-jet.
Collapse
|
35
|
Kargul J, Barber J. Structure and Function of Photosynthetic Reaction Centres. MOLECULAR SOLAR FUELS 2011. [DOI: 10.1039/9781849733038-00107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Extensive biochemical, biophysical, molecular biological and structural studies on a wide range of prokaryotic and eukaryotic photosynthetic organisms has revealed common features of their reaction centres where light induced charge separation and stabilization occurs. There is little doubt that all reaction centres have evolved from a common ancestor and have been optimized to maximum efficiency. As such they provide principles that can be used as a blueprint for developing artificial photo-electrochemical catalytic systems to generate solar fuels. This chapter summarises the common features of the organization of cofactors, electron transfer pathways and protein environments of reaction centres of anoxygenic and oxygenic phototrophs. In particular, the latest molecular details derived from X-ray crystallography are discussed in context of the specific catalytic functions of the Type I and Type II reaction centres.
Collapse
Affiliation(s)
- Joanna Kargul
- Division of Molecular Biosciences, Faculty of Natural Sciences Imperial College London, London, SW7 2AZ UK
| | - James Barber
- Division of Molecular Biosciences, Faculty of Natural Sciences Imperial College London, London, SW7 2AZ UK
| |
Collapse
|
36
|
König C, Neugebauer J. Quantum chemical description of absorption properties and excited-state processes in photosynthetic systems. Chemphyschem 2011; 13:386-425. [PMID: 22287108 DOI: 10.1002/cphc.201100408] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Indexed: 11/07/2022]
Abstract
The theoretical description of the initial steps in photosynthesis has gained increasing importance over the past few years. This is caused by more and more structural data becoming available for light-harvesting complexes and reaction centers which form the basis for atomistic calculations and by the progress made in the development of first-principles methods for excited electronic states of large molecules. In this Review, we discuss the advantages and pitfalls of theoretical methods applicable to photosynthetic pigments. Besides methodological aspects of excited-state electronic-structure methods, studies on chlorophyll-type and carotenoid-like molecules are discussed. We also address the concepts of exciton coupling and excitation-energy transfer (EET) and compare the different theoretical methods for the calculation of EET coupling constants. Applications to photosynthetic light-harvesting complexes and reaction centers based on such models are also analyzed.
Collapse
Affiliation(s)
- Carolin König
- Institute for Physical and Theoretical Chemistry, Technical University Braunschweig, Braunschweig, Germany
| | | |
Collapse
|
37
|
Hasan SS, Yamashita E, Ryan CM, Whitelegge JP, Cramer WA. Conservation of lipid functions in cytochrome bc complexes. J Mol Biol 2011; 414:145-62. [PMID: 21978667 DOI: 10.1016/j.jmb.2011.09.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 09/05/2011] [Accepted: 09/14/2011] [Indexed: 11/24/2022]
Abstract
Lipid binding sites and properties are compared in two sub-families of hetero-oligomeric membrane protein complexes known to have similar functions in order to gain further understanding of the role of lipid in the function, dynamics, and assembly of these complexes. Using the crystal structure information for both complexes, we compared the lipid binding properties of the cytochrome b(6)f and bc(1) complexes that function in photosynthetic and respiratory membrane energy transduction. Comparison of lipid and detergent binding sites in the b(6)f complex with those in bc(1) shows significant conservation of lipid positions. Seven lipid binding sites in the cyanobacterial b(6)f complex overlap three natural sites in the Chlamydomonas reinhardtii algal complex and four sites in the yeast mitochondrial bc(1) complex. The specific identity of lipids is different in b(6)f and bc(1) complexes: b(6)f contains sulfoquinovosyldiacylglycerol, phosphatidylglycerol, phosphatidylcholine, monogalactosyldiacylglycerol, and digalactosyldiacylglycerol, whereas cardiolipin, phosphatidylethanolamine, and phosphatidic acid are present in the yeast bc(1) complex. The lipidic chlorophyll a and β-carotene (β-car) in cyanobacterial b(6)f, as well as eicosane in C. reinhardtii, are unique to the b(6)f complex. Inferences of lipid binding sites and functions were supported by sequence, interatomic distance, and B-factor information on interacting lipid groups and coordinating amino acid residues. The lipid functions inferred in the b(6)f complex are as follows: (i) substitution of a transmembrane helix by a lipid and chlorin ring, (ii) lipid and β-car connection of peripheral and core domains, (iii) stabilization of the iron-sulfur protein transmembrane helix, (iv) n-side charge and polarity compensation, and (v) β-car-mediated super-complex with the photosystem I complex.
Collapse
Affiliation(s)
- S Saif Hasan
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
38
|
Wallace E, Dranow D, Laible PD, Christensen J, Nollert P. Monoolein lipid phases as incorporation and enrichment materials for membrane protein crystallization. PLoS One 2011; 6:e24488. [PMID: 21909395 PMCID: PMC3164205 DOI: 10.1371/journal.pone.0024488] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 08/11/2011] [Indexed: 11/19/2022] Open
Abstract
The crystallization of membrane proteins in amphiphile-rich materials such as lipidic cubic phases is an established methodology in many structural biology laboratories. The standard procedure employed with this methodology requires the generation of a highly viscous lipidic material by mixing lipid, for instance monoolein, with a solution of the detergent solubilized membrane protein. This preparation is often carried out with specialized mixing tools that allow handling of the highly viscous materials while minimizing dead volume to save precious membrane protein sample. The processes that occur during the initial mixing of the lipid with the membrane protein are not well understood. Here we show that the formation of the lipidic phases and the incorporation of the membrane protein into such materials can be separated experimentally. Specifically, we have investigated the effect of different initial monoolein-based lipid phase states on the crystallization behavior of the colored photosynthetic reaction center from Rhodobacter sphaeroides. We find that the detergent solubilized photosynthetic reaction center spontaneously inserts into and concentrates in the lipid matrix without any mixing, and that the initial lipid material phase state is irrelevant for productive crystallization. A substantial in-situ enrichment of the membrane protein to concentration levels that are otherwise unobtainable occurs in a thin layer on the surface of the lipidic material. These results have important practical applications and hence we suggest a simplified protocol for membrane protein crystallization within amphiphile rich materials, eliminating any specialized mixing tools to prepare crystallization experiments within lipidic cubic phases. Furthermore, by virtue of sampling a membrane protein concentration gradient within a single crystallization experiment, this crystallization technique is more robust and increases the efficiency of identifying productive crystallization parameters. Finally, we provide a model that explains the incorporation of the membrane protein from solution into the lipid phase via a portal lamellar phase.
Collapse
Affiliation(s)
- Ellen Wallace
- Emerald BioStructures, Bainbridge Island, Washington, United States of America
| | - David Dranow
- Emerald BioStructures, Bainbridge Island, Washington, United States of America
| | - Philip D. Laible
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Jeff Christensen
- Emerald BioStructures, Bainbridge Island, Washington, United States of America
| | - Peter Nollert
- Emerald BioStructures, Bainbridge Island, Washington, United States of America
| |
Collapse
|
39
|
Xu F, Liu W, Hanson MA, Stevens RC, Cherezov V. Development of an Automated High Throughput LCP-FRAP Assay to Guide Membrane Protein Crystallization in Lipid Mesophases. CRYSTAL GROWTH & DESIGN 2011; 11:1193-1201. [PMID: 21660116 PMCID: PMC3108193 DOI: 10.1021/cg101385e] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Crystallization in lipidic mesophases (in meso) has been successfully used to obtain a number of high-resolution membrane protein structures including challenging members of the human G protein-coupled receptor (GPCR) family. Crystallogenesis in arguably the most successful mesophase, lipidic cubic phase (LCP), critically depends on the ability of protein to diffuse in the LCP matrix and to form specific protein-protein contacts to support crystal nucleation and growth. The ability of an integral membrane protein to diffuse in LCP is strongly affected by the protein aggregation state, the structural parameters of LCP, and the chemical environment. In order to satisfy both requirements of diffusion and specific interactions, one must balance multiple parameters, such as identity of LCP host lipid, composition of precipitant solution, identity of ligand, and protein modifications. Screening within such multi-dimensional crystallization space presents a significant bottleneck in obtaining initial crystal leads. To reduce this combinatorial challenge, we developed a pre-crystallization screening assay to measure the diffusion characteristics of a protein target in LCP. Utilizing the Fluorescence Recovery After Photobleaching (FRAP) technique in an automated and high throughput manner, we were able to map conditions that support adequate diffusion in LCP using a minimal amount of protein. Data collection and processing protocols were validated using two model GPCR targets: the β(2)-adrenergic receptor and the A(2A) adenosine receptor.
Collapse
|
40
|
Cramer WA, Hasan SS, Yamashita E. The Q cycle of cytochrome bc complexes: a structure perspective. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:788-802. [PMID: 21352799 DOI: 10.1016/j.bbabio.2011.02.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 02/08/2011] [Accepted: 02/13/2011] [Indexed: 12/01/2022]
Abstract
Aspects of the crystal structures of the hetero-oligomeric cytochrome bc(1) and b(6)f ("bc") complexes relevant to their electron/proton transfer function and the associated redox reactions of the lipophilic quinones are discussed. Differences between the b(6)f and bc(1) complexes are emphasized. The cytochrome bc(1) and b(6)f dimeric complexes diverge in structure from a core of subunits that coordinate redox groups consisting of two bis-histidine coordinated hemes, a heme b(n) and b(p) on the electrochemically negative (n) and positive (p) sides of the complex, the high potential [2Fe-2S] cluster and c-type heme at the p-side aqueous interface and aqueous phase, respectively, and quinone/quinol binding sites on the n- and p-sides of the complex. The bc(1) and b(6)f complexes diverge in subunit composition and structure away from this core. b(6)f Also contains additional prosthetic groups including a c-type heme c(n) on the n-side, and a chlorophyll a and β-carotene. Common structure aspects; functions of the symmetric dimer. (I) Quinone exchange with the bilayer. An inter-monomer protein-free cavity of approximately 30Å along the membrane normal×25Å (central inter-monomer distance)×15Å (depth in the center), is common to both bc(1) and b(6)f complexes, providing a niche in which the lipophilic quinone/quinol (Q/QH(2)) can be exchanged with the membrane bilayer. (II) Electron transfer. The dimeric structure and the proximity of the two hemes b(p) on the electrochemically positive side of the complex in the two monomer units allow the possibility of two alternate routes of electron transfer across the complex from heme b(p) to b(n): intra-monomer and inter-monomer involving electron cross-over between the two hemes b(p). A structure-based summary of inter-heme distances in seven bc complexes, representing mitochondrial, chromatophore, cyanobacterial, and algal sources, indicates that, based on the distance parameter, the intra-monomer pathway would be favored kinetically. (III) Separation of quinone binding sites. A consequence of the dimer structure and the position of the Q/QH(2) binding sites is that the p-side QH(2) oxidation and n-side Q reduction sites are each well separated. Therefore, in the event of an overlap in residence time by QH(2) or Q molecules at the two oxidation or reduction sites, their spatial separation would result in minimal steric interference between extended Q or QH(2) isoprenoid chains. (IV) Trans-membrane QH(2)/Q transfer. (i) n/p-side QH(2)/Q transfer may be hindered by lipid acyl chains; (ii) the shorter less hindered inter-monomer pathway across the complex would not pass through the center of the cavity, as inferred from the n-side antimycin site on one monomer and the p-side stigmatellin site on the other residing on the same surface of the complex. (V) Narrow p-side portal for QH(2)/Q passage. The [2Fe-2S] cluster that serves as oxidant, and whose histidine ligand serves as a H(+) acceptor in the oxidation of QH(2), is connected to the inter-monomer cavity by a narrow extended portal, which is also occupied in the b(6)f complex by the 20 carbon phytyl chain of the bound chlorophyll.
Collapse
Affiliation(s)
- William A Cramer
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
41
|
Wöhri AB, Katona G, Johansson LC, Fritz E, Malmerberg E, Andersson M, Vincent J, Eklund M, Cammarata M, Wulff M, Davidsson J, Groenhof G, Neutze R. Light-Induced Structural Changes in a Photosynthetic Reaction Center Caught by Laue Diffraction. Science 2010; 328:630-3. [PMID: 20431017 DOI: 10.1126/science.1186159] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Annemarie B Wöhri
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Box 462, SE-40530 Göteborg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|