1
|
Łabuz J, Sztatelman O, Hermanowicz P. Molecular insights into the phototropin control of chloroplast movements. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6034-6051. [PMID: 35781490 DOI: 10.1093/jxb/erac271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Chloroplast movements are controlled by ultraviolet/blue light through phototropins. In Arabidopsis thaliana, chloroplast accumulation at low light intensities and chloroplast avoidance at high light intensities are observed. These responses are controlled by two homologous photoreceptors, the phototropins phot1 and phot2. Whereas chloroplast accumulation is triggered by both phototropins in a partially redundant manner, sustained chloroplast avoidance is elicited only by phot2. Phot1 is able to trigger only a small, transient chloroplast avoidance, followed by the accumulation phase. The source of this functional difference is not fully understood at either the photoreceptor or the signalling pathway levels. In this article, we review current understanding of phototropin functioning and try to dissect the differences that result in signalling to elicit two distinct chloroplast responses. First, we focus on phototropin structure and photochemical and biochemical activity. Next, we analyse phototropin expression and localization patterns. We also summarize known photoreceptor systems controlling chloroplast movements. Finally, we focus on the role of environmental stimuli in controlling phototropin activity. All these aspects impact the signalling to trigger chloroplast movements and raise outstanding questions about the mechanism involved.
Collapse
Affiliation(s)
- Justyna Łabuz
- Laboratory of Photobiology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa, Kraków, Poland
| | - Olga Sztatelman
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego, Warszawa, Poland
| | - Paweł Hermanowicz
- Laboratory of Photobiology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa, Kraków, Poland
| |
Collapse
|
2
|
Kandori H. Structure/Function Study of Photoreceptive Proteins by FTIR Spectroscopy. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200109] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hideki Kandori
- Department of Life Science and Applied Chemistry & OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
3
|
Iwata T, Nagai T, Ito S, Osoegawa S, Iseki M, Watanabe M, Unno M, Kitagawa S, Kandori H. Hydrogen Bonding Environments in the Photocycle Process around the Flavin Chromophore of the AppA-BLUF domain. J Am Chem Soc 2018; 140:11982-11991. [DOI: 10.1021/jacs.8b05123] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tatsuya Iwata
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- Department of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Takashi Nagai
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Shota Ito
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Shinsuke Osoegawa
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Mineo Iseki
- Department of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Masakatsu Watanabe
- The Graduate School for the Creation of New Photonics Industries, Nishi-ku, Hamamatsu 431-1202, Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Shinya Kitagawa
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
4
|
Foley BJ, Stutts H, Schmitt SL, Lokhandwala J, Nagar A, Zoltowski BD. Characterization of a Vivid Homolog in Botrytis cinerea. Photochem Photobiol 2018; 94:985-993. [PMID: 29682744 DOI: 10.1111/php.12927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 04/04/2018] [Indexed: 01/15/2023]
Abstract
Blue light-signaling pathways regulated by members of the light-oxygen-voltage (LOV) domain family integrate stress responses, circadian rhythms and pathogenesis in fungi. The canonical signaling mechanism involves two LOV-containing proteins that maintain homology to Neurospora crassa Vivid (NcVVD) and White Collar 1 (NcWC1). These proteins engage in homo- and heterodimerization events that modulate gene transcription in response to light. Here, we clone and characterize the VVD homolog in Botrytis cinerea (BcVVD). BcVVD retains divergent photocycle kinetics and is incapable of LOV mediated homodimerization, indicating modification of the classical hetero/homodimerization mechanism of photoadaptation in fungi.
Collapse
Affiliation(s)
- Brandon J Foley
- Department of Chemistry, Center for Drug Discovery, Design and Delivery, Southern Methodist University, Dallas, TX
| | - Haley Stutts
- Department of Chemistry, Center for Drug Discovery, Design and Delivery, Southern Methodist University, Dallas, TX
| | - Sydney L Schmitt
- Department of Chemistry, Center for Drug Discovery, Design and Delivery, Southern Methodist University, Dallas, TX
| | - Jameela Lokhandwala
- Department of Chemistry, Center for Drug Discovery, Design and Delivery, Southern Methodist University, Dallas, TX
| | - Aditi Nagar
- Department of Chemistry, Center for Drug Discovery, Design and Delivery, Southern Methodist University, Dallas, TX
| | - Brian D Zoltowski
- Department of Chemistry, Center for Drug Discovery, Design and Delivery, Southern Methodist University, Dallas, TX
| |
Collapse
|
5
|
Nakasone Y, Ohshima M, Okajima K, Tokutomi S, Terazima M. Photoreaction Dynamics of LOV1 and LOV2 of Phototropin from Chlamydomonas reinhardtii. J Phys Chem B 2018; 122:1801-1815. [DOI: 10.1021/acs.jpcb.7b10266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yusuke Nakasone
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masumi Ohshima
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Koji Okajima
- Graduate
School of Science and Technology, Keio University, Kanagawa 223-8522, Japan
| | - Satoru Tokutomi
- Department
of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Masahide Terazima
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
6
|
Iwata T, Nozaki D, Yamamoto A, Koyama T, Nishina Y, Shiga K, Tokutomi S, Unno M, Kandori H. Hydrogen Bonding Environment of the N3-H Group of Flavin Mononucleotide in the Light Oxygen Voltage Domains of Phototropins. Biochemistry 2017; 56:3099-3108. [PMID: 28530801 DOI: 10.1021/acs.biochem.7b00057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The light oxygen voltage (LOV) domain is a flavin-binding blue-light receptor domain, originally found in a plant photoreceptor phototropin (phot). Recently, LOV domains have been used in optogenetics as the photosensory domain of fusion proteins. Therefore, it is important to understand how LOV domains exhibit light-induced structural changes for the kinase domain regulation, which enables the design of LOV-containing optogenetics tools with higher photoactivation efficiency. In this study, the hydrogen bonding environment of the N3-H group of flavin mononucleotide (FMN) of the LOV2 domain from Adiantum neochrome (neo) 1 was investigated by low-temperature Fourier transform infrared spectroscopy. Using specifically 15N-labeled FMN, [1,3-15N2]FMN, the N3-H stretch was identified at 2831 cm-1 for the unphotolyzed state at 150 K, indicating that the N3-H group forms a fairly strong hydrogen bond. The N3-H stretch showed temperature dependence, with a shift to lower frequencies at ≤200 K and to higher frequencies at ≥250 K from the unphotolyzed to the intermediate states. Similar trends were observed in the LOV2 domains from Arabidopsis phot1 and phot2. By contrast, the N3-H stretch of the Q1029L mutant of neo1-LOV2 and neo1-LOV1 was not temperature dependent in the intermediate state. These results seemed correlated with our previous finding that the LOV2 domains show the structural changes in the β-sheet region and/or the adjacent Jα helix of LOV2 domain, but that such structural changes do not take place in the Q1029L mutant or neo1-LOV1 domain. The environment around the N3-H group was also investigated.
Collapse
Affiliation(s)
- Tatsuya Iwata
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| | - Dai Nozaki
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| | - Atsushi Yamamoto
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| | - Takayuki Koyama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| | - Yasuzo Nishina
- Department of Molecular Physiology, Graduate School of Medical Sciences, Kumamoto University , Honjo, Kumamoto 860-8556, Japan
| | - Kiyoshi Shiga
- Department of Physiology, School of Health Sciences, Kumamoto University , Kuhonji, Kumamoto 862-0976, Japan
| | - Satoru Tokutomi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University , Sakai, Osaka 599-8531, Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University , Saga 840-8502, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
7
|
Okajima K. Molecular mechanism of phototropin light signaling. JOURNAL OF PLANT RESEARCH 2016; 129:149-157. [PMID: 26815763 DOI: 10.1007/s10265-016-0783-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/24/2015] [Indexed: 06/05/2023]
Abstract
Phototropin (phot) is a blue light (BL) receptor kinase involved in the BL responses of several species, ranging from green algae to higher plants. Phot converts BL signals from the environment into biochemical signals that trigger cellular responses. In phot, the LOV1 and LOV2 domains of the N-terminal region utilize BL for cyclic photoreactions and regulate C-terminal serine/threonine kinase (STK) activity. LOV2-STK peptides are the smallest functional unit of phot and are useful for understanding regulation mechanisms. The combined analysis of spectroscopy and STK activity assay in Arabidopsis phots suggests that the decay speed of the photo-intermediate S390 in LOV2 is one of the factors contributing to light sensitive kinase activity. LOV2 and STK are thought to be adjacent to each other in LOV2-STK with small angle scattering (SAXS). BL irradiation induces LOV2-STK elongation, resulting in LOV2 shifting away from STK. The N- and C-terminal lateral regions of LOV2, A'α-helix, Jα-helix, and A'α/Aβ gap are responsible for the propagation of the BL signal to STK via conformational changes. The comparison between LOV2-STK and full-length phot from Chlamydomonas suggests that LOV1 is directly adjacent to LOV2 in LOV2-STK; therefore, LOV1 may indirectly regulate STK. The molecular mechanism of phot is discussed.
Collapse
Affiliation(s)
- Koji Okajima
- Department of Physics, Keio University, 3-14-1, Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa, 223-8522, Japan.
- RIKEN Harima Institute, Spring-8, 1-1-1 Kouto, Sayo, Sayo, Hyogo, 679-5148, Japan.
| |
Collapse
|
8
|
Łabuz J, Hermanowicz P, Gabryś H. The impact of temperature on blue light induced chloroplast movements in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:238-49. [PMID: 26398808 DOI: 10.1016/j.plantsci.2015.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/02/2015] [Accepted: 07/18/2015] [Indexed: 05/04/2023]
Abstract
Chloroplast movements in Arabidopsis thaliana are controlled by two blue light photoreceptors, phototropin1 and phototropin2. Under weak blue light chloroplasts gather at cell walls perpendicular to the direction of incident light. This response, called chloroplast accumulation, is redundantly regulated by both phototropins. Under strong blue light chloroplasts move to cell walls parallel to the direction of incident light, this avoidance response being solely dependent on phototropin2. Temperature is an important factor in modulating chloroplast relocations. Here we focus on temperature effects in Arabidopsis leaves. At room temperature, under medium blue light chloroplasts start to move to cell walls parallel to the light direction and undergo a partial avoidance response. In the same conditions, at low temperatures the avoidance response is strongly enhanced-chloroplasts behave as if they were responding to strong light. Higher sensitivity of avoidance response is correlated with changes in gene expression. After cold treatment, in darkness, the expression of phototropin1 is down-regulated, while phototropin2 levels are up-regulated. The motile system of chloroplasts in Arabidopsis is more sensitive to blue light at low temperatures, similar to other species studied before. The physiological role of the cold-enhancement of the avoidance response is explained in the context of phototropin levels, photochemical activities and signaling in the cell.
Collapse
Affiliation(s)
- Justyna Łabuz
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Paweł Hermanowicz
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Halina Gabryś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| |
Collapse
|
9
|
Liu H, Zhang H, King JD, Wolf NR, Prado M, Gross ML, Blankenship RE. Mass spectrometry footprinting reveals the structural rearrangements of cyanobacterial orange carotenoid protein upon light activation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1837:1955-1963. [PMID: 25256653 DOI: 10.1016/j.bbabio.2014.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/09/2014] [Accepted: 09/12/2014] [Indexed: 11/25/2022]
Abstract
The orange carotenoid protein (OCP), a member of the family of blue light photoactive proteins, is required for efficient photoprotection in many cyanobacteria. Photoexcitation of the carotenoid in the OCP results in structural changes within the chromophore and the protein to give an active red form of OCP that is required for phycobilisome binding and consequent fluorescence quenching. We characterized the light-dependent structural changes by mass spectrometry-based carboxyl footprinting and found that an α helix in the N-terminal extension of OCP plays a key role in this photoactivation process. Although this helix is located on and associates with the outside of the β-sheet core in the C-terminal domain of OCP in the dark, photoinduced changes in the domain structure disrupt this interaction. We propose that this mechanism couples light-dependent carotenoid conformational changes to global protein conformational dynamics in favor of functional phycobilisome binding, and is an essential part of the OCP photocycle.
Collapse
Affiliation(s)
- Haijun Liu
- Department of Biology, Washington University in St. Louis, MO 63130, USA; Department of Chemistry, Washington University in St. Louis, MO 63130, USA; Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, MO 63130, USA.
| | - Hao Zhang
- Department of Chemistry, Washington University in St. Louis, MO 63130, USA; Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, MO 63130, USA
| | - Jeremy D King
- Department of Biology, Washington University in St. Louis, MO 63130, USA; Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, MO 63130, USA
| | - Nathan R Wolf
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, MO 63130, USA
| | - Mindy Prado
- Department of Biology, Washington University in St. Louis, MO 63130, USA; Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, MO 63130, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, MO 63130, USA; Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, MO 63130, USA
| | - Robert E Blankenship
- Department of Biology, Washington University in St. Louis, MO 63130, USA; Department of Chemistry, Washington University in St. Louis, MO 63130, USA; Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, MO 63130, USA
| |
Collapse
|
10
|
Herman E, Kottke T. Allosterically regulated unfolding of the A'α helix exposes the dimerization site of the blue-light-sensing aureochrome-LOV domain. Biochemistry 2015; 54:1484-92. [PMID: 25621532 DOI: 10.1021/bi501509z] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aureochromes have been shown to act as blue-light-regulated transcription factors in algae in the absence of phototropins. Aureochromes comprise a light-, oxygen-, or voltage-sensitive (LOV) domain as a sensory module binding the flavin chromophore and a basic region leucine zipper (bZIP) domain as an effector. The domain arrangement in aureochromes with an N-terminal effector is inversed to other LOV proteins. To clarify the role of the linking A'α helix in signaling, we have investigated the LOV domain of aureochrome1a from the diatom alga Phaeodactylum tricornutum without the N-terminal A'α helix but with the C-terminal Jα helix. Results were analyzed in comparison to those previously obtained on the LOV domain with both flanking helices and on the LOV domain with the A'α helix but without the Jα helix. Fourier transform infrared difference spectroscopy provides evidence by a band at 1656 cm(-1) that the A'α helix unfolds in response to light. This unfolding takes place only in the presence and as a consequence of the unfolding of the Jα helix, which points to an allosteric regulation. Size exclusion chromatography shows the LOV domain to be dimeric in the absence and monomeric in the presence of the A'α helix, implying that the folded helix covers the dimerization site. Therefore, the A'α helix directly modulates the oligomerization state of the LOV domain, whereas the Jα helix acts as an allosteric regulator. Both the allosteric control and the light-induced dimerization have not been observed in phototropin-LOV2 and point to a different signaling mechanism within the full-length proteins.
Collapse
Affiliation(s)
- Elena Herman
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University , Universitätsstraße 25, 33615 Bielefeld, Germany
| | | |
Collapse
|
11
|
Okajima K, Aihara Y, Takayama Y, Nakajima M, Kashojiya S, Hikima T, Oroguchi T, Kobayashi A, Sekiguchi Y, Yamamoto M, Suzuki T, Nagatani A, Nakasako M, Tokutomi S. Light-induced conformational changes of LOV1 (light oxygen voltage-sensing domain 1) and LOV2 relative to the kinase domain and regulation of kinase activity in Chlamydomonas phototropin. J Biol Chem 2014; 289:413-22. [PMID: 24285544 PMCID: PMC3879564 DOI: 10.1074/jbc.m113.515403] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/25/2013] [Indexed: 01/27/2023] Open
Abstract
Phototropin (phot), a blue light (BL) receptor in plants, has two photoreceptive domains named LOV1 and LOV2 as well as a Ser/Thr kinase domain (KD) and acts as a BL-regulated protein kinase. A LOV domain harbors a flavin mononucleotide that undergoes a cyclic photoreaction upon BL excitation via a signaling state in which the inhibition of the kinase activity by LOV2 is negated. To understand the molecular mechanism underlying the BL-dependent activation of the kinase, the photochemistry, kinase activity, and molecular structure were studied with the phot of Chlamydomonas reinhardtii. Full-length and LOV2-KD samples of C. reinhardtii phot showed cyclic photoreaction characteristics with the activation of LOV- and BL-dependent kinase. Truncation of LOV1 decreased the photosensitivity of the kinase activation, which was well explained by the fact that the signaling state lasted for a shorter period of time compared with that of the phot. Small angle x-ray scattering revealed monomeric forms of the proteins in solution and detected BL-dependent conformational changes, suggesting an extension of the global molecular shapes of both samples. Constructed molecular model of full-length phot based on the small angle x-ray scattering data proved the arrangement of LOV1, LOV2, and KD for the first time that showed a tandem arrangement both in the dark and under BL irradiation. The models suggest that LOV1 alters its position relative to LOV2-KD under BL irradiation. This finding demonstrates that LOV1 may interact with LOV2 and modify the photosensitivity of the kinase activation through alteration of the duration of the signaling state in LOV2.
Collapse
Affiliation(s)
- Koji Okajima
- From the Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- RIKEN Harima Institute, SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148, Japan
| | - Yusuke Aihara
- the Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan, and
| | - Yuki Takayama
- RIKEN Harima Institute, SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148, Japan
- the Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Kanagawa 223-8522, Japan
| | - Mihoko Nakajima
- From the Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Sachiko Kashojiya
- From the Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- RIKEN Harima Institute, SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148, Japan
| | - Takaaki Hikima
- RIKEN Harima Institute, SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148, Japan
| | - Tomotaka Oroguchi
- RIKEN Harima Institute, SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148, Japan
- the Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Kanagawa 223-8522, Japan
| | - Amane Kobayashi
- RIKEN Harima Institute, SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148, Japan
- the Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Kanagawa 223-8522, Japan
| | - Yuki Sekiguchi
- RIKEN Harima Institute, SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148, Japan
- the Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Kanagawa 223-8522, Japan
| | - Masaki Yamamoto
- RIKEN Harima Institute, SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148, Japan
| | - Tomomi Suzuki
- the Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan, and
| | - Akira Nagatani
- the Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan, and
| | - Masayoshi Nakasako
- RIKEN Harima Institute, SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148, Japan
- the Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Kanagawa 223-8522, Japan
| | - Satoru Tokutomi
- From the Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
12
|
Abstract
Light-induced difference Fourier transform infrared (FTIR) spectroscopy is a powerful, sensitive, and informative method to study structure-function relationships in photoreceptive proteins. Strong absorption of water in the IR region is always problematic in this method, but if water content in the sample is controlled during measurements, this method can provide useful information on a single protein-bound water molecule. We established three kinds of sample preparations: hydrated film, redissolved sample, and concentrated solution. Hydrated films were used for the measurements of LOV and BLUF domains, where accurate difference FTIR spectra were obtained in the whole mid-IR region (4,000-800 cm(-1)). Vibrations of S-H stretch of cysteine, O-H stretch of water, and O-H stretch of tyrosine provide important information on hydrogen bonds in these proteins. Redissolved samples were used for the measurements of (6-4) photolyase, in which enzymatic turnover takes place. From the illumination time-dependence of excess amount of substrate, it is possible to isolate the signal originating from the binding of enzyme to substrate. If proteins are less tolerant to drying, as for example cryptochromes of the DASH type, concentrated solution is used. Detailed methodological aspects in light-induced difference FTIR spectroscopy are reviewed by mainly focusing on our results.
Collapse
Affiliation(s)
- Daichi Yamada
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | | |
Collapse
|
13
|
Takeda K, Nakasone Y, Zikihara K, Tokutomi S, Terazima M. Dynamics of the amino-terminal and carboxyl-terminal helices of Arabidopsis phototropin 1 LOV2 studied by the transient grating. J Phys Chem B 2013; 117:15606-13. [PMID: 23931584 DOI: 10.1021/jp406109j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently, conformational changes of the amino-terminal helix (A'α helix), in addition to the reported conformational changes of the carboxyl-terminal helix (Jα helix), have been proposed to be important for the regulatory function of the light-oxygen-voltage 2 domain (LOV2) of phototropin 1 from Arabidopsis. However, the reaction dynamics of the A'α helix have not been examined. Here, the unfolding reactions of the A'α and Jα helices of the LOV2 domain of phototropin 1 from Arabidopsis thaliana were investigated by the time-resolved transient grating (TG) method. A mutant (T469I mutant) that renders the A'α helix unfolded in the dark state showed unfolding of the Jα helix with a time constant of 1 ms, which is very similar to the time constant reported for the wild-type LOV2-linker sample. Furthermore, a mutant (I608E mutant) that renders the Jα helix unfolded in the dark state exhibited an unfolding process of the A'α helix with a time constant of 12 ms. On the basis of these experimental results, it is suggested that the unfolding reactions of these helices occurs independently.
Collapse
Affiliation(s)
- Kimitoshi Takeda
- Department of Chemistry, Graduate School of Science, Kyoto University , Kitashirakawa, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
14
|
Herman E, Sachse M, Kroth PG, Kottke T. Blue-Light-Induced Unfolding of the Jα Helix Allows for the Dimerization of Aureochrome-LOV from the Diatom Phaeodactylum tricornutum. Biochemistry 2013; 52:3094-101. [DOI: 10.1021/bi400197u] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elena Herman
- Department of Chemistry, Physical
and Biophysical Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Matthias Sachse
- Fachbereich Biologie, Universität Konstanz, Universitätsstraße
10, 78457 Konstanz, Germany
| | - Peter G. Kroth
- Fachbereich Biologie, Universität Konstanz, Universitätsstraße
10, 78457 Konstanz, Germany
| | - Tilman Kottke
- Department of Chemistry, Physical
and Biophysical Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
15
|
Okajima K, Kashojiya S, Tokutomi S. Photosensitivity of kinase activation by blue light involves the lifetime of a cysteinyl-flavin adduct intermediate, S390, in the photoreaction cycle of the LOV2 domain in phototropin, a plant blue light receptor. J Biol Chem 2012; 287:40972-81. [PMID: 23066024 DOI: 10.1074/jbc.m112.406512] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phototropin (phot) is a light-regulated protein kinase that mediates a variety of photoresponses in plants, such as phototropism, chloroplast positioning, and stomata opening. Arabidopsis has two homologues, phot1 and phot2, that share physiological functions depending on light intensity. A phot molecule has two photoreceptive light oxygen voltage-sensing domains, LOV1 and LOV2, and a Ser/Thr kinase domain. The LOV domains undergo a photocycle upon blue light (BL) stimulation, including transient adduct formation between the chromophore and a conserved cysteine (S390 intermediate) that leads to activation of the kinase. To uncover the mechanism underlying the photoactivation of the kinase, we have introduced a kinase assay system composed of a phot1 LOV2-linker-kinase polypeptide as a light-regulated kinase and its N-terminal polypeptide as an artificial substrate (Okajima, K., Matsuoka, D., and Tokutomi, S. (2011) LOV2-linker-kinase phosphorylates LOV1-containing N-terminal polypeptide substrate via photoreaction of LOV2 in Arabidopsis phototropin1. FEBS Lett. 585, 3391-3395). In the present study, we extended the assay system to phot2 and compared the photochemistry and kinase activation by BL between phot1 and phot2 to gain insight into the molecular basis for the different photosensitivities of phot1 and phot2. Photosensitivity of kinase activation by BL and the lifetime of S390 of phot1 were 10 times higher and longer, respectively, than those of phot2. This correlation was confirmed by an amino acid substitution experiment with phot1 to shorten the lifetime of S390. The present results demonstrated that the photosensitivity of kinase activation in phot involves the lifetime of S390 in LOV2, suggesting that the lifetime is one of the key factors for the different photosensitivities observed for phot1 and phot2.
Collapse
Affiliation(s)
- Koji Okajima
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, Gakuen-cho 1-1, Nakaku, Sakai, Osaka 599-8531, Japan
| | | | | |
Collapse
|
16
|
Yamada D, Zhang Y, Iwata T, Hitomi K, Getzoff ED, Kandori H. Fourier-transform infrared study of the photoactivation process of Xenopus (6-4) photolyase. Biochemistry 2012; 51:5774-83. [PMID: 22747528 DOI: 10.1021/bi300530x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Photolyases (PHRs) are blue light-activated DNA repair enzymes that maintain genetic integrity by reverting UV-induced photoproducts into normal bases. The flavin adenine dinucleotide (FAD) chromophore of PHRs has four different redox states: oxidized (FAD(ox)), anion radical (FAD(•-)), neutral radical (FADH(•)), and fully reduced (FADH(-)). We combined difference Fourier-transform infrared (FTIR) spectroscopy with UV-visible spectroscopy to study the detailed photoactivation process of Xenopus (6-4) PHR. Two photons produce the enzymatically active, fully reduced PHR from oxidized FAD: FAD(ox) is converted to semiquinone via light-induced one-electron and one-proton transfers and then to FADH(-) by light-induced one-electron transfer. We successfully trapped FAD(•-) at 200 K, where electron transfer occurs but proton transfer does not. UV-visible spectroscopy following 450 nm illumination of FAD(ox) at 277 K defined the FADH(•)/FADH(-) mixture and allowed calculation of difference FTIR spectra among the four redox states. The absence of a characteristic C=O stretching vibration indicated that the proton donor is not a protonated carboxylic acid. Structural changes in Trp and Tyr are suggested by UV-visible and FTIR analysis of FAD(•-) at 200 K. Spectral analysis of amide I vibrations revealed structural perturbation of the protein's β-sheet during initial electron transfer (FAD(•-) formation), a transient increase in α-helicity during proton transfer (FADH(•) formation), and reversion to the initial amide I signal following subsequent electron transfer (FADH(-) formation). Consequently, in (6-4) PHR, unlike cryptochrome-DASH, formation of enzymatically active FADH(-) did not perturb α-helicity. Protein structural changes in the photoactivation of (6-4) PHR are discussed on the basis of these FTIR observations.
Collapse
Affiliation(s)
- Daichi Yamada
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Zayner JP, Antoniou C, Sosnick TR. The amino-terminal helix modulates light-activated conformational changes in AsLOV2. J Mol Biol 2012; 419:61-74. [PMID: 22406525 DOI: 10.1016/j.jmb.2012.02.037] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/21/2012] [Accepted: 02/24/2012] [Indexed: 01/27/2023]
Abstract
The mechanism of light-triggered conformational change and signaling in light-oxygen-voltage (LOV) domains remains elusive in spite of extensive investigation and their use in optogenetic studies. The LOV2 domain of Avenasativa phototropin 1 (AsLOV2), a member of the Per-Arnt-Sim (PAS) family, contains a flavin mononucleotide chromophore that forms a covalent bond with a cysteine upon illumination. This event leads to the release of the carboxy-terminal Jα helix, the biological output signal. Using mutational analysis, circular dichroism, and NMR, we find that the largely ignored amino-terminal helix is a control element in AsLOV2's light-activated conformational change. We further identify a direct amino-to-carboxy-terminal "input-output" signaling pathway. These findings provide a framework to rationalize the LOV domain architecture, as well as the signaling mechanisms in both isolated and tandem arrangements of PAS domains. This knowledge can be applied in engineering LOV-based photoswitches, opening up new design strategies and improving existing ones.
Collapse
Affiliation(s)
- Josiah P Zayner
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
18
|
Iwata T, Tokutomi S, Kandori H. Light-induced structural changes of the LOV2 domains in various phototropins revealed by FTIR spectroscopy. Biophysics (Nagoya-shi) 2011; 7:89-98. [PMID: 27857596 PMCID: PMC5036776 DOI: 10.2142/biophysics.7.89] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 09/08/2011] [Indexed: 12/01/2022] Open
Abstract
Phototropin (Phot), a blue-light photoreceptor in plants, consists of two FMN-binding domains (named LOV1 and LOV2) and a serine/threonine (Ser/Thr) kinase domain. We have investigated light-induced structural changes of LOV domains, which lead to the activation of the kinase domain, by means of light-induced difference FTIR spectroscopy. FTIR spectroscopy revealed that the reactive cysteine is protonated in both unphotolyzed and triplet-excited states, which is difficult to detect by other methods such as X-ray crystallography. In this review, we describe the light-induced structural changes of hydrogen-bonding environment of FMN chromophore and protein backbone in Adiantum neo1-LOV2 in the C=O stretching region by use of 13C-labeled samples. We also describe the comprehensive FTIR analysis of LOV2 domains among Arabidopsis phot1, phot2, and Adiantum neo1 with and without Jα helix domain.
Collapse
Affiliation(s)
- Tatsuya Iwata
- Center for Fostering Young and Innovative Researchers, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Satoru Tokutomi
- Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
19
|
Abstract
LOV (light, oxygen or voltage) domains are protein photosensors that are conserved in bacteria, archaea, plants and fungi, and detect blue light via a flavin cofactor. LOV domains are present in both chemotrophic and phototrophic bacterial species, in which they are found amino-terminally of signalling and regulatory domains such as sensor histidine kinases, diguanylate cyclases-phosphodiesterases, DNA-binding domains and regulators of RNA polymerase σ-factors. In this Review, we describe the current state of knowledge about the function of bacterial LOV proteins, the structural basis of LOV domain-mediated signal transduction, and the use of LOV domains as genetically encoded photoswitches in synthetic biology.
Collapse
|
20
|
Losi A, Gärtner W. Old Chromophores, New Photoactivation Paradigms, Trendy Applications: Flavins in Blue Light-Sensing Photoreceptors†. Photochem Photobiol 2011; 87:491-510. [DOI: 10.1111/j.1751-1097.2011.00913.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Zoltowski BD, Gardner KH. Tripping the light fantastic: blue-light photoreceptors as examples of environmentally modulated protein-protein interactions. Biochemistry 2011; 50:4-16. [PMID: 21141905 PMCID: PMC3137735 DOI: 10.1021/bi101665s] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Blue-light photoreceptors play a pivotal role in detecting the quality and quantity of light in the environment, controlling a wide range of biological responses. Several families of blue-light photoreceptors have been characterized in detail using biophysics and biochemistry, beginning with photon absorption, through intervening signal transduction, to regulation of biological activities. Here we review the light oxygen voltage, cryptochrome, and sensors of blue light using FAD families, three different groups of proteins that offer distinctly different modes of photochemical activation and signal transduction yet play similar roles in a vast array of biological responses. We cover mechanisms of light activation and propagation of conformational responses that modulate protein-protein interactions involved in biological signaling. Discovery and characterization of these processes in natural proteins are now allowing the design of photoregulatable engineered proteins, facilitating the generation of novel reagents for biochemical and cell biological research.
Collapse
Affiliation(s)
- Brian D. Zoltowski
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-8816 USA
| | - Kevin H. Gardner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-8816 USA
| |
Collapse
|
22
|
Terazima M. Studies of photo-induced protein reactions by spectrally silent reaction dynamics detection methods: applications to the photoreaction of the LOV2 domain of phototropin from Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1093-105. [PMID: 21211575 DOI: 10.1016/j.bbapap.2010.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 12/06/2010] [Accepted: 12/22/2010] [Indexed: 01/28/2023]
Abstract
Biological function involves a series of chemical reactions of biological molecules, and during these reactions, there are numerous spectrally silent dynamic events that cannot be monitored by absorption or emission spectroscopic techniques. Such spectrally silent dynamics include changes in conformation, intermolecular interactions (hydrogen bonding, hydrophobic interactions), inter-protein interactions (oligomer formation, dissociation reactions) and conformational fluctuations. These events might be associated with biological function. To understand the molecular mechanisms of reactions, time-resolved detection of such dynamics is essential. Recently, it has been shown that time-resolved detection of the refractive index is a powerful tool for measuring dynamic events. This technique is complementary to optical absorption detection methods and the signal contains many unique properties, which are difficult to obtain by other methods. The advantages and methods for signal analyses are described in detail in this review. A typical example of an application of time-resolved refractive index change detection is given in the second part: The photoreaction of the LOV2 domain of a blue light photoreceptor from Arabidopsis Thaliana (phototropin). This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.
Collapse
Affiliation(s)
- Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
23
|
Terazima M. Time-dependent intermolecular interaction during protein reactions. Phys Chem Chem Phys 2011; 13:16928-40. [DOI: 10.1039/c1cp21868a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
24
|
Iwata T, Zhang Y, Hitomi K, Getzoff ED, Kandori H. Key dynamics of conserved asparagine in a cryptochrome/photolyase family protein by fourier transform infrared spectroscopy. Biochemistry 2010; 49:8882-91. [PMID: 20828134 DOI: 10.1021/bi1009979] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cryptochromes (Crys) and photolyases (Phrs) are flavoproteins that contain an identical cofactor (flavin adenine dinucleotide, FAD) within the same protein architecture but whose physiological functions are entirely different. In this study, we investigated light-induced conformational changes of a cyanobacterium Cry/Phr-like protein (SCry-DASH) with UV-visible and Fourier transform infrared (FTIR) spectroscopy. We developed a system for measuring light-induced difference spectra under the concentrated conditions. In the presence of a reducing agent, SCry-DASH showed photoreduction to the reduced form, and we identified a signal unique for an anionic form in the process. Difference FTIR spectra enabled us to assign characteristic FTIR bands to the respective redox forms of FAD. An asparagine residue, which anchors the FAD embedded within the protein, is conserved not only in the cyanobacterial protein but also in Phrs and other Crys, including the mammalian clock-related Crys. By characterizing an asparagine-to-cysteine (N392C) mutant of SCry-DASH, which mimics an insect specific Cry, we identified structural changes of the carbonyl group of this conserved asparagine upon light irradiation. We also found that the N392C mutant is stabilized in the anionic form. We did not observe a signal from protonated carboxylic acid residues during the reduction process, suggesting that the carboxylic acid moiety would not be directly involved as a proton donor to FAD in the system. These results are in contrast to plant specific Crys represented by Arabidopsis thaliana Cry1 that carry Asp at the position. We discuss potential roles for this conserved asparagine position and functional diversity in the Cry/Phr frame.
Collapse
Affiliation(s)
- Tatsuya Iwata
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan
| | | | | | | | | |
Collapse
|
25
|
Rana A, Dolmetsch RE. Using light to control signaling cascades in live neurons. Curr Opin Neurobiol 2010; 20:617-22. [PMID: 20850295 DOI: 10.1016/j.conb.2010.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 08/17/2010] [Accepted: 08/17/2010] [Indexed: 11/15/2022]
Abstract
Understanding the complexity of neuronal biology requires the manipulation of cellular processes with high specificity and spatio-temporal precision. The recent development of synthetic photo-activatable proteins designed using the light-oxygen-voltage and phytochrome domains provides a new set of tools for genetically targeted optical control of cell signaling. Their modular design, functional diversity, precisely controlled activity and in vivo applicability offer many advantages for investigating neuronal function. Although designing these proteins is still a considerable challenge, future advances in rational protein design and a deeper understanding of their photoactivation mechanisms will allow the development of the next generation of optogenetic techniques.
Collapse
Affiliation(s)
- Anshul Rana
- Graduate Program in Biochemistry, Stanford University, Beckman Center B400, 279 Campus Drive, Stanford, CA 94305, USA
| | | |
Collapse
|
26
|
Wilson A, Kinney JN, Zwart PH, Punginelli C, D'Haene S, Perreau F, Klein MG, Kirilovsky D, Kerfeld CA. Structural determinants underlying photoprotection in the photoactive orange carotenoid protein of cyanobacteria. J Biol Chem 2010; 285:18364-75. [PMID: 20368334 PMCID: PMC2881762 DOI: 10.1074/jbc.m110.115709] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 03/21/2010] [Indexed: 01/14/2023] Open
Abstract
The photoprotective processes of photosynthetic organisms involve the dissipation of excess absorbed light energy as heat. Photoprotection in cyanobacteria is mechanistically distinct from that in plants; it involves the orange carotenoid protein (OCP), a water-soluble protein containing a single carotenoid. The OCP is a new member of the family of blue light-photoactive proteins; blue-green light triggers the OCP-mediated photoprotective response. Here we report structural and functional characterization of the wild type and two mutant forms of the OCP, from the model organism Synechocystis PCC6803. The structural analysis provides high resolution detail of the carotenoid-protein interactions that underlie the optical properties of the OCP, unique among carotenoid-proteins in binding a single pigment per polypeptide chain. Collectively, these data implicate several key amino acids in the function of the OCP and reveal that the photoconversion and photoprotective responses of the OCP to blue-green light can be decoupled.
Collapse
Affiliation(s)
- Adjele Wilson
- From the Commissariat à l'Energie Atomique, Institut de Biologie et Technologies de Saclay, and
- CNRS, URA 2906, 91191 Gif sur Yvette, France
| | - James N. Kinney
- the Joint Genome Institute, United States Department of Energy, Walnut Creek, California 94598
| | - Petrus H. Zwart
- the Joint Genome Institute, United States Department of Energy, Walnut Creek, California 94598
| | - Claire Punginelli
- From the Commissariat à l'Energie Atomique, Institut de Biologie et Technologies de Saclay, and
- CNRS, URA 2906, 91191 Gif sur Yvette, France
| | - Sandrine D'Haene
- From the Commissariat à l'Energie Atomique, Institut de Biologie et Technologies de Saclay, and
- CNRS, URA 2906, 91191 Gif sur Yvette, France
| | - François Perreau
- the Institut Jean-Pierre Bourgin, UMR 1318 INRA-AgroParisTech, INRA Versailles-Grignon, Route de Saint Cyr, F-78026 Versailles, France, and
| | - Michael G. Klein
- the Joint Genome Institute, United States Department of Energy, Walnut Creek, California 94598
| | - Diana Kirilovsky
- From the Commissariat à l'Energie Atomique, Institut de Biologie et Technologies de Saclay, and
- CNRS, URA 2906, 91191 Gif sur Yvette, France
| | - Cheryl A. Kerfeld
- the Joint Genome Institute, United States Department of Energy, Walnut Creek, California 94598
- the Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| |
Collapse
|
27
|
Pfeifer A, Mathes T, Lu Y, Hegemann P, Kottke T. Blue Light Induces Global and Localized Conformational Changes in the Kinase Domain of Full-Length Phototropin. Biochemistry 2010; 49:1024-32. [DOI: 10.1021/bi9016044] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Anna Pfeifer
- Department of Chemistry, Biophysical Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Tilo Mathes
- Institut für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Yinghong Lu
- Institut für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Peter Hegemann
- Institut für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Tilman Kottke
- Department of Chemistry, Biophysical Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Institute of Structural Biology and Biophysics 2, Research Center Jülich, 52425 Jülich, Germany
| |
Collapse
|
28
|
Möglich A, Yang X, Ayers RA, Moffat K. Structure and function of plant photoreceptors. ANNUAL REVIEW OF PLANT BIOLOGY 2010; 61:21-47. [PMID: 20192744 DOI: 10.1146/annurev-arplant-042809-112259] [Citation(s) in RCA: 335] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Signaling photoreceptors use the information contained in the absorption of a photon to modulate biological activity in plants and a wide range of organisms. The fundamental-and as yet imperfectly answered-question is, how is this achieved at the molecular level? We adopt the perspective of biophysicists interested in light-dependent signal transduction in nature and the three-dimensional structures that underpin signaling. Six classes of photoreceptors are known: light-oxygen-voltage (LOV) sensors, xanthopsins, phytochromes, blue-light sensors using flavin adenine dinucleotide (BLUF), cryptochromes, and rhodopsins. All are water-soluble proteins except rhodopsins, which are integral membrane proteins; all are based on a modular architecture except cryptochromes and rhodopsins; and each displays a distinct, light-dependent chemical process based on the photochemistry of their nonprotein chromophore, such as isomerization about a double bond (xanthopsins, phytochromes, and rhodopsins), formation or rupture of a covalent bond (LOV sensors), or electron transfer (BLUF sensors and cryptochromes).
Collapse
Affiliation(s)
- Andreas Möglich
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | |
Collapse
|
29
|
Tang Y, Cao Z, Livoti E, Krauss U, Jaeger KE, Gärtner W, Losi A. Interdomain signalling in the blue-light sensing and GTP-binding protein YtvA: a mutagenesis study uncovering the importance of specific protein sites. Photochem Photobiol Sci 2009; 9:47-56. [PMID: 20062844 DOI: 10.1039/b9pp00075e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
YtvA from Bacillus subtilis is a blue-light responsive, flavin-binding photoreceptor, built of a light-sensing LOV domain (aa 25-126) and an NTP (nucleoside triphosphate)-binding STAS domain (aa 147-261). The STAS domain is supposed to be the effector part of the protein or a secondary switch. Both domains are connected by a linker polypeptide. The active form of YtvA is generated upon light excitation, causing the formation of a covalent bond between a cysteine residue (Cys62) in the LOV domain and the position 4a of the flavin chromophore. This photoadduct formation within the LOV domain results in a conformational change of the NTP-binding cavity, evidencing intra-protein signal transmission. We have previously shown that Glu105, localized on the beta-scaffold of the LOV-core, is involved in this process. Here, we extend this work by the identification of further residues that upon mutation supress or strongly impair signal transmission by interfering with the communication between the two domains. These comprise L106 and D109 on the LOV domain; K130 and K134 on the linker region; D193, L194 and G196 within the DLSG GTP-binding motif (switch region) and N201 on the STAS domain. Furthermore in the mutated S195A and D193A proteins, GTP affinity is diminished. Other mutations investigated have little or no effect on signal transmission and GTP-binding affinity: R63K that was found to accelerate the thermal recovery of the parent state ca. ten-fold; K128A, Q129A and Y132A within the linker region, and S183A and S212A on the STAS domain. The results show a key role of the LOV domain beta-scaffold and of positively charged residues within the linker for intra-protein signal transmission. Furthermore they evidence the conformational switch function of a structurally conserved strand-loop-helix region (bearing the DLSG GTP-binding motif and N201) within the STAS domain that constitutes a novel GTP-binding fold.
Collapse
Affiliation(s)
- Yifen Tang
- Max-Planck-Institute for Bioinorganic Chemistry, Stifstrasse 34-36 45470, Mülheim, Germany
| | | | | | | | | | | | | |
Collapse
|