1
|
Zhou HY, Peng JB, Chen YH, Yang ZJ, Liu ZQ, Zheng YG. Enhanced d-pantothenic acid biosynthesis by plasmid-free Escherichia coli through sodium pyruvate addition combined with glucose and temperature control strategy. J Appl Microbiol 2024; 135:lxae267. [PMID: 39474883 DOI: 10.1093/jambio/lxae267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/30/2024] [Accepted: 10/28/2024] [Indexed: 11/06/2024]
Abstract
AIMS d-pantothenic acid (d-PA) is an important vitamin widely used in the feed, pharmaceutical, and food industries. This study aims to enhance the d-PA production of a recombinant Escherichia coli without plasmid and inducer induction. METHODS AND RESULTS The fermentation medium in shake flask was optimized, resulting in a 39.50% increased d-PA titer (3.32 g l-1). Subsequently, the fed-batch fermentation in a 5-l fermenter was specifically investigated. First, a two-stage temperature control strategy led to a d-PA titer of 52.09 g l-1. Additionally, a two-stage glucose feeding was proposed and d-PA titer was increased to 65.29 g l-1. It was also found that an appropriate amount of sodium pyruvate was beneficial to cell growth and d-PA synthesis. Finally, a two-stage glucose feeding combined with sodium pyruvate addition resulted in a substantially improved d-PA production with a titer of 72.90 g l-1. CONCLUSION The d-PA synthesis was significantly improved through the fermentation process established in this work, i.e. sodium pyruvate addition combined with the temperature and glucose control strategy. The results of this study could provide significant reference for the industrial fermentation production of d-PA.
Collapse
Affiliation(s)
- Hai-Yan Zhou
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jin-Bang Peng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yi-Hong Chen
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zi-Jian Yang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
2
|
Engelhardt A, Ebeling M, Kaltenegger E, Langel D, Ober D. An easy and sensitive assay for acetohydroxyacid synthases based on the simultaneous detection of substrates and products in a single step. Anal Bioanal Chem 2024:10.1007/s00216-024-05613-1. [PMID: 39443363 DOI: 10.1007/s00216-024-05613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Acetohydroxyacid synthase (AHAS, EC 2.2.1.6) catalyzes the first step in the synthesis of the branched-chain amino acids valine, leucine, and isoleucine, pathways being present in plants and microorganisms, but not in animals. Thus, AHAS is an important target for numerous herbicides and, more recently, for the development of antimicrobial agents. The need to develop new and optimized herbicides and pharmaceuticals requires a detailed understanding of the biochemistry of AHAS. AHAS transfers an activated two-carbon moiety derived from pyruvate to either pyruvate or 2-oxobutyrate as acceptor substrates, forming 2-acetolactate or 2-acetohydroxy-2-butyrate, respectively. Various methods have been described in the literature to biochemically characterize AHAS with respect to substrate preferences, substrate specificity, or kinetic parameters. However, the simultaneous detection and quantification of substrates and unstable products of the AHAS-catalyzed reaction have always been a challenge. Using AHAS isoform II from Escherichia coli, we have developed a sensitive assay for AHAS-catalyzed reactions that uses derivatization with ethyl chloroformate to stabilize and volatilize all reactants in the aqueous solution and detect them by gas chromatography coupled to flame ionization detection or mass spectrometry. This assay allows us to characterize the product formation in reactions in single and dual substrate reactions and the substrate specificity of AHAS, and to reinterpret previous biochemical observations. This assay is not limited to the AHAS-catalyzed reactions, but should be applicable to studies of many metabolic pathways.
Collapse
Affiliation(s)
- Annika Engelhardt
- Botanical Institute and Botanic Gardens, Kiel University, D-24098, Kiel, Germany
| | - Marco Ebeling
- Botanical Institute and Botanic Gardens, Kiel University, D-24098, Kiel, Germany
| | | | - Dorothee Langel
- Botanical Institute and Botanic Gardens, Kiel University, D-24098, Kiel, Germany
| | - Dietrich Ober
- Botanical Institute and Botanic Gardens, Kiel University, D-24098, Kiel, Germany.
| |
Collapse
|
3
|
Hemez C, Mohler K, Radford F, Moen J, Rinehart J, Isaacs FJ. Genomically recoded Escherichia coli with optimized functional phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610322. [PMID: 39257802 PMCID: PMC11383693 DOI: 10.1101/2024.08.29.610322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Genomically recoded organisms hold promise for many biotechnological applications, but they may exhibit substantial fitness defects relative to their non-recoded counterparts. We used targeted metabolic screens, genetic analysis, and proteomics to identify the origins of fitness impairment in a model recoded organism, Escherichia coli C321.∆A. We found that defects in isoleucine biosynthesis and release factor activity, caused by mutations extant in all K-12 lineage strains, elicited profound fitness impairments in C321.∆A, suggesting that genome recoding exacerbates suboptimal traits present in precursor strains. By correcting these and other C321.∆A-specific mutations, we engineered C321.∆A strains with doubling time reductions of 17% and 42% in rich and minimal medium, respectively, compared to ancestral C321. Strains with improved growth kinetics also demonstrated enhanced ribosomal non-standard amino acid incorporation capabilities. Proteomic analysis indicated that C321.∆A lacks the ability to regulate essential amino acid and nucleotide biosynthesis pathways, and that targeted mutation reversion restored regulatory capabilities. Our work outlines a strategy for the rapid and precise phenotypic optimization of genomically recoded organisms and other engineered microbes.
Collapse
Affiliation(s)
- Colin Hemez
- Systems Biology Institute, Yale University, West Haven, CT 06516
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520
- Department of Biomedical Engineering, Yale University, New Haven CT 06520
| | - Kyle Mohler
- Systems Biology Institute, Yale University, West Haven, CT 06516
- Department of Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - Felix Radford
- Systems Biology Institute, Yale University, West Haven, CT 06516
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520
| | - Jack Moen
- Systems Biology Institute, Yale University, West Haven, CT 06516
- Department of Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - Jesse Rinehart
- Systems Biology Institute, Yale University, West Haven, CT 06516
- Department of Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - Farren J Isaacs
- Systems Biology Institute, Yale University, West Haven, CT 06516
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520
- Department of Biomedical Engineering, Yale University, New Haven CT 06520
| |
Collapse
|
4
|
Zou SP, Zhao K, Wang ZJ, Zhang B, Liu ZQ, Zheng YG. Overproduction of D-pantothenic acid via fermentation conditions optimization and isoleucine feeding from recombinant Escherichia coli W3110. 3 Biotech 2021; 11:295. [PMID: 34136332 DOI: 10.1007/s13205-021-02773-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/03/2021] [Indexed: 12/27/2022] Open
Abstract
D-pantothenic acid (D-PA), as a crucial vitamin, is widely used in food, animal feed, cosmetics, and pharmaceutical industries. In our previous work, recombinant Escherichia coli W3110 for production of D-PA was constructed through metabolic pathway modification. In this study, to enhance D-PA production, statistical optimization techniques including Plackett-Burman (PB) design and Box-Behnken design (BBD) first were adopted to optimize the culture condition. The results showed that the glucose, β-alanine and (NH4)2SO4 have the most significant effects on D-PA biosynthesis. The response surface model based on BBD predicted that the optimal concentration is glucose 56.0 g/L, β-alanine 2.25 g/L and (NH4)2SO4 11.8 g/L, the D-PA titer increases from 3.2 g/L to 6.73 g/L shake flask fermentation. For the fed-batch fermentation in 5 L fermenter, the isoleucine feeding strategy greatly increased the titer and productivity of D-PA. As a result, titer (31.6 g/L) and productivity (13.2 g/L·d) of D-PA were achieved, they increased by 4.66 times and 2.65 times, respectively, compared with batch culture. At the same time, the accumulation of acetate reduced from 29.79 g/L to 8.55 g/L in the fed-batch fermentation. These results demonstrated that the optimization of medium composition and the cell growth rate are important to increase the concentration of D-PA for microbial fermentation. This work laid the foundation for further research on the application of D-PA microbial synthesis. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02773-0.
Collapse
Affiliation(s)
- Shu-Ping Zou
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
| | - Kuo Zhao
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
| | - Zhi-Jian Wang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
| | - Bo Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
| |
Collapse
|
5
|
Shen W, Wang D, Wei L, Zhang Y. Fungal elicitor-induced transcriptional changes of genes related to branched-chain amino acid metabolism in Streptomyces natalensis HW-2. Appl Microbiol Biotechnol 2020; 104:4471-4482. [DOI: 10.1007/s00253-020-10564-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 12/26/2022]
|
6
|
Bansal A, Karanth NM, Demeler B, Schindelin H, Sarma SP. Crystallographic Structures of IlvN·Val/Ile Complexes: Conformational Selectivity for Feedback Inhibition of Aceto Hydroxy Acid Synthases. Biochemistry 2019; 58:1992-2008. [PMID: 30887800 PMCID: PMC6668035 DOI: 10.1021/acs.biochem.9b00050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Conformational factors that predicate selectivity for valine or isoleucine binding to IlvN leading to the regulation of aceto hydroxy acid synthase I (AHAS I) of Escherichia coli have been determined for the first time from high-resolution (1.9-2.43 Å) crystal structures of IlvN·Val and IlvN·Ile complexes. The valine and isoleucine ligand binding pockets are located at the dimer interface. In the IlvN·Ile complex, among residues in the binding pocket, the side chain of Cys43 is 2-fold disordered (χ1 angles of gauche- and trans). Only one conformation can be observed for the identical residue in the IlvN·Val complexes. In a reversal, the side chain of His53, located at the surface of the protein, exhibits two conformations in the IlvN·Val complex. The concerted conformational switch in the side chains of Cys43 and His53 may play an important role in the regulation of the AHAS I holoenzyme activity. A significant result is the establishment of the subunit composition in the AHAS I holoenzyme by analytical ultracentrifugation. Solution nuclear magnetic resonance and analytical ultracentrifugation experiments have also provided important insights into the hydrodynamic properties of IlvN in the ligand-free and -bound states. The structural and biophysical data unequivocally establish the molecular basis for differential binding of the ligands to IlvN and a rationale for the resistance of IlvM to feedback inhibition by the branched-chain amino acids.
Collapse
Affiliation(s)
- Akanksha Bansal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - N. Megha Karanth
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Borries Demeler
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, Mailcode 7760, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900, United States
| | - Hermann Schindelin
- Rudolf Virchow Centre for Experimental Biomedicine, Institute of Structural Biology, University of Wuerzburg, Josef-Schneider-Strasse 2, D-97080 Wuerzburg, Germany
| | - Siddhartha P. Sarma
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
- NMR Research Center, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
7
|
Xie Y, Wen X, Zhao D, Niu C, Zhao Y, Qi H, Xi Z. Interactions between the ACT Domains and Catalytic Subunits of Acetohydroxyacid Synthases (AHASs) from Different Species. Chembiochem 2018; 19:2387-2394. [DOI: 10.1002/cbic.201800367] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/16/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Yonghui Xie
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Xin Wen
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Dongmei Zhao
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Congwei Niu
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Yuefang Zhao
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Haoman Qi
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| |
Collapse
|
8
|
Liu Y, Li Y, Wang X. Acetohydroxyacid synthases: evolution, structure, and function. Appl Microbiol Biotechnol 2016; 100:8633-49. [DOI: 10.1007/s00253-016-7809-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/28/2016] [Accepted: 08/12/2016] [Indexed: 10/21/2022]
|
9
|
Characterization and modification of enzymes in the 2-ketoisovalerate biosynthesis pathway of Ralstonia eutropha H16. Appl Microbiol Biotechnol 2014; 99:761-74. [DOI: 10.1007/s00253-014-5965-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 11/27/2022]
|
10
|
Zhao Y, Niu C, Wen X, Xi Z. The minimum activation peptide from ilvH can activate the catalytic subunit of AHAS from different species. Chembiochem 2013; 14:746-52. [PMID: 23512804 DOI: 10.1002/cbic.201200680] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Indexed: 11/10/2022]
Abstract
Acetohydroxyacid synthases (AHASs), which catalyze the first step in the biosynthesis of branched-chain amino acids, are composed of a catalytic subunit (CSU) and a regulatory subunit (RSU). The CSU harbors the catalytic site, and the RSU is responsible for the activation and feedback regulation of the CSU. Previous results from Chipman and co-workers and our lab have shown that heterologous activation can be achieved among isozymes of Escherichia coli AHAS. It would be interesting to find the minimum peptide of ilvH (the RSU of E. coli AHAS III) that could activate other E. coli CSUs, or even those of ## species. In this paper, C-terminal, N-terminal, and C- and N-terminal truncation mutants of ilvH were constructed. The minimum peptide to activate ilvI (the CSU of E. coli AHAS III) was found to be ΔN 14-ΔC 89. Moreover, this peptide could not only activate its homologous ilvI and heterologous ilvB (CSU of E. coli AHAS I), but also heterologously activate the CSUs of AHAS from Saccharomyces cerevisiae, Arabidopsis thaliana, and Nicotiana plumbaginifolia. However, this peptide totally lost its ability for feedback regulation by valine, thus suggesting different elements for enzymatic activation and feedback regulation. Additionally, the apparent dissociation constant (Kd ) of ΔN 14-ΔC 89 when binding CSUs of different species was found to be 9.3-66.5 μM by using microscale thermophoresis. The ability of this peptide to activate different CSUs does not correlate well with its binding ability (Kd ) to these CSUs, thus implying that key interactions by specific residues is more important than binding ability in promoting enzymatic reactions. The high sequence similarity of the peptide ΔN 14-ΔC 89 to RSUs across species hints that this peptide represents the minimum activation motif in RSU and that it regulates all AHASs.
Collapse
Affiliation(s)
- Yuefang Zhao
- Department of Chemical Biology and State Key Laboratory of Elemento-organic Chemistry, Nankai University, Weijin 94, Tianjin 300071, China
| | | | | | | |
Collapse
|
11
|
Karanth NM, Sarma SP. The Coil-to-Helix Transition in IlvN Regulates the Allosteric Control of Escherichia coli Acetohydroxyacid Synthase I. Biochemistry 2012. [DOI: 10.1021/bi301415m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- N. Megha Karanth
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka,
India
| | - Siddhartha P. Sarma
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka,
India
| |
Collapse
|
12
|
Zhao Y, Wen X, Niu C, Xi Z. Arginine 26 and Aspartic Acid 69 of the Regulatory Subunit are Key Residues of Subunits Interaction of Acetohydroxyacid Synthase Isozyme III fromE. coli. Chembiochem 2012; 13:2445-54. [DOI: 10.1002/cbic.201200362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Indexed: 11/08/2022]
|
13
|
Lu J, Brigham CJ, Gai CS, Sinskey AJ. Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha. Appl Microbiol Biotechnol 2012; 96:283-97. [DOI: 10.1007/s00253-012-4320-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 11/25/2022]
|
14
|
Belenky I, Steinmetz A, Vyazmensky M, Barak Z, Tittmann K, Chipman DM. Many of the functional differences between acetohydroxyacid synthase (AHAS) isozyme I and other AHASs are a result of the rapid formation and breakdown of the covalent acetolactate-thiamin diphosphate adduct in AHAS I. FEBS J 2012; 279:1967-79. [DOI: 10.1111/j.1742-4658.2012.08577.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Barak Z, Chipman DM. Allosteric regulation in Acetohydroxyacid Synthases (AHASs) – Different structures and kinetic behavior in isozymes in the same organisms. Arch Biochem Biophys 2012; 519:167-74. [DOI: 10.1016/j.abb.2011.11.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/25/2011] [Accepted: 11/29/2011] [Indexed: 10/14/2022]
|
16
|
Gedi V, Yoon MY. Bacterial acetohydroxyacid synthase and its inhibitors - a summary of their structure, biological activity and current status. FEBS J 2012; 279:946-63. [DOI: 10.1111/j.1742-4658.2012.08505.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Yin J, Garen G, Garen C, James MNG. Expression, purification and preliminary crystallographic analysis of Rv3002c, the regulatory subunit of acetolactate synthase (IlvH) from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:933-6. [PMID: 21821899 DOI: 10.1107/s1744309111021105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 06/01/2011] [Indexed: 11/10/2022]
Abstract
Branched amino-acid biosynthesis is important to bacterial pathogens such as Mycobacterium tuberculosis (Mtb), a microorganism that presently causes more deaths in humans than any other prokaryotic pathogen (http://www.who.int/tb). In this study, the molecular cloning, expression, purification, crystallization and preliminary crystallographic analysis of recombinant IlvH, the small regulatory subunit of acetohydroxylic acid synthase (AHAS) in Mtb, are reported. AHAS carries out the first common reaction in the biosynthesis of valine, leucine and isoleucine. AHAS is an essential enzyme in Mtb and its inactivation leads to a lethal phenotype [Sassetti et al. (2001), Proc. Natl Acad. Sci. USA, 98, 12712-12717]. Thus, inhibitors of AHAS could potentially be developed into novel anti-Mtb therapies.
Collapse
Affiliation(s)
- Jiang Yin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
18
|
Slutzker A, Vyazmensky M, Chipman DM, Barak Z. Role of the C-terminal domain of the regulatory subunit of AHAS isozyme III: Use of random mutagenesis with in vivo reconstitution (REM-ivrs). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:449-55. [DOI: 10.1016/j.bbapap.2011.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 12/06/2010] [Accepted: 01/04/2011] [Indexed: 11/28/2022]
|
19
|
Karanth NM, Sarma SP. 1H, 13C, 15N assignments of the dimeric regulatory subunit (ilvN) of the E. coli AHAS I. BIOMOLECULAR NMR ASSIGNMENTS 2010; 4:131-133. [PMID: 20383786 DOI: 10.1007/s12104-010-9225-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 03/30/2010] [Indexed: 05/29/2023]
Abstract
Acetohydroxyacid synthase (AHAS) is an enzyme involved in the biosynthesis of the branched chain amino acids viz, valine, leucine and isoleucine. The activity of this enzyme is regulated through feedback inhibition by the end products of the pathway. Here we report the backbone and side-chain assignments of ilvN, the 22 kDa dimeric regulatory subunit of E. coli AHAS isoenzyme I, in the valine bound form. Detailed analysis of the structure of ilvN and its interactions with the catalytic subunit of E. coli AHAS I will help in understanding the mechanism of activation and regulation of the branched chain amino acid biosynthesis.
Collapse
Affiliation(s)
- N Megha Karanth
- Lab No. 207, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | | |
Collapse
|