1
|
Patro M, Sivabalasarma S, Gfrerer S, Rodriguez-Franco M, Nußbaum P, Ithurbide S, Albers SV. MinD2 modulates cell shape and motility in the archaeon Haloferax volcanii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606218. [PMID: 39131313 PMCID: PMC11312570 DOI: 10.1101/2024.08.01.606218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
In bacteria and archaea, proteins of the ParA/MinD family of ATPases regulate the spatiotemporal organization of various cellular cargoes, including cell division proteins, motility structures, chemotaxis systems, and chromosomes. In bacteria, such as Escherichia coli, MinD proteins are crucial for the correct placement of the Z-ring at mid-cell during cell division. However, previous studies have shown that none of the 4 MinD homologs present in the archaeon Haloferax volcanii have a role in cell division, suggesting that these proteins regulate different cellular processes in haloarchaea. Here, we show that while deletion of MinD2 in H. volcanii (ΔminD2) does not affect cell growth or division, it impacts cell shape and motility by mispositioning the chemotaxis arrays and archaellum motors. Finally, we explore the links between MinD2 and MinD4, which has been previously shown to modulate the localization of chemosensory arrays and archaella in H. volcanii, finding that the two MinD homologues have synergistic effects in regulating the positioning of the motility machinery. Collectively, our findings identify MinD2 as an important link between cell shape and motility in H. volcanii and further our understanding of the mechanisms by which multiple MinD proteins regulate cellular functions in haloarchaea.
Collapse
Affiliation(s)
- Megha Patro
- Molecular Biology of Archaea, Institute of Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Shamphavi Sivabalasarma
- Molecular Biology of Archaea, Institute of Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Sabrina Gfrerer
- Molecular Biology of Archaea, Institute of Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Marta Rodriguez-Franco
- Cell Biology, Institute of Biology, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Phillip Nußbaum
- Molecular Biology of Archaea, Institute of Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Solenne Ithurbide
- Molecular Biology of Archaea, Institute of Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Dent MR, Weaver BR, Roberts MG, Burstyn JN. Carbon Monoxide-Sensing Transcription Factors: Regulators of Microbial Carbon Monoxide Oxidation Pathway Gene Expression. J Bacteriol 2023; 205:e0033222. [PMID: 37154694 PMCID: PMC10210986 DOI: 10.1128/jb.00332-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Carbon monoxide (CO) serves as a source of energy and carbon for a diverse set of microbes found in anaerobic and aerobic environments. The enzymes that bacteria and archaea use to oxidize CO depend upon complex metallocofactors that require accessory proteins for assembly and proper function. This complexity comes at a high energetic cost and necessitates strict regulation of CO metabolic pathways in facultative CO metabolizers to ensure that gene expression occurs only when CO concentrations and redox conditions are appropriate. In this review, we examine two known heme-dependent transcription factors, CooA and RcoM, that regulate inducible CO metabolism pathways in anaerobic and aerobic microorganisms. We provide an analysis of the known physiological and genomic contexts of these sensors and employ this analysis to contextualize known biochemical properties. In addition, we describe a growing list of putative transcription factors associated with CO metabolism that potentially use cofactors other than heme to sense CO.
Collapse
Affiliation(s)
- Matthew R. Dent
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brian R. Weaver
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Madeleine G. Roberts
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Judith N. Burstyn
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Darrouzet E, Rinaldi C, Zambelli B, Ciurli S, Cavazza C. Revisiting the CooJ family, a potential chaperone for nickel delivery to [NiFe]‑carbon monoxide dehydrogenase. J Inorg Biochem 2021; 225:111588. [PMID: 34530332 DOI: 10.1016/j.jinorgbio.2021.111588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/21/2022]
Abstract
Nickel insertion into nickel-dependent carbon monoxide dehydrogenase (CODH) represents a key step in the enzyme activation. This is the last step of the biosynthesis of the active site, which contains an atypical heteronuclear NiFe4S4 cluster known as the C-cluster. The enzyme maturation is performed by three accessory proteins, namely CooC, CooT and CooJ. Among them, CooJ from Rhodospirillum rubrum is a histidine-rich protein containing two distinct and spatially separated Ni(II)-binding sites: a N-terminal high affinity site (HAS) and a histidine tail at the C-terminus. In 46 CooJ homologues, the HAS motif was found to be strictly conserved with a H(W/F)XXHXXXH sequence. Here, a proteome database search identified at least 150 CooJ homologues and revealed distinct motifs for HAS, featuring 2, 3 or 4 histidines. The purification and biophysical characterization of three representative members of this protein family showed that they are all homodimers able to bind Ni(II) ions via one or two independent binding sites. Initially thought to be present only in R. rubrum, this study strongly suggests that CooJ could play a significant role in CODH maturation or in nickel homeostasis.
Collapse
Affiliation(s)
- Elisabeth Darrouzet
- University of Grenoble Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
| | - Clara Rinaldi
- University of Grenoble Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
| | - Barbara Zambelli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Via Giuseppe Fanin 40, I-40127 Bologna, Italy
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Via Giuseppe Fanin 40, I-40127 Bologna, Italy
| | - Christine Cavazza
- University of Grenoble Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France.
| |
Collapse
|
4
|
Kang H, Park B, Oh S, Pathiraja D, Kim JY, Jung S, Jeong J, Cha M, Park ZY, Choi IG, Chang IS. Metabolism perturbation Causedby the overexpression of carbon monoxide dehydrogenase/Acetyl-CoA synthase gene complex accelerated gas to acetate conversion rate ofEubacterium limosumKIST612. BIORESOURCE TECHNOLOGY 2021; 341:125879. [PMID: 34523550 DOI: 10.1016/j.biortech.2021.125879] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Microbial conversion of carbon monoxide (CO) to acetate is a promising upcycling strategy for carbon sequestration. Herein, we demonstrate that CO conversion and acetate production rates of Eubacterium limosum KIST612 strain can be improved by in silico prediction and in vivo assessment. The mimicked CO metabolic model of KIST612 predicted that overexpressing the CO dehydrogenase (CODH) increases CO conversion and acetate production rates. To validate the prediction, we constructed mutant strains overexpressing CODH gene cluster and measured their CO conversion and acetate production rates. A mutant strain (ELM031) co-overexpressing CODH, coenzyme CooC2 and ACS showed a 3.1 × increased specific CO oxidation rate as well as 1.4 × increased specific acetate production rate, compared to the wild type strain. The transcriptional and translational data with redox balance analysis showed that ELM031 has enhanced reducing potential from up-regulation of ferredoxin and related metabolism directly linked to energy conservation.
Collapse
Affiliation(s)
- Hyunsoo Kang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Byeonghyeok Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Soyoung Oh
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Duleepa Pathiraja
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Ji-Yeon Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Seunghyeon Jung
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jiyeong Jeong
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Minseok Cha
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - In-Geol Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - In Seop Chang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
5
|
Methods to Unravel the Roles of ATPases in Fe-S Cluster Biosynthesis. Methods Mol Biol 2021. [PMID: 34292549 DOI: 10.1007/978-1-0716-1605-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Complex biosynthetic pathways are required for the assembly and insertion of iron-sulfur (Fe-S) cluster cofactors. Each of the four cluster biogenesis systems that have been discovered requires at least one ATPase. Generally, the function of nucleotide hydrolysis in Fe-S cluster biogenesis is understudied. For example, the cytosolic Fe-S cluster assembly (CIA) pathway is proposed to begin with a scaffold, which assembles nascent Fe-S clusters destined for cytosolic and nuclear enzymes. This scaffold, comprised of Nbp35 and Cfd1 in yeast, possesses an ATPase site that is necessary for CIA function, but the role of nucleotide hydrolysis is poorly understood. Herein, we describe the in vitro methods that have been developed to uncover how the ATPase site of the scaffold regulates interaction with one of its partner proteins, Dre2. We describe a qualitative affinity copurification assay and a quantitative assay for evaluating the dissociation constant for the scaffold-partner protein complex. Finally, we describe kinetic methods to measure the kcat and KM values for ATP hydrolysis by the scaffold-partner protein complex and the execution of the ATPase assays in an anaerobic environment. These methods could be applied to study other ATPases to advance our mechanistic understanding of nucleotide hydrolases involved in metallocluster biogenesis.
Collapse
|
6
|
Nußbaum P, Ithurbide S, Walsh JC, Patro M, Delpech F, Rodriguez-Franco M, Curmi PMG, Duggin IG, Quax TEF, Albers SV. An Oscillating MinD Protein Determines the Cellular Positioning of the Motility Machinery in Archaea. Curr Biol 2020; 30:4956-4972.e4. [PMID: 33125862 DOI: 10.1016/j.cub.2020.09.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/28/2020] [Accepted: 09/23/2020] [Indexed: 01/14/2023]
Abstract
MinD proteins are well studied in rod-shaped bacteria such as E. coli, where they display self-organized pole-to-pole oscillations that are important for correct positioning of the Z-ring at mid-cell for cell division. Archaea also encode proteins belonging to the MinD family, but their functions are unknown. MinD homologous proteins were found to be widespread in Euryarchaeota and form a sister group to the bacterial MinD family, distinct from the ParA and other related ATPase families. We aimed to identify the function of four archaeal MinD proteins in the model archaeon Haloferax volcanii. Deletion of the minD genes did not cause cell division or size defects, and the Z-ring was still correctly positioned. Instead, one of the deletions (ΔminD4) reduced swimming motility and hampered the correct formation of motility machinery at the cell poles. In ΔminD4 cells, there is reduced formation of the motility structure and chemosensory arrays, which are essential for signal transduction. In bacteria, several members of the ParA family can position the motility structure and chemosensory arrays via binding to a landmark protein, and consequently these proteins do not oscillate along the cell axis. However, GFP-MinD4 displayed pole-to-pole oscillation and formed polar patches or foci in H. volcanii. The MinD4 membrane-targeting sequence (MTS), homologous to the bacterial MinD MTS, was essential for the oscillation. Surprisingly, mutant MinD4 proteins failed to form polar patches. Thus, MinD4 from H. volcanii combines traits of different bacterial ParA/MinD proteins.
Collapse
Affiliation(s)
- Phillip Nußbaum
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Solenne Ithurbide
- The ithree institute, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| | - James C Walsh
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, NSW 2052, Australia
| | - Megha Patro
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Floriane Delpech
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Marta Rodriguez-Franco
- Cell Biology, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Paul M G Curmi
- School of Physics, University of New South Wales, Sydney, NSW 2052, Australia
| | - Iain G Duggin
- The ithree institute, University of Technology, Sydney, Ultimo, NSW 2007, Australia.
| | - Tessa E F Quax
- Archaeal Virus-Host Interactions, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| |
Collapse
|
7
|
Alfano M, Cavazza C. Structure, function, and biosynthesis of nickel-dependent enzymes. Protein Sci 2020; 29:1071-1089. [PMID: 32022353 DOI: 10.1002/pro.3836] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/17/2022]
Abstract
Nickel enzymes, present in archaea, bacteria, plants, and primitive eukaryotes are divided into redox and nonredox enzymes and play key functions in diverse metabolic processes, such as energy metabolism and virulence. They catalyze various reactions by using active sites of diverse complexities, such as mononuclear nickel in Ni-superoxide dismutase, glyoxylase I and acireductone dioxygenase, dinuclear nickel in urease, heteronuclear metalloclusters in [NiFe]-carbon monoxide dehydrogenase, acetyl-CoA decarbonylase/synthase and [NiFe]-hydrogenase, and even more complex cofactors in methyl-CoM reductase and lactate racemase. The presence of metalloenzymes in a cell necessitates a tight regulation of metal homeostasis, in order to maintain the appropriate intracellular concentration of nickel while avoiding its toxicity. As well, the biosynthesis and insertion of nickel active sites often require specific and elaborated maturation pathways, allowing the correct metal to be delivered and incorporated into the target enzyme. In this review, the phylogenetic distribution of nickel enzymes will be briefly described. Their tridimensional structures as well as the complexity of their active sites will be discussed. In view of the latest findings on these enzymes, a special focus will be put on the biosynthesis of their active sites and nickel activation of apo-enzymes.
Collapse
Affiliation(s)
- Marila Alfano
- University of Grenoble Alpes, CEA, CNRS, IRIG, CBM, Grenoble, France
| | - Christine Cavazza
- University of Grenoble Alpes, CEA, CNRS, IRIG, CBM, Grenoble, France
| |
Collapse
|
8
|
Wittenborn EC, Cohen SE, Merrouch M, Léger C, Fourmond V, Dementin S, Drennan CL. Structural insight into metallocofactor maturation in carbon monoxide dehydrogenase. J Biol Chem 2019; 294:13017-13026. [PMID: 31296570 DOI: 10.1074/jbc.ra119.009610] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/10/2019] [Indexed: 12/11/2022] Open
Abstract
The nickel-dependent carbon monoxide dehydrogenase (CODH) employs a unique heterometallic nickel-iron-sulfur cluster, termed the C-cluster, to catalyze the interconversion of CO and CO2 Like other complex metalloenzymes, CODH requires dedicated assembly machinery to form the fully intact and functional C-cluster. In particular, nickel incorporation into the C-cluster depends on the maturation factor CooC; however, the mechanism of nickel insertion remains poorly understood. Here, we compare X-ray structures (1.50-2.48 Å resolution) of CODH from Desulfovibrio vulgaris (DvCODH) heterologously expressed in either the absence (DvCODH-CooC) or presence (DvCODH+CooC) of co-expressed CooC. We find that the C-cluster of DvCODH-CooC is fully loaded with iron but does not contain any nickel. Interestingly, the so-called unique iron ion (Feu) occupies both its canonical site (80% occupancy) and the nickel site (20% occupancy), with addition of reductant causing further mismetallation of the nickel site (60% iron occupancy). We also demonstrate that a DvCODH variant that lacks a surface-accessible iron-sulfur cluster (the D-cluster) has a C-cluster that is also replete in iron but lacks nickel, despite co-expression with CooC. In this variant, all Feu is in its canonical location, and the nickel site is empty. This D-cluster-deficient CODH is inactive despite attempts to reconstitute it with nickel. Taken together, these results suggest that an empty nickel site is not sufficient for nickel incorporation. Based on our findings, we propose a model for C-cluster assembly that requires both CooC and a functioning D-cluster, involves precise redox-state control, and includes a two-step nickel-binding process.
Collapse
Affiliation(s)
- Elizabeth C Wittenborn
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Steven E Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Mériem Merrouch
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Christophe Léger
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Vincent Fourmond
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Sébastien Dementin
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Marseille, France.
| | - Catherine L Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Bio-inspired Solar Energy Program, Canadian Institute for Advanced Research, Toronto, Ontario M5G 1M1, Canada.
| |
Collapse
|
9
|
Interplay between the Zur Regulon Components and Metal Resistance in Cupriavidus metallidurans. J Bacteriol 2019; 201:JB.00192-19. [PMID: 31109989 DOI: 10.1128/jb.00192-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/13/2019] [Indexed: 12/30/2022] Open
Abstract
The Zur regulon is central to zinc homeostasis in the zinc-resistant bacterium Cupriavidus metallidurans It comprises the transcription regulator Zur, the zinc importer ZupT, and three members of the COG0523 family of metal-chaperoning G3E-type GTPases, annotated as CobW1, CobW2, and CobW3. The operon structures of the zur and cobW1 loci were determined. To analyze the interplay between the Zur regulon components and metal resistance, deletion mutants were constructed from the wild-type strain CH34 and various other strains. The Zur regulon components interacted with the plasmid-encoded and chromosomally encoded metal resistance factors to acquire metals from complexes of EDTA and for homeostasis of and resistance to zinc, nickel, cobalt, and cadmium. The three G3E-type GTPases were characterized in more detail. CobW1 bound only 1 Zn atom per mol of protein with a stability constant slightly above that of 2-carboxy-2'-hydroxy-5'-sulfoformazylbenzene (Zincon) and an additional 0.5 Zn with low affinity. The CobW1 system was necessary to obtain metals from EDTA complexes. The GTPase CobW2 is a zinc storage compound and bound 0.5 to 1.5 Zn atoms tightly and up to 6 more with lower affinity. The presence of MgGTP unfolded the protein partially. CobW3 had no GTPase activity and equilibrated metal import by ZupT with that of the other metal transport systems. It sequestered 8 Zn atoms per mol with decreasing affinity. The three CobWs bound to the metal-dependent protein FolEIB2, which is encoded directly downstream of cobW1 This demonstrated an important contribution of the Zur regulon components to metal homeostasis in C. metallidurans IMPORTANCE Zinc is an important transition metal cation and is present as an essential component in many enzymes, such as RNA polymerase. As with other transition metals, zinc is also toxic at higher concentrations so that living cells have to maintain strict control of their zinc homeostasis. Members of the COG0523 family of metal-chaperoning GE3-type GTPases exist in archaea, bacteria, and eucaryotes, including humans, and they may be involved in delivery of zinc to thousands of different proteins. We used a combination of molecular, physiological, and biochemical methods to demonstrate the important but diverse functions of COG0523 proteins in C. metallidurans, which are produced as part of the Zur-controlled zinc starvation response in this bacterium.
Collapse
|
10
|
Grossman JD, Gay KA, Camire EJ, Walden WE, Perlstein DL. Coupling Nucleotide Binding and Hydrolysis to Iron-Sulfur Cluster Acquisition and Transfer Revealed through Genetic Dissection of the Nbp35 ATPase Site. Biochemistry 2019; 58:2017-2027. [PMID: 30865432 DOI: 10.1021/acs.biochem.8b00737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cytosolic iron-sulfur cluster assembly (CIA) scaffold, comprising Nbp35 and Cfd1 in yeast, assembles iron-sulfur (FeS) clusters destined for cytosolic and nuclear enzymes. ATP hydrolysis by the CIA scaffold plays an essential but poorly understood role in cluster biogenesis. Here we find that mutation of conserved residues in the four motifs comprising the ATPase site of Nbp35 diminished the scaffold's ability to both assemble and transfer its FeS cluster in vivo. The mutants fall into four phenotypic classes that can be understood by how each set of mutations affects ATP binding and hydrolysis. In vitro studies additionally revealed that occupancy of the bridging FeS cluster binding site decreases the scaffold's affinity for the nucleotide. On the basis of our findings, we propose that nucleotide binding and hydrolysis by the CIA scaffold drive a series of protein conformational changes that regulate association with other proteins in the pathway and with its newly formed FeS cluster. Our results provide insight into how the ATPase and cluster scaffolding activities are allosterically integrated.
Collapse
Affiliation(s)
- John D Grossman
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Kelly A Gay
- Department of Microbiology and Immunology , University of Illinois at Chicago , Chicago , Illinois 60612 , United States
| | - Eric J Camire
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - William E Walden
- Department of Microbiology and Immunology , University of Illinois at Chicago , Chicago , Illinois 60612 , United States
| | - Deborah L Perlstein
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| |
Collapse
|
11
|
Function and crystal structure of the dimeric P-loop ATPase CFD1 coordinating an exposed [4Fe-4S] cluster for transfer to apoproteins. Proc Natl Acad Sci U S A 2018; 115:E9085-E9094. [PMID: 30201724 DOI: 10.1073/pnas.1807762115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Maturation of iron-sulfur (Fe-S) proteins in eukaryotes requires complex machineries in mitochondria and cytosol. Initially, Fe-S clusters are assembled on dedicated scaffold proteins and then are trafficked to target apoproteins. Within the cytosolic Fe-S protein assembly (CIA) machinery, the conserved P-loop nucleoside triphosphatase Nbp35 performs a scaffold function. In yeast, Nbp35 cooperates with the related Cfd1, which is evolutionary less conserved and is absent in plants. Here, we investigated the potential scaffold function of human CFD1 (NUBP2) in CFD1-depleted HeLa cells by measuring Fe-S enzyme activities or 55Fe incorporation into Fe-S target proteins. We show that CFD1, in complex with NBP35 (NUBP1), performs a crucial role in the maturation of all tested cytosolic and nuclear Fe-S proteins, including essential ones involved in protein translation and DNA maintenance. CFD1 also matures iron regulatory protein 1 and thus is critical for cellular iron homeostasis. To better understand the scaffold function of CFD1-NBP35, we resolved the crystal structure of Chaetomium thermophilum holo-Cfd1 (ctCfd1) at 2.6-Å resolution as a model Cfd1 protein. Importantly, two ctCfd1 monomers coordinate a bridging [4Fe-4S] cluster via two conserved cysteine residues. The surface-exposed topology of the cluster is ideally suited for both de novo assembly and facile transfer to Fe-S apoproteins mediated by other CIA factors. ctCfd1 specifically interacted with ATP, which presumably associates with a pocket near the Cfd1 dimer interface formed by the conserved Walker motif. In contrast, ctNbp35 preferentially bound GTP, implying differential regulation of the two fungal scaffold components during Fe-S cluster assembly and/or release.
Collapse
|
12
|
Alfano M, Pérard J, Miras R, Catty P, Cavazza C. Biophysical and structural characterization of the putative nickel chaperone CooT from Carboxydothermus hydrogenoformans. J Biol Inorg Chem 2018; 23:809-817. [PMID: 29882029 DOI: 10.1007/s00775-018-1576-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 06/01/2018] [Indexed: 01/28/2023]
Abstract
Carboxydothermus hydrogenoformans is a model microorganism for the study of [NiFe]-CODH, a key enzyme of carbon cycle in anaerobic microorganisms. The enzyme possesses a unique active site (C-cluster), constituted of a distorted [NiFe3S4] cubane linked to a mononuclear Fe(II) center. Both the biogenesis of the C-cluster and the activation of CODH by nickel insertion remain unclear. Among the three accessory proteins thought to play a role in this latter step (CooC, CooJ, and CooT), CooT is identified as a nickel chaperone involved in CODH maturation in Rhodospirillum rubrum. Here, we structurally and biophysically characterized a putative CooT protein present in C. hydrogenoformans (pChCooT). Despite the low sequence homologies between CooT from R. rubrum (RrCooT) and pChCooT (19% sequence identity), the two proteins share several similarities, such as their overall structure and a solvent-exposed Ni(II)-binding site at the dimer interface. Moreover, the X-ray structure of pChCooT reveals the proximity between the histidine 55, a potential nickel-coordinating residue, and the cysteine 2, a highly conserved key residue in Ni(II)-binding.
Collapse
Affiliation(s)
- M Alfano
- University of Grenoble Alpes, CEA, CNRS, BIG, CBM, 38000, Grenoble, France
| | - J Pérard
- University of Grenoble Alpes, CEA, CNRS, BIG, CBM, 38000, Grenoble, France
| | - R Miras
- University of Grenoble Alpes, CEA, CNRS, BIG, CBM, 38000, Grenoble, France
| | - P Catty
- University of Grenoble Alpes, CEA, CNRS, BIG, CBM, 38000, Grenoble, France
| | - C Cavazza
- University of Grenoble Alpes, CEA, CNRS, BIG, CBM, 38000, Grenoble, France.
| |
Collapse
|
13
|
Timm J, Brochier-Armanet C, Perard J, Zambelli B, Ollagnier-de-Choudens S, Ciurli S, Cavazza C. The CO dehydrogenase accessory protein CooT is a novel nickel-binding protein. Metallomics 2018; 9:575-583. [PMID: 28447092 DOI: 10.1039/c7mt00063d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In Rhodospirillum rubrum, maturation of Carbon Monoxide Dehydrogenase (CODH) requires three accessory proteins, CooC, CooT and CooJ, dedicated to nickel insertion into the active site, which is constituted by a distorted [NiFe3S4] cubane coordinated with a mononuclear Fe site. CooC is an ATPase proposed to provide the energy required for the maturation process, while CooJ is described as a metallochaperone with 16 histidines and 2 cysteines at the C-terminus, likely involved in metal binding and/or storage. Prior to the present study, no information was available on CooT at the molecular level. Here, the X-ray structure of RrCooT was obtained, which revealed that this protein is a homodimer featuring a fold that resembles an Sm-like domain, suggesting a role in RNA metabolism that was however not supported by experimental observations. Biochemical and biophysical evidence based on circular dichroism spectroscopy, light scattering, isothermal titration calorimetry and site-directed mutagenesis showed that RrCooT specifically binds a single Ni(ii) per dimer, with a dissociation constant of 9 nM, through the pair of Cys2, highly conserved residues, located at the dimer interface. Despite its role in the activation of RrCODH in vivo, CooT was thought to be a unique protein, found only in R. rubrum, with an unclear function. In this study, we extended the biological impact of CooT, establishing that this protein is a member of a novel Ni(ii)-binding protein family with 111 homologues, linked to anaerobic metabolism in bacteria and archaea, and in most cases to the presence of CODH.
Collapse
Affiliation(s)
- J Timm
- Université Grenoble Alpes, Laboratoire de Chimie et Biologie des Métaux, BioCat, F-Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Maturation of the [Ni-4Fe-4S] active site of carbon monoxide dehydrogenases. J Biol Inorg Chem 2018; 23:613-620. [PMID: 29445873 PMCID: PMC6006190 DOI: 10.1007/s00775-018-1541-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/30/2018] [Indexed: 12/11/2022]
Abstract
Nickel-containing enzymes are diverse in terms of function and active site structure. In many cases, the biosynthesis of the active site depends on accessory proteins which transport and insert the Ni ion. We review and discuss the literature related to the maturation of carbon monoxide dehydrogenases (CODH) which bear a nickel-containing active site consisting of a [Ni–4Fe–4S] center called the C-cluster. The maturation of this center has been much less studied than that of other nickel-containing enzymes such as urease and NiFe hydrogenase. Several proteins present in certain CODH operons, including the nickel-binding proteins CooT and CooJ, still have unclear functions. We question the conception that the maturation of all CODH depends on the accessory protein CooC described as essential for nickel insertion into the active site. The available literature reveals biological variations in CODH active site biosynthesis.
Collapse
|
15
|
Grossman JD, Camire EJ, Perlstein DL. Approaches to Interrogate the Role of Nucleotide Hydrolysis by Metal Trafficking NTPases: The Nbp35-Cfd1 Iron-Sulfur Cluster Scaffold as a Case Study. Methods Enzymol 2018; 599:293-325. [PMID: 29746244 DOI: 10.1016/bs.mie.2017.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nucleotide hydrolases play integral yet poorly understood roles in several metallocluster biosynthetic pathways. For example, the cytosolic iron-sulfur cluster assembly (CIA) is initiated by the CIA scaffold, an ATPase which builds new iron-sulfur clusters for proteins localized to the cytosol and the nucleus in eukaryotic organisms. While in vivo studies have demonstrated the scaffold's nucleotide hydrolase domain is vital for its function, in vitro approaches have not revealed tight allosteric coupling between the cluster scaffolding site and the ATPase site. Thus, the role of ATP hydrolysis has been hard to pinpoint. Herein, we describe methods to probe the nucleotide affinity and hydrolysis activity of the CIA scaffold from yeast, which is comprised of two homologous polypeptides called Nbp35 and Cfd1. In particular, we report two different equilibrium binding assays that make use of commercially available fluorescent nucleotide analogs. Importantly, these assays can be applied to probe nucleotide affinity of both the apo- and holo-forms of the CIA scaffold. Generally, these fluorescent nucleotide analogs have been underutilized to probe metal trafficking NTPase because one of the most commonly used probes, mantATP, which is labeled with the methylanthraniloyl probe via the 2' or 3' sugar hydroxyls, has an absorption which overlaps with the UV-Vis features of many metal-binding proteins. However, by exploiting analogs like BODIPY-FL and trinitrophenyl-labeled nucleotides which have better photophysical properties for metalloprotein applications, these approaches have the potential to reveal the mechanistic underpinnings of NTPases required for metallocluster biosynthesis.
Collapse
|
16
|
Abstract
Nitrogenase is known for its remarkable ability to catalyze the reduction of N2 to NH3, and C1 substrates to short-chain hydrocarbon products, under ambient conditions. The best-studied Mo-nitrogenase utilizes a complex metallocofactor as the site of substrate binding and reduction. Designated the M-cluster, this [MoFe7S9C(R-homocitrate)] cluster can be viewed as [MoFe3S3] and [Fe4S3] subclusters bridged by three μ2-sulfides and one μ6-interstitial carbide, with its Mo end further coordinated by an R-homocitrate moiety. The unique cofactor has attracted considerable attention ever since its discovery; however, the complexity of its structure has hindered mechanistic understanding and chemical synthesis of this cofactor. Motivated by the pressing questions related to the structure and function of the nitrogenase cofactor, one major thrust of our research has been to unravel the key biosynthetic steps of this metallocluster to cultivate a deeper understanding of these reactions and their effects on functionalizing the cofactor. In this Account, we will discuss our recent work that provides insights into how simple Fe and S atoms, along with a single C atom, a heterometallic Mo atom and an organic homocitrate entity, are assembled into one of the most complex metalloclusters known in Nature. Combined biochemical, spectroscopic and structural studies have led us to a working model of M-cluster assembly, which starts with the sequential synthesis of small [Fe2S2] and [Fe4S4] units by NifS/U, followed by the coupling and rearrangement of two [Fe4S4] clusters on NifB concomitant with the insertion of an interstitial carbide and a "9th sulfur" that give rise to a [Fe8S9C] core that is nearly indistinguishable in structure to the M-cluster except for the absence of Mo and homocitrate. This 8Fe core is then matured into an M-cluster on NifEN upon substitution of a Mo-homocitrate conjugate for one terminal Fe atom of the cluster prior to transfer of the M-cluster to its target binding site in the catalytic component of Mo-nitrogenase. Taking stock of the elemental inventory during the cofactor assembly process, the core Fe and S atoms are derived from modular fusion of FeS building blocks, going through 2Fe, 4Fe and 8Fe stages to generate an 8Fe core of the cofactor. However, such a flow of Fe/S along the biosynthetic pathway of the M-cluster is "intervened" by the insertion of C and Mo, which renders the cofactor unique in structure and reactivity. Insertion of C occurs through a novel, radical SAM-dependent mechanism, which involves SN2-type methyl transfer from SAM to a [Fe4S4] cluster pair, hydrogen abstraction of the transferred methyl group by a SAM-derived 5'-dA· radical, and further deprotonation of the resultant methylene radical concomitant with radical chemistry-based coupling and rearrangement of the [Fe4S4] cluster pair into an [Fe8S9C] core. Insertion of Mo, on the other hand, employs an ATPase-dependent mechanism that parallels metal trafficking in the biosynthesis of molybdopterin and CO dehydrogenase cofactors. These findings provide a nice framework for further exploration of the "black box" of nitrogenase cofactor assembly and function.
Collapse
Affiliation(s)
- Nathaniel S. Sickerman
- Department
of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Markus W. Ribbe
- Department
of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
- Department
of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Yilin Hu
- Department
of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| |
Collapse
|
17
|
Palombo M, Bonucci A, Etienne E, Ciurli S, Uversky VN, Guigliarelli B, Belle V, Mileo E, Zambelli B. The relationship between folding and activity in UreG, an intrinsically disordered enzyme. Sci Rep 2017; 7:5977. [PMID: 28729736 PMCID: PMC5519622 DOI: 10.1038/s41598-017-06330-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/12/2017] [Indexed: 12/02/2022] Open
Abstract
A growing body of literature on intrinsically disordered proteins (IDPs) led scientists to rethink the structure-function paradigm of protein folding. Enzymes are often considered an exception to the rule of intrinsic disorder (ID), believed to require a unique structure for catalysis. However, recent studies revealed the presence of disorder in several functional native enzymes. In the present work, we address the importance of dynamics for catalysis, by investigating the relationship between folding and activity in Sporosarcina pasteurii UreG (SpUreG), a P-loop GTPase and the first discovered native ID enzyme, involved in the maturation of the nickel-containing urease. The effect of denaturants and osmolytes on protein structure and activity was analyzed using circular dichroism (CD), Site-Directed Spin Labeling (SDSL) coupled to EPR spectroscopy, and enzymatic assays. Our data show that SpUreG needs a "flexibility window" to be catalytically competent, with both too low and too high mobility being detrimental for its activity.
Collapse
Affiliation(s)
- Marta Palombo
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, Bologna, 40127, Italy
| | - Alessio Bonucci
- Aix-Marseille Univ, CNRS, IMM (FR 3479), BIP (UMR 7281), 31 chemin Joseph Aiguier, Marseille, 13402, France
| | - Emilien Etienne
- Aix-Marseille Univ, CNRS, IMM (FR 3479), BIP (UMR 7281), 31 chemin Joseph Aiguier, Marseille, 13402, France
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, Bologna, 40127, Italy
| | - Vladimir N Uversky
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, MDC07, USA
| | - Bruno Guigliarelli
- Aix-Marseille Univ, CNRS, IMM (FR 3479), BIP (UMR 7281), 31 chemin Joseph Aiguier, Marseille, 13402, France
| | - Valérie Belle
- Aix-Marseille Univ, CNRS, IMM (FR 3479), BIP (UMR 7281), 31 chemin Joseph Aiguier, Marseille, 13402, France
| | - Elisabetta Mileo
- Aix-Marseille Univ, CNRS, IMM (FR 3479), BIP (UMR 7281), 31 chemin Joseph Aiguier, Marseille, 13402, France.
| | - Barbara Zambelli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, Bologna, 40127, Italy.
| |
Collapse
|
18
|
Xia W, Li H, Sun H. Nickel Metallochaperones: Structure, Function, and Nickel-Binding Properties. THE BIOLOGICAL CHEMISTRY OF NICKEL 2017. [DOI: 10.1039/9781788010580-00284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nickel-containing enzymes catalyze a series of important biochemical processes in both prokaryotes and eukaryotes. The maturation of the enzymes requires the proper assembly of the nickel-containing active sites, which involves a battery of nickel metallochaperones that exert metal delivery and storage functions. “Cross-talk” also exists between different nickel enzyme maturation processes. This chapter summarizes the updated knowledge about the nickel chaperones based on biochemical and structural biology research, and discusses the possible nickel delivery mechanisms.
Collapse
Affiliation(s)
- Wei Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong Hong Kong SAR China
| | - Hongzhe Sun
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry Sun Yat-sen University Guangzhou 510275 China
- Department of Chemistry, The University of Hong Kong Hong Kong SAR China
| |
Collapse
|
19
|
Zeer-Wanklyn CJ, Zamble DB. Microbial nickel: cellular uptake and delivery to enzyme centers. Curr Opin Chem Biol 2017; 37:80-88. [PMID: 28213182 DOI: 10.1016/j.cbpa.2017.01.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/12/2017] [Accepted: 01/18/2017] [Indexed: 01/29/2023]
Abstract
Nickel enzymes allow microorganisms to access chemistry that can be vital for survival and virulence. In this review we highlight recent work on several systems that import nickel ions and deliver them to the active sites of these enzymes. Small molecules, in particular l-His and derivatives, may chelate nickel ions before import at TonB-dependent outer-membrane and ABC-type inner-membrane transporters. Inside the cell, nickel ions are used by maturation factors required to produce nickel enzymes such as [NiFe]-hydrogenase, urease and lactate racemase. These accessory proteins often exhibit metal selectivity and frequently include an NTP-hydrolyzing metallochaperone protein. The research described provides a deeper understanding of the processes that allow microorganisms to access nickel ions from the environment and incorporate them into nickel proteins.
Collapse
Affiliation(s)
- Conor J Zeer-Wanklyn
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Deborah B Zamble
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.
| |
Collapse
|
20
|
Gregg CM, Goetzl S, Jeoung JH, Dobbek H. AcsF Catalyzes the ATP-dependent Insertion of Nickel into the Ni,Ni-[4Fe4S] Cluster of Acetyl-CoA Synthase. J Biol Chem 2016; 291:18129-38. [PMID: 27382049 DOI: 10.1074/jbc.m116.731638] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Indexed: 12/16/2022] Open
Abstract
Acetyl-CoA synthase (ACS) catalyzes the reversible condensation of CO, CoA, and a methyl-cation to form acetyl-CoA at a unique Ni,Ni-[4Fe4S] cluster (the A-cluster). However, it was unknown which proteins support the assembly of the A-cluster. We analyzed the product of a gene from the cluster containing the ACS gene, cooC2 from Carboxydothermus hydrogenoformans, named AcsFCh, and showed that it acts as a maturation factor of ACS. AcsFCh and inactive ACS form a stable 2:1 complex that binds two nickel ions with higher affinity than the individual components. The nickel-bound ACS-AcsFCh complex remains inactive until MgATP is added, thereby converting inactive to active ACS. AcsFCh is a MinD-type ATPase and belongs to the CooC protein family, which can be divided into homologous subgroups. We propose that proteins of one subgroup are responsible for assembling the Ni,Ni-[4Fe4S] cluster of ACS, whereas proteins of a second subgroup mature the [Ni4Fe4S] cluster of carbon monoxide dehydrogenases.
Collapse
Affiliation(s)
- Christina M Gregg
- From the Institut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Sebastian Goetzl
- From the Institut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Jae-Hun Jeoung
- From the Institut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Holger Dobbek
- From the Institut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| |
Collapse
|
21
|
Affiliation(s)
- Yilin Hu
- Department of Molecular Biology and Biochemistry and
| | - Markus W. Ribbe
- Department of Molecular Biology and Biochemistry and
- Department of Chemistry, University of California, Irvine, California 92697-2025; ,
| |
Collapse
|
22
|
The Carbon Monoxide Dehydrogenase from Desulfovibrio vulgaris. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1574-83. [DOI: 10.1016/j.bbabio.2015.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/29/2015] [Accepted: 08/04/2015] [Indexed: 11/21/2022]
|
23
|
Chivers PT. Cobalt and Nickel. BINDING, TRANSPORT AND STORAGE OF METAL IONS IN BIOLOGICAL CELLS 2014. [DOI: 10.1039/9781849739979-00381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cobalt and nickel play key roles in biological systems as cofactors in a small number of important enzymes. The majority of these are found in microbes. Evidence for direct roles for Ni(II) and Co(II) enzymes in higher organisms is limited, with the exception of the well-known requirement for the cobalt-containing vitamin B12 cofactor and the Ni-dependent urease in plants. Nonetheless, nickel in particular plays a key role in human health because of its essential role in microbes that inhabit various growth niches within the body. These roles can be beneficial, as can be seen with the anaerobic production and consumption of H2 in the digestive tract by bacteria and archaea that results in increased yields of short-chain fatty acids. In other cases, nickel has an established role in the establishment of pathogenic infection (Helicobacter pylori urease and colonization of the stomach). The synthesis of Co- and Ni-containing enzymes requires metal import from the extracellular milieu followed by the targeting of these metals to the appropriate protein and enzymes involved in metallocluster or cofactor biosynthesis. These metals are toxic in excess so their levels must be regulated carefully. This complex pathway of metalloenzyme synthesis and intracellular homeostasis requires proteins that can specifically recognize these metals in a hierarchical manner. This chapter focuses on quantitative and structural details of the cobalt and nickel binding sites in transport, trafficking and regulatory proteins involved in cobalt and nickel metabolism in microbes.
Collapse
Affiliation(s)
- Peter T. Chivers
- Department of Chemistry, School of Biological and Biomedical Sciences, and Biophysical Sciences Institute, Durham University Durham UK
| |
Collapse
|
24
|
Inoue T, Takao K, Fukuyama Y, Yoshida T, Sako Y. Over-expression of carbon monoxide dehydrogenase-I with an accessory protein co-expression: a key enzyme for carbon dioxide reduction. Biosci Biotechnol Biochem 2014; 78:582-7. [PMID: 25036953 DOI: 10.1080/09168451.2014.890027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Carbon monoxide dehydrogenase-I (CODH-I) from the CO-utilizing bacterium Carboxydothermus hydrogenoformans are expected to be utilized as a part of reproducible carbon dioxide photoreduction system. However, the over-expression system for CODH-I remains to be constructed. CODH-I constitutes a hydrogenase/CODH gene cluster including a gene encoding a Ni-insertion accessory protein, CooC (cooC3). Through co-expression of CooC3, we found an over-expression system with higher activity. The Rec-CODH-I with the co-expression exhibits 8060 U/mg which was approximately threefold than that without co-expression (2270 U/mg). In addition, co-expression resulted in Ni(2+) content increase; the amount of Ni atoms of Rec-CODH-I was approximately thrice than that without co-expression.
Collapse
Affiliation(s)
- Takahiro Inoue
- a Division of Applied Biosciences , Graduate School of Agriculture, Kyoto University , Kyoto , Japan
| | | | | | | | | |
Collapse
|
25
|
Ribbe MW, Hu Y, Hodgson KO, Hedman B. Biosynthesis of nitrogenase metalloclusters. Chem Rev 2013; 114:4063-80. [PMID: 24328215 DOI: 10.1021/cr400463x] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Markus W Ribbe
- Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-3900, United States
| | | | | | | |
Collapse
|
26
|
Structure of UreG/UreF/UreH complex reveals how urease accessory proteins facilitate maturation of Helicobacter pylori urease. PLoS Biol 2013; 11:e1001678. [PMID: 24115911 PMCID: PMC3792862 DOI: 10.1371/journal.pbio.1001678] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 08/29/2013] [Indexed: 11/19/2022] Open
Abstract
Structural and biochemical study of urease accessory protein complex provides mechanistic insights into the delivery of nickel to metalloenzyme urease, an enzyme enabling the survival of Helicobacter pylori in the human stomach. Urease is a metalloenzyme essential for the survival of Helicobacter pylori in acidic gastric environment. Maturation of urease involves carbamylation of Lys219 and insertion of two nickel ions at its active site. This process requires GTP hydrolysis and the formation of a preactivation complex consisting of apo-urease and urease accessory proteins UreF, UreH, and UreG. UreF and UreH form a complex to recruit UreG, which is a SIMIBI class GTPase, to the preactivation complex. We report here the crystal structure of the UreG/UreF/UreH complex, which illustrates how UreF and UreH facilitate dimerization of UreG, and assembles its metal binding site by juxtaposing two invariant Cys66-Pro67-His68 metal binding motif at the interface to form the (UreG/UreF/UreH)2 complex. Interaction studies revealed that addition of nickel and GTP to the UreG/UreF/UreH complex releases a UreG dimer that binds a nickel ion at the dimeric interface. Substitution of Cys66 and His68 with alanine abolishes the formation of the nickel-charged UreG dimer. This nickel-charged UreG dimer can activate urease in vitro in the presence of the UreF/UreH complex. Static light scattering and atomic absorption spectroscopy measurements demonstrated that the nickel-charged UreG dimer, upon GTP hydrolysis, reverts to its monomeric form and releases nickel to urease. Based on our results, we propose a mechanism on how urease accessory proteins facilitate maturation of urease. Catalytic activities of many important enzymes depend upon metal cofactors. Ensuring each enzyme acquires the proper type of metal cofactor is essential to life. One such example is urease, which is a nickel containing metalloenzyme catalyzing the hydrolysis of urea to ammonia. The survival of Helicobacter pylori, a stomach ulcer–causing pathogen, in the human stomach depends on the ammonia released to neutralize gastric acid. In this study, we revealed the detail mechanism of how urease accessory proteins UreF, UreH, and UreG cooperate to couple GTP hydrolysis to deliver nickel to urease. UreF/UreH complex interacts with two molecules of GTPase UreG and assembles a metal binding site located at the interface between two UreG molecules. Nickel can induce GTP-dependent dimerization of UreG. This nickel-carrying UreG dimer together with UreF, UreH, and urease assemble into a protein complex. Upon stimulation of UreG GTPase activity by bicarbonate, UreG hydrolyses GTP and releases nickel into urease. Other nickel-delivering NTPases share similar properties with UreG; therefore, the nickel delivery mechanism described here is likely universally shared among these proteins.
Collapse
|
27
|
Abstract
The iron-molybdenum cofactor (the M-cluster) serves as the active site of molybdenum nitrogenase. Arguably one of the most complex metal cofactors in biological systems, the M-cluster is assembled through the formation of an 8Fe core prior to the insertion of molybdenum and homocitrate into this core. Here, we review the recent progress in the research area of M-cluster assembly, with an emphasis on our work that provides useful insights into the mechanistic details of this process.
Collapse
Affiliation(s)
- Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA.
| | | |
Collapse
|
28
|
|
29
|
|
30
|
Popova OB, Baker MR, Tran TP, Le T, Serysheva II. Identification of ATP-binding regions in the RyR1 Ca²⁺ release channel. PLoS One 2012; 7:e48725. [PMID: 23144945 PMCID: PMC3492408 DOI: 10.1371/journal.pone.0048725] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/28/2012] [Indexed: 12/11/2022] Open
Abstract
ATP is an important modulator of gating in type 1 ryanodine receptor (RyR1), also known as a Ca2+ release channel in skeletal muscle cells. The activating effect of ATP on this channel is achieved by directly binding to one or more sites on the RyR1 protein. However, the number and location of these sites have yet to be determined. To identify the ATP-binding regions within RyR1 we used 2N3ATP-2′,3′-Biotin-LC-Hydrazone (BioATP-HDZ), a photo-reactive ATP analog to covalently label the channel. We found that BioATP-HDZ binds RyR1 specifically with an IC50 = 0.6±0.2 mM, comparable with the reported EC50 for activation of RyR1 with ATP. Controlled proteolysis of labeled RyR1 followed by sequence analysis revealed three fragments with apparent molecular masses of 95, 45 and 70 kDa that were crosslinked by BioATP-HDZ and identified as RyR1 sequences. Our analysis identified four glycine-rich consensus motifs that can potentially constitute ATP-binding sites and are located within the N-terminal 95-kDa fragment. These putative nucleotide-binding sequences include amino acids 699–704, 701–706, 1081–1084 and 1195–1200, which are conserved among the three RyR isoforms. Located next to the N-terminal disease hotspot region in RyR1, these sequences may communicate the effects of ATP-binding to channel function by tuning conformational motions within the neighboring cytoplasmic regulatory domains. Two other labeled fragments lack ATP-binding consensus motifs and may form non-canonical ATP-binding sites. Based on domain topology in the 3D structure of RyR1 it is also conceivable that the identified ATP-binding regions, despite their wide separation in the primary sequence, may actually constitute the same non-contiguous ATP-binding pocket within the channel tetramer.
Collapse
Affiliation(s)
- Olga B. Popova
- Department of Biochemistry and Molecular Biology, The University of Texas at Houston Medical School, Houston, Texas, United States of America
| | - Mariah R. Baker
- Department of Biochemistry and Molecular Biology, The University of Texas at Houston Medical School, Houston, Texas, United States of America
| | - Tina P. Tran
- Department of Biochemistry and Molecular Biology, The University of Texas at Houston Medical School, Houston, Texas, United States of America
| | - Tri Le
- Department of Biochemistry and Molecular Biology, The University of Texas at Houston Medical School, Houston, Texas, United States of America
| | - Irina I. Serysheva
- Department of Biochemistry and Molecular Biology, The University of Texas at Houston Medical School, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
31
|
Higgins KA, Carr CE, Maroney MJ. Specific metal recognition in nickel trafficking. Biochemistry 2012; 51:7816-32. [PMID: 22970729 DOI: 10.1021/bi300981m] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nickel is an essential metal for a number of bacterial species that have developed systems for acquiring, delivering, and incorporating the metal into target enzymes and controlling the levels of nickel in cells to prevent toxic effects. As with other transition metals, these trafficking systems must be able to distinguish between the desired metal and other transition metal ions with similar physical and chemical properties. Because there are few enzymes (targets) that require nickel for activity (e.g., Escherichia coli transports nickel for hydrogenases made under anaerobic conditions, and Helicobacter pylori requires nickel for hydrogenase and urease that are essential for acid viability), the "traffic pattern" for nickel is relatively simple, and nickel trafficking therefore presents an opportunity to examine a system for the mechanisms that are used to distinguish nickel from other metals. In this review, we describe the details known for examples of uptake permeases, metallochaperones and proteins involved in metallocenter assembly, and nickel metalloregulators. We also illustrate a variety of mechanisms, including molecular recognition in the case of NikA protein and examples of allosteric regulation for HypA, NikR, and RcnR, employed to generate specific biological responses to nickel ions.
Collapse
Affiliation(s)
- Khadine A Higgins
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | |
Collapse
|
32
|
Peters JW, Broderick JB. Emerging paradigms for complex iron-sulfur cofactor assembly and insertion. Annu Rev Biochem 2012; 81:429-50. [PMID: 22482905 DOI: 10.1146/annurev-biochem-052610-094911] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
[FeFe]-hydrogenses and molybdenum (Mo)-nitrogenase are evolutionarily unrelated enzymes with unique complex iron-sulfur cofactors at their active sites. The H cluster of [FeFe]-hydrogenases and the FeMo cofactor of Mo-nitrogenase require specific maturation machinery for their proper synthesis and insertion into the structural enzymes. Recent insights reveal striking similarities in the biosynthetic pathways of these complex cofactors. For both systems, simple iron-sulfur cluster precursors are modified on assembly scaffolds by the activity of radical S-adenosylmethionine (SAM) enzymes. Radical SAM enzymes are responsible for the synthesis and insertion of the unique nonprotein ligands presumed to be key structural determinants for their respective catalytic activities. Maturation culminates in the transfer of the intact cluster assemblies to a cofactor-less structural protein recipient. Required roles for nucleotide binding and hydrolysis have been implicated in both systems, but the specific role for these requirements remain unclear. In this review, we highlight the progress on [FeFe]-hydrogenase H cluster and nitrogenase FeMo-cofactor assembly in the context of these emerging paradigms.
Collapse
Affiliation(s)
- John W Peters
- Department of Chemistry and Biochemistry and the Astrobiology Biogeocatalysis Research Center, Montana State University, Bozeman, Montana 59717, USA.
| | | |
Collapse
|
33
|
Xia W, Li H, Yang X, Wong KB, Sun H. Metallo-GTPase HypB from Helicobacter pylori and its interaction with nickel chaperone protein HypA. J Biol Chem 2011; 287:6753-63. [PMID: 22179820 DOI: 10.1074/jbc.m111.287581] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The maturation of [NiFe]-hydrogenase is highly dependent on a battery of chaperone proteins. Among these, HypA and HypB were proposed to exert nickel delivery functions in the metallocenter assembly process, although the detailed mechanism remains unclear. Herein, we have overexpressed and purified wild-type HypB as well as two mutants, K168A and M186L/F190V, from Helicobacter pylori. We demonstrated that all proteins bind Ni(2+) at a stoichiometry of one Ni(2+) per monomer of the proteins with dissociation constants at micromolar levels. Ni(2+) elevated GTPase activity of WT HypB, which is attributable to a lower affinity of the protein toward GDP as well as Ni(2+)-induced dimerization. The disruption of GTP-dependent dimerization has led to GTPase activities of both mutants in apo-forms almost completely abolished, compared with the wild-type protein. The GTPase activity is partially restored for HypB(M186L/F190V) mutant but not for HypB(K168A) mutant upon Ni(2+) binding. HypB forms a complex with its partner protein HypA with a low affinity (K(d) of 52.2 ± 8.8 μM). Such interactions were also observed in vivo both in the absence and presence of nickel using a GFP-fragment reassembly technique. The putative protein-protein interfaces on H. pylori HypA and HypB proteins were identified by NMR chemical shift perturbation and mutagenesis studies, respectively. Intriguingly, the unique N terminus of H. pylori HypB was identified to participate in the interaction with H. pylori HypA. These structural and functional studies provide insight into the molecular mechanism of Ni(2+) delivery during maturation of [NiFe]-hydrogenase.
Collapse
Affiliation(s)
- Wei Xia
- Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | | | | | |
Collapse
|
34
|
Goetzl S, Jeoung JH, Hennig SE, Dobbek H. Structural basis for electron and methyl-group transfer in a methyltransferase system operating in the reductive acetyl-CoA pathway. J Mol Biol 2011; 411:96-109. [PMID: 21640123 DOI: 10.1016/j.jmb.2011.05.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/16/2011] [Accepted: 05/17/2011] [Indexed: 11/16/2022]
Abstract
Several anaerobic acetogenic, methanogenic, hydrogenogenic, and sulfate-reducing microorganisms are able to use the reductive acetyl-CoA (Wood-Ljungdahl) pathway to convert CO₂ into biomass. The reductive acetyl-CoA pathway consists of two branches connected by the Co/Fe-containing corrinoid iron-sulfur protein (CoFeSP), which transfers a methyl group from a methyltransferase (MeTr)/methyltetrahydrofolate (CH₃-H₄ folate) complex to the reduced Ni-Ni-[4Fe-4S] cluster (cluster A) of acetyl-CoA synthase. We investigated the CoFeSP and MeTr couple of the hydrogenogenic bacterium Carboxydothermus hydrogenoformans and show that the two proteins are able to catalyze the methyl-group transfer reaction from CH₃-H₄ folate to the Co(I) center of CoFeSP. We determined the crystal structures of both proteins. The structure of CoFeSP includes the previously unresolved N-terminal domain of the large subunit of CoFeSP, revealing a unique four-helix-bundle-like architecture in which a [4Fe-4S] cluster is shielded by hydrophobic amino acids. It further reveals that the corrinoid and the [4Fe-4S] cluster binding domains are mobile, which is mandatory for the postulated electron transfer between them. Furthermore, we solved the crystal structures of apo-MeTr, CH₃-H₄-folate-bound MeTr, and H₄-folate-bound MeTr, revealing a substrate-induced closure of the CH₃-H₄ folate binding cavity of MeTr. We observed three different conformations of Asn200 depending on the substrate bound in the active site, demonstrating its conformational modulation by hydrogen-bonding interactions with the substrate. The observed flexibility could be essential to stabilize the transition state during methyl-group transfer. The conformational space and role of Asn200 are likely conserved in homologous cobalamin-dependent MeTrs such as methionine synthase.
Collapse
Affiliation(s)
- Sebastian Goetzl
- Institut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Leonor-Michaelis-Haus, 10115 Berlin, Germany
| | | | | | | |
Collapse
|
35
|
Sydor AM, Liu J, Zamble DB. Effects of metal on the biochemical properties of Helicobacter pylori HypB, a maturation factor of [NiFe]-hydrogenase and urease. J Bacteriol 2011; 193:1359-68. [PMID: 21239585 PMCID: PMC3067625 DOI: 10.1128/jb.01333-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 01/08/2011] [Indexed: 01/12/2023] Open
Abstract
The biosyntheses of the [NiFe]-hydrogenase and urease enzymes in Helicobacter pylori require several accessory proteins for proper construction of the nickel-containing metallocenters. The hydrogenase accessory proteins HypA and HypB, a GTPase, have been implicated in the nickel delivery steps of both enzymes. In this study, the metal-binding properties of H. pylori HypB were characterized, and the effects of metal binding on the biochemical behavior of the protein were examined. The protein can bind stoichiometric amounts of Zn(II) or Ni(II), each with nanomolar affinity. Mutation of Cys106 and His107, which are located between two major GTPase motifs, results in undetectable Ni(II) binding, and the Zn(II) affinity is weakened by 2 orders of magnitude. These two residues are also required for the metal-dependent dimerization observed in the presence of Ni(II) but not Zn(II). The addition of metals to the protein has distinct impacts on GTPase activity, with zinc significantly reducing GTP hydrolysis to below detectable levels and nickel only slightly altering the k(cat) and K(m) of the reaction. The regulation of HypB activities by metal binding may contribute to the maturation of the nickel-containing enzymes.
Collapse
Affiliation(s)
- Andrew M. Sydor
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jenny Liu
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Deborah B. Zamble
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
36
|
Jeoung JH, Giese T, Grünwald M, Dobbek H. Crystal structure of the ATP-dependent maturation factor of Ni,Fe-containing carbon monoxide dehydrogenases. J Mol Biol 2010; 396:1165-79. [PMID: 20064527 DOI: 10.1016/j.jmb.2009.12.062] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 12/17/2009] [Accepted: 12/26/2009] [Indexed: 11/26/2022]
Abstract
CooC proteins are ATPases involved in the incorporation of nickel into the complex active site ([Ni-4Fe-4S]) cluster of Ni,Fe-dependent carbon monoxide dehydrogenases. The genome of the carboxydotrophic bacterium Carboxydothermus hydrogenoformans encodes five carbon monoxide dehydrogenases and three CooC-type proteins, of which CooC1 was shown to be a nickel-binding ATPase. We determined the crystal structure of CooC1 in four different states: empty, ADP-bound, Zn(2+)/ADP-bound, and Zn(2+)-bound. The structure of CooC1 consists of two spatially separated functional modules: an ATPase module containing the deviant Walker A motif and a metal-binding module that confers the specific function of CooC1. The ATPase module is homologous to other members of the MinD family and, in analogy to the dimeric structure of ATP-bound Soj, is likely responsible for the ATP-dependent dimerization of CooC1. Its core topology classifies CooC1 as a member of the MinD family of SIMIBI (signal recognition particle, MinD and BioD)-class NTPases. The crystal structure of Zn(2+)-bound CooC1 reveals a conserved C-X-C motif as the metal-binding site responsible for metal-induced dimerization. The competitive binding of Ni(2+) and Zn(2+) to CooC1 in solution confirms that the conserved C-X-C motif is also responsible for the interaction with Ni(2+). A comparison of the different CooC1 structures determined suggests a mutual dependence of metal-binding site and nucleotide-binding site.
Collapse
Affiliation(s)
- Jae-Hun Jeoung
- AG Bioanorganische Chemie, Universität Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| | | | | | | |
Collapse
|
37
|
|