1
|
Bonin JP, Sapienza PJ, Lee AL. Dynamic allostery in substrate binding by human thymidylate synthase. eLife 2022; 11:79915. [PMID: 36200982 PMCID: PMC9536839 DOI: 10.7554/elife.79915] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Human thymidylate synthase (hTS) is essential for DNA replication and therefore a therapeutic target for cancer. Effective targeting requires knowledge of the mechanism(s) of regulation of this 72 kDa homodimeric enzyme. Here, we investigate the mechanism of binding cooperativity of the nucleotide substrate. We have employed exquisitely sensitive methyl-based CPMG and CEST NMR experiments enabling us to identify residues undergoing bifurcated linear 3-state exchange, including concerted switching between active and inactive conformations in the apo enzyme. The inactive state is populated to only ~1.3%, indicating that conformational selection contributes negligibly to the cooperativity. Instead, methyl rotation axis order parameters, determined by 2H transverse relaxation rates, suggest that rigidification of the enzyme upon substrate binding is responsible for the entropically-driven cooperativity. Lack of the rigidification in product binding and substrate binding to an N-terminally truncated enzyme, both non-cooperative, support this idea. In addition, the lack of this rigidification in the N-terminal truncation indicates that interactions between the flexible N-terminus and the rest of the protein, which are perturbed by substrate binding, play a significant role in the cooperativity—a novel mechanism of dynamic allostery. Together, these findings yield a rare depth of insight into the substrate binding cooperativity of an essential enzyme.
Collapse
Affiliation(s)
- Jeffrey P Bonin
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina
| | - Paul J Sapienza
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina
| | - Andrew L Lee
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina
| |
Collapse
|
2
|
Zhao LN, Björklund M, Caldez MJ, Zheng J, Kaldis P. Therapeutic targeting of the mitochondrial one-carbon pathway: perspectives, pitfalls, and potential. Oncogene 2021; 40:2339-2354. [PMID: 33664451 DOI: 10.1038/s41388-021-01695-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023]
Abstract
Most of the drugs currently prescribed for cancer treatment are riddled with substantial side effects. In order to develop more effective and specific strategies to treat cancer, it is of importance to understand the biology of drug targets, particularly the newly emerging ones. A comprehensive evaluation of these targets will benefit drug development with increased likelihood for success in clinical trials. The folate-mediated one-carbon (1C) metabolism pathway has drawn renewed attention as it is often hyperactivated in cancer and inhibition of this pathway displays promise in developing anticancer treatment with fewer side effects. Here, we systematically review individual enzymes in the 1C pathway and their compartmentalization to mitochondria and cytosol. Based on these insight, we conclude that (1) except the known 1C targets (DHFR, GART, and TYMS), MTHFD2 emerges as good drug target, especially for treating hematopoietic cancers such as CLL, AML, and T-cell lymphoma; (2) SHMT2 and MTHFD1L are potential drug targets; and (3) MTHFD2L and ALDH1L2 should not be considered as drug targets. We highlight MTHFD2 as an excellent therapeutic target and SHMT2 as a complementary target based on structural/biochemical considerations and up-to-date inhibitor development, which underscores the perspectives of their therapeutic potential.
Collapse
Affiliation(s)
- Li Na Zhao
- Department of Clinical Sciences, Lund University, Malmö, Sweden.
| | - Mikael Björklund
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Haining, Zhejiang, PR China.,2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.,Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Matias J Caldez
- Laboratory of Host Defense, The World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Jie Zheng
- School of Information Science and Technology, Shanghai Tech University, Shanghai, PR China
| | - Philipp Kaldis
- Department of Clinical Sciences, Lund University, Malmö, Sweden.
| |
Collapse
|
3
|
Panchal V, Kumar S, Hossain SN, Vasudevan D. Structure analysis of thymidylate synthase from white spot syndrome virus reveals WSSV-specific structural elements. Int J Biol Macromol 2020; 167:1168-1175. [PMID: 33197475 DOI: 10.1016/j.ijbiomac.2020.11.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 12/01/2022]
Abstract
White spot syndrome virus (WSSV), the causative agent of white spot disease (WSD) severely affecting crustacean life forms, is highly contagious and forms the principal cause of massive economic losses in the shrimp aquaculture industry. Previous studies have demonstrated thymidylate synthase as a successful anti-cancer therapeutic drug target, leading to various anti-cancer drugs. The differential utilization of nucleotide precursors between white spot syndrome virus and shrimp encouraged us to analyze WSSV-thymidylate synthase (wTS). Here, we report the crystal structures of wTS in its apo-form and as a ternary complex with deoxyuridine monophosphate (dUMP) and methotrexate at a resolution of 2.35 Å and 2.6 Å, respectively. wTS possesses a fold characteristic to known thymidylate synthase (TS) structures. Like other TS structures, the apo-form of wTS displays an open conformation, whereas the wTS ternary complex attains a closed conformation. While the C-terminal loop maintains a typical distance from methotrexate, the Sγ atom of the catalytic Cys is positioned farther from the C6 atom of dUMP. Altogether, we report the first TS structure from a crustacean virus and highlight its distinction from shrimp and other TS structures.
Collapse
Affiliation(s)
- Vipul Panchal
- Institute of Life Sciences, Bhubaneswar 751023, Odisha, India
| | - Sushil Kumar
- Institute of Life Sciences, Bhubaneswar 751023, Odisha, India
| | | | | |
Collapse
|
4
|
Structural Comparison of Enterococcus faecalis and Human Thymidylate Synthase Complexes with the Substrate dUMP and Its Analogue FdUMP Provides Hints about Enzyme Conformational Variabilities. Molecules 2019; 24:molecules24071257. [PMID: 30935102 PMCID: PMC6479881 DOI: 10.3390/molecules24071257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/22/2019] [Accepted: 03/28/2019] [Indexed: 12/17/2022] Open
Abstract
Thymidylate synthase (TS) is an enzyme of paramount importance as it provides the only de novo source of deoxy-thymidine monophosphate (dTMP). dTMP, essential for DNA synthesis, is produced by the TS-catalyzed reductive methylation of 2′-deoxyuridine-5′-monophosphate (dUMP) using N5,N10-methylenetetrahydrofolate (mTHF) as a cofactor. TS is ubiquitous and a validated drug target. TS enzymes from different organisms differ in sequence and structure, but are all obligate homodimers. The structural and mechanistic differences between the human and bacterial enzymes are exploitable to obtain selective inhibitors of bacterial TSs that can enrich the currently available therapeutic tools against bacterial infections. Enterococcus faecalis is a pathogen fully dependent on TS for dTMP synthesis. In this study, we present four new crystal structures of Enterococcus faecalis and human TSs in complex with either the substrate dUMP or the inhibitor FdUMP. The results provide new clues about the half-site reactivity of Enterococcus faecalis TS and the mechanisms underlying the conformational changes occurring in the two enzymes. We also identify relevant differences in cofactor and inhibitor binding between Enterococcus faecalis and human TS that can guide the design of selective inhibitors against bacterial TSs.
Collapse
|
5
|
Ferrari S, Severi L, Pozzi C, Quotadamo A, Ponterini G, Losi L, Marverti G, Costi MP. Human Thymidylate Synthase Inhibitors Halting Ovarian Cancer Growth. VITAMINS AND HORMONES 2018; 107:473-513. [PMID: 29544641 DOI: 10.1016/bs.vh.2017.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Human thymidylate synthase (hTS) has an important role in DNA biosynthesis, thus it is essential for cell survival. TS is involved in the folate pathways, specifically in the de novo pyrimidine biosynthesis. Structure and functions are intimately correlated, account for cellular activity and, in a broader view, with in vivo mechanisms. hTS is a target for anticancer agents, some of which are clinical drugs. The understanding of the detailed mechanism of TS inhibition by currently used drugs and of the interaction with the mechanism of action of other anticancer agents can suggest new perspective of TS inhibition able to improve the anticancer effect and to overcome drug resistance. TS-targeting drugs in therapy today are inhibitors that bind at the active site and that mostly resemble the substrates. Nonsubstrate analogs offer an opportunity for allosteric binding and novel mode of inhibition in the cancer cells. This chapter illustrates the relationship among the large number of hTS actions at molecular and clinical levels, its role as a target for ovarian cancer therapy, in particular in cases of overexpression of hTS and other folate proteins such as those induced by platinum drug treatments, and address the potential combination of TS inhibitors with other suitable anticancer agents.
Collapse
Affiliation(s)
| | - Leda Severi
- University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | - Lorena Losi
- University of Modena and Reggio Emilia, Modena, Italy
| | | | | |
Collapse
|
6
|
Jarmuła A, Wilk P, Maj P, Ludwiczak J, Dowierciał A, Banaszak K, Rypniewski W, Cieśla J, Dąbrowska M, Frączyk T, Bronowska AK, Jakowiecki J, Filipek S, Rode W. Crystal structures of nematode (parasitic T. spiralis and free living C. elegans), compared to mammalian, thymidylate synthases (TS). Molecular docking and molecular dynamics simulations in search for nematode-specific inhibitors of TS. J Mol Graph Model 2017; 77:33-50. [PMID: 28826032 DOI: 10.1016/j.jmgm.2017.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/05/2017] [Accepted: 08/07/2017] [Indexed: 01/01/2023]
Abstract
Three crystal structures are presented of nematode thymidylate synthases (TS), including Caenorhabditis elegans (Ce) enzyme without ligands and its ternary complex with dUMP and Raltitrexed, and binary complex of Trichinella spiralis (Ts) enzyme with dUMP. In search of differences potentially relevant for the development of species-specific inhibitors of the nematode enzyme, a comparison was made of the present Ce and Ts enzyme structures, as well as binary complex of Ce enzyme with dUMP, with the corresponding mammalian (human, mouse and rat) enzyme crystal structures. To complement the comparison, tCONCOORD computations were performed to evaluate dynamic behaviors of mammalian and nematode TS structures. Finally, comparative molecular docking combined with molecular dynamics and free energy of binding calculations were carried out to search for ligands showing selective affinity to T. spiralis TS. Despite an overall strong similarity in structure and dynamics of nematode vs mammalian TSs, a pool of ligands demonstrating predictively a strong and selective binding to TsTS has been delimited. These compounds, the E63 family, locate in the dimerization interface of TsTS where they exert species-specific interactions with certain non-conserved residues, including hydrogen bonds with Thr174 and hydrophobic contacts with Phe192, Cys191 and Tyr152. The E63 family of ligands opens the possibility of future development of selective inhibitors of TsTS and effective agents against trichinellosis.
Collapse
Affiliation(s)
- Adam Jarmuła
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland.
| | - Piotr Wilk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland; Macromolecular Crystallography (BESSY-MX), Berlin, Germany
| | - Piotr Maj
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Jan Ludwiczak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland; Centre of New Technologies, University of Warsaw, Warszawa, Poland
| | - Anna Dowierciał
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Katarzyna Banaszak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Wojciech Rypniewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Joanna Cieśla
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Magdalena Dąbrowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Tomasz Frączyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | | | | | | | - Wojciech Rode
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| |
Collapse
|
7
|
Chen D, Jansson A, Sim D, Larsson A, Nordlund P. Structural analyses of human thymidylate synthase reveal a site that may control conformational switching between active and inactive states. J Biol Chem 2017; 292:13449-13458. [PMID: 28634233 PMCID: PMC5555203 DOI: 10.1074/jbc.m117.787267] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/18/2017] [Indexed: 12/16/2022] Open
Abstract
Thymidylate synthase (TS) is the sole enzyme responsible for de novo biosynthesis of thymidylate (TMP) and is essential for cell proliferation and survival. Inhibition of human TS (hTS) has been extensively investigated for cancer chemotherapy, but several aspects of its activity and regulation are still uncertain. In this study, we performed comprehensive structural and biophysical studies of hTS using crystallography and thermal shift assay and provided the first detailed structural information on the conformational changes induced by ligand binding to the hTS active site. We found that upon binding of the antifolate agents raltitrexed and nolatrexed, the two insert regions in hTS, the functions of which are unclear, undergo positional shifts toward the catalytic center. We investigated the inactive conformation of hTS and found that the two insert regions are also involved in the conformational transition between the active and inactive state of hTS. Moreover, we identified a ligand-binding site in the dimer interface, suggesting that the cavity in the dimer interface could serve as an allosteric site of hTS to regulate the conformational switching between the active and inactive states. On the basis of these findings, we propose a regulatory mechanism of hTS activity that involves allosteric regulation of interactions of hTS with its own mRNA depending on cellular demands for TMP.
Collapse
Affiliation(s)
- Dan Chen
- From the School of Biological Sciences, Lab 07-02 and
| | - Anna Jansson
- From the School of Biological Sciences, Lab 07-02 and
| | - Daniel Sim
- Lab 07-01, Nanyang Technological University, 61 Biopolis Drive (Proteos), Singapore 138673
| | | | - Pär Nordlund
- From the School of Biological Sciences, Lab 07-02 and
- the Institute of Cellular and Molecular Biology, A*STAR, 61 Biopolis Drive (Proteos), Singapore 138673, and
- the Department of Medical Biochemistry & Biophysics, Division of Biophysics, Karolinska Institutet, Scheeles väg 2, Stockholm 17177, Sweden
| |
Collapse
|
8
|
Deschamps P, Réty S, Bareille J, Leulliot N. Crystal structure of the active form of native human thymidylate synthase in the absence of bound substrates. Acta Crystallogr F Struct Biol Commun 2017; 73:336-341. [PMID: 28580921 PMCID: PMC5458390 DOI: 10.1107/s2053230x17007233] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/16/2017] [Indexed: 11/10/2022] Open
Abstract
Human thymidylate synthase (hTS) provides the sole de novo intracellular source of thymidine 5'-monophosphate (dTMP). hTS is required for DNA replication prior to cell division, making it an attractive target for anticancer chemotherapy and drug discovery. hTS binds 2'-deoxyuridine 5'-monophosphate (dUMP) and the folate co-substrate N5,N10-methylenetetrahydrofolate (meTHF) in a pocket near the catalytic residue Cys195. The catalytic loop, which is composed of amino-acid residues 181-197, can adopt two distinct conformations related by a 180° rotation. In the active conformation Cys195 is close to the active site, while in the inactive conformation it is rotated and Cys195 is too distant from the active site for catalysis. Several hTS structures, either native or engineered, have been solved in the active conformation in complex with ligands or inhibitors and at different salt concentrations. However, apo hTS structures have been solved in an inactive conformation in high-salt and low-salt conditions (PDB entries 1ypv, 4h1i, 4gyh, 3egy and 3ehi). Here, the structure of apo hTS crystallized in the active form with sulfate ions coordinated by the arginine residue that binds dUMP is reported.
Collapse
Affiliation(s)
- P. Deschamps
- Laboratoire de Cristallographie et RMN Biologiques, UMR CNRS 8015, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie de Paris, Paris, France
| | - S. Réty
- Laboratoire de Cristallographie et RMN Biologiques, UMR CNRS 8015, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie de Paris, Paris, France
| | - J. Bareille
- Laboratoire de Cristallographie et RMN Biologiques, UMR CNRS 8015, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie de Paris, Paris, France
| | - N. Leulliot
- Laboratoire de Cristallographie et RMN Biologiques, UMR CNRS 8015, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie de Paris, Paris, France
| |
Collapse
|
9
|
Cole CA, Mukhopadhyay R, Omar H, Hennig M, Valafar H. Structure Calculation and Reconstruction of Discrete-State Dynamics from Residual Dipolar Couplings. J Chem Theory Comput 2016; 12:1408-22. [PMID: 26984680 DOI: 10.1021/acs.jctc.5b01091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Residual dipolar couplings (RDCs) acquired by nuclear magnetic resonance (NMR) spectroscopy are an indispensable source of information in investigation of molecular structures and dynamics. Here, we present a comprehensive strategy for structure calculation and reconstruction of discrete-state dynamics from RDC data that is based on the singular value decomposition (SVD) method of order tensor estimation. In addition to structure determination, we provide a mechanism of producing an ensemble of conformations for the dynamical regions of a protein from RDC data. The developed methodology has been tested on simulated RDC data with ±1 Hz of error from an 83 residue α protein (PDB ID 1A1Z ) and a 213 residue α/β protein DGCR8 (PDB ID 2YT4 ). In nearly all instances, our method reproduced the structure of the protein including the conformational ensemble to within less than 2 Å. On the basis of our investigations, arc motions with more than 30° of rotation are identified as internal dynamics and are reconstructed with sufficient accuracy. Furthermore, states with relative occupancies above 20% are consistently recognized and reconstructed successfully. Arc motions with a magnitude of 15° or relative occupancy of less than 10% are consistently unrecognizable as dynamical regions within the context of ±1 Hz of error.
Collapse
Affiliation(s)
- Casey A Cole
- Department of Computer Science & Engineering, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Rishi Mukhopadhyay
- Department of Computer Science & Engineering, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Hanin Omar
- Department of Computer Science & Engineering, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Mirko Hennig
- Nutrition Research Institute, University of North Carolina at Chapel Hill , Kannapolis, North Carolina 27514, United States
| | - Homayoun Valafar
- Department of Computer Science & Engineering, University of South Carolina , Columbia, South Carolina 29208, United States
| |
Collapse
|
10
|
Crystal structure of mouse thymidylate synthase in tertiary complex with dUMP and raltitrexed reveals N-terminus architecture and two different active site conformations. BIOMED RESEARCH INTERNATIONAL 2014; 2014:945803. [PMID: 24995339 PMCID: PMC4065713 DOI: 10.1155/2014/945803] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/13/2014] [Accepted: 05/16/2014] [Indexed: 11/17/2022]
Abstract
The crystal structure of mouse thymidylate synthase (mTS) in complex with substrate dUMP and antifolate inhibitor Raltitrexed is reported. The structure reveals, for the first time in the group of mammalian TS structures, a well-ordered segment of 13 N-terminal amino acids, whose ordered conformation is stabilized due to specific crystal packing. The structure consists of two homodimers, differing in conformation, one being more closed (dimer AB) and thus supporting tighter binding of ligands, and the other being more open (dimer CD) and thus allowing weaker binding of ligands. This difference indicates an asymmetrical effect of the binding of Raltitrexed to two independent mTS molecules. Conformational changes leading to a ligand-induced closing of the active site cleft are observed by comparing the crystal structures of mTS in three different states along the catalytic pathway: ligand-free, dUMP-bound, and dUMP- and Raltitrexed-bound. Possible interaction routes between hydrophobic residues of the mTS protein N-terminal segment and the active site are also discussed.
Collapse
|
11
|
Ferrari S, Calò S, Leone R, Luciani R, Costantino L, Sammak S, Di Pisa F, Pozzi C, Mangani S, Costi MP. 2'-Deoxyuridine 5'-monophosphate substrate displacement in thymidylate synthase through 6-hydroxy-2H-naphtho[1,8-bc]furan-2-one derivatives. J Med Chem 2013; 56:9356-60. [PMID: 24147825 DOI: 10.1021/jm4014086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thymidylate synthase (TS) is a target for antifolate-based chemotherapies of microbial and human diseases. Here, ligand-based, synthetic, and X-ray crystallography studies led to the discovery of 6-(3-cyanobenzoyloxy)-2-oxo-2H-naphto[1,8-bc]furan, a novel inhibitor with a Ki of 310 nM against Pneumocystis carinii TS. The X-ray ternary complex with Escherichia coli TS revealed, for the first time, displacement of the substrate toward the dimeric protein interface, thus providing new opportunities for further design of specific inhibitors of microbial pathogens.
Collapse
Affiliation(s)
- Stefania Ferrari
- Department of Life Sciences, University of Modena and Reggio Emilia , Via Campi 183, 41125 Modena, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lee J, Goodey NM. Catalytic contributions from remote regions of enzyme structure. Chem Rev 2011; 111:7595-624. [PMID: 21923192 DOI: 10.1021/cr100042n] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jeeyeon Lee
- Department of Chemistry, 413 Wartik Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
13
|
The active-inactive transition of human thymidylate synthase: Targeted molecular dynamics simulations. Proteins 2011; 79:2886-99. [DOI: 10.1002/prot.23123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/13/2011] [Accepted: 06/15/2011] [Indexed: 12/11/2022]
|
14
|
Gibson LM, Celeste LR, Lovelace LL, Lebioda L. Structures of human thymidylate synthase R163K with dUMP, FdUMP and glutathione show asymmetric ligand binding. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:60-6. [PMID: 21206062 PMCID: PMC3016017 DOI: 10.1107/s0907444910044732] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 11/01/2010] [Indexed: 11/10/2022]
Abstract
Thymidylate synthase (TS) is a well validated target in cancer chemotherapy. Here, a new crystal form of the R163K variant of human TS (hTS) with five subunits per asymmetric part of the unit cell, all with loop 181-197 in the active conformation, is reported. This form allows binding studies by soaking crystals in artificial mother liquors containing ligands that bind in the active site. Using this approach, crystal structures of hTS complexes with FdUMP and dUMP were obtained, indicating that this form should facilitate high-throughput analysis of hTS complexes with drug candidates. Crystal soaking experiments using oxidized glutathione revealed that hTS binds this ligand. Interestingly, the two types of binding observed are both asymmetric. In one subunit of the physiological dimer covalent modification of the catalytic nucleophile Cys195 takes place, while in another dimer a noncovalent adduct with reduced glutathione is formed in one of the active sites.
Collapse
Affiliation(s)
- Lydia M. Gibson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Lesa R. Celeste
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Leslie L. Lovelace
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Lukasz Lebioda
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
- Center for Colon Cancer Research, University of South Carolina, Columbia, South Carolina 29208, USA
| |
Collapse
|