1
|
Ranjan N, Arya DP. Parallel G-quadruplex recognition by neomycin. Front Chem 2023; 11:1232514. [PMID: 37671393 PMCID: PMC10475565 DOI: 10.3389/fchem.2023.1232514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/25/2023] [Indexed: 09/07/2023] Open
Abstract
G-quadruplex-forming nucleic acids have evolved to have applications in biology, drug design, sensing, and nanotechnology, to name a few. Together with the structural understanding, several attempts have been made to discover and design new classes of chemical agents that target these structures in the hope of using them as future therapeutics. Here, we report the binding of aminoglycosides, in particular neomycin, to parallel G-quadruplexes that exist as G-quadruplex monomers, dimers, or compounds that have the propensity to form dimeric G-quadruplex structures. Using a combination of calorimetric and spectroscopic studies, we show that neomycin binds to the parallel G-quadruplex with affinities in the range of Ka ∼ 105-108 M-1, which depends on the base composition, ability to form dimeric G-quadruplex structures, salt, and pH of the buffer used. At pH 7.0, the binding of neomycin was found to be electrostatically driven potentially through the formation of ion pairs formed with the quadruplex. Lowering the pH resulted in neomycin's association constants in the range of Ka ∼ 106-107 M-1 in a salt dependent manner. Circular dichroism (CD) studies showed that neomycin's binding does not cause a change in the parallel conformation of the G-quadruplex, yet some binding-induced changes in the intensity of the CD signals were seen. A comparative binding study of neomycin and paromomycin using d(UG4T) showed paromomycin binding to be much weaker than neomycin, highlighting the importance of ring I in the recognition process. In toto, our results expanded the binding landscape of aminoglycosides where parallel G-quadruplexes have been discovered as one of the high-affinity sites. These results may offer a new understanding of some of the undesirable functions of aminoglycosides and help in the design of aminoglycoside-based G-quadruplex binders of high affinity.
Collapse
Affiliation(s)
| | - Dev P. Arya
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC, United States
| |
Collapse
|
2
|
Conner AN, Fuller MT, Kellish PC, Arya DP. Thermodynamics of d(GGGGCCCC) Binding to Neomycin-Class Aminoglycosides. Biochemistry 2023. [PMID: 37172221 DOI: 10.1021/acs.biochem.3c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
DNA adopts a number of conformations that can affect its binding to other macromolecules. The conformations (A, B, Z) can be sequence- and/or solution-dependent. While AT-rich DNA sequences generally adopt a Canonical B-form structure, GC-rich sequences are more promiscuous. Recognition of GC-rich nucleic acids by small molecules has been much more challenging than the recognition of AT-rich duplexes. Spectrophotometric and calorimetric techniques were used to characterize the binding of neomycin-class aminoglycosides to a GC-rich DNA duplex, G4C4, in various ionic and pH conditions. Our results reveal that binding enhances the thermal stability of G4C4, with thermal enhancement decreasing with increasing pH and/or Na+ concentration. Although G4C4 bound to aminoglycosides demonstrated a mixed A- and B-form conformation, circular dichroism studies indicate that binding induces a conformational shift toward A-form DNA. Isothermal titration calorimetry studies reveal that aminoglycoside binding to G4C4 is linked to the uptake of protons at pH = 7.0 and that this uptake is pH-dependent. Increased pH and/or Na+ concentration results in a decrease in G4C4 affinity for the aminoglycosides. The binding affinities of the aminoglycosides follow the expected hierarchy: neomycin > paromomycin > ribostamycin. The salt dependence of DNA binding affinities of aminoglycosides is consistent with at least two drug NH3+ groups participating in electrostatic interactions with G4C4. These studies further embellish our understanding of the many factors facilitating recognition of GC-rich DNA structures as guided by their optimum charge and shape complementarity for small-molecule amino sugars.
Collapse
Affiliation(s)
- Andrea N Conner
- Laboratory for Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Makala T Fuller
- Laboratory for Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Patrick C Kellish
- Laboratory for Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Dev P Arya
- Laboratory for Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
3
|
Zaremba AA, Zaremba PY, Zahorodnia SD. In silico study of HASDI (high-affinity selective DNA intercalator) as a new agent capable of highly selective recognition of the DNA sequence. Sci Rep 2023; 13:5395. [PMID: 37012345 PMCID: PMC10070485 DOI: 10.1038/s41598-023-32595-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Cancer as an acquired genetic disease is based on changes both in the genome itself and in transcription processes. Accordingly, it is at the DNA level that it makes sense to search for and design agents capable of effective and selective anticancer action. In this study, we used an iterative approach based on a molecular dynamics simulation to design a highly selective DNA-intercalating agent called HASDI. To confirm its selective affinity to DNA, we conducted two simulation experiments: HASDI in a complex with a DNA fragment of the EBNA1 gene (it targets 16 nucleotide pairs of this gene) and HASDI in a complex with a random DNA fragment of the KCNH2 gene. The molecular dynamics simulation was carried out in the GROMACS 2019 package. The binding energy was calculated by gmx_MMPBSA 1.5.2. The further analysis was performed using the built-in utilities of GROMACS, gmx_MMPBSA and also XMGRACE and Pymol 1.8. As a result, we determined that the EBNA1-50nt/HASDI complex was stable throughout the whole simulation trajectory. HASDI, due to the presence of a linker modified depending on a specific pair of nitrogenous bases, formed an average of 32 hydrogen bonds with a sequence of 16 nucleotide pairs. Phenazine rings were stably intercalated every 2 base pairs. The root-mean-square deviation of HASDI in such a complex fluctuated around the value of 6.5 Å and had no tendency to increase. The calculated value of the binding free energy was - 235.3 ± 7.77 kcal/mol. The KCNH2-50nt/HASDI complex, as an example of the intercalation of the designed structure into a random part of the human genome, maintained the stability of its position at a level comparable to the EBNA1-50nt/HASDI complex. The phenazine rings were constantly intercalated in their original positions, and the root-mean-square deviation fluctuated around one value, although it had a tendency to chaotic changes. At the same time, this complex was characterized by 17-19 hydrogen bonds, on average, and the binding free energy was - 193.47 ± 14.09 kcal/mol. Moreover, the DNA duplex had local single-nucleotide melting in the region of the 4th linker. According to a significant decrease in the number of hydrogen bonds, a decrease in energy gain, as well as a decrease in the stability of the DNA duplex characteristic of the KCNH2-50nt/HASDI complex compared to the target EBNA1-50nt/HASDI complex, the molecule we designed can be considered a potentially selective DNA polyintercalating agent capable of relatively accurate recognition of 16 base pairs.
Collapse
Affiliation(s)
- Andrii A Zaremba
- Zabolotny Institute of Microbiology and Virology of NASU, 154 Acad. Zabolotny Str., Kyiv, 03143, Ukraine.
| | - Polina Yu Zaremba
- Zabolotny Institute of Microbiology and Virology of NASU, 154 Acad. Zabolotny Str., Kyiv, 03143, Ukraine
| | - Svitlana D Zahorodnia
- Zabolotny Institute of Microbiology and Virology of NASU, 154 Acad. Zabolotny Str., Kyiv, 03143, Ukraine
| |
Collapse
|
4
|
Satange R, Rode AB, Hou MH. Revisiting recent unusual drug-DNA complex structures: Implications for cancer and neurological disease diagnostics and therapeutics. Bioorg Med Chem 2022; 76:117094. [PMID: 36410206 DOI: 10.1016/j.bmc.2022.117094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
DNA plays a crucial role in various biological processes such as protein production, replication, recombination etc. by adopting different conformations. Targeting these conformations by small molecules is not only important for disease therapy, but also improves our understanding of the mechanisms of disease development. In this review, we provide an overview of some of the most recent ligand-DNA complexes that have diagnostic and therapeutic applications in neurological diseases caused by abnormal repeat expansions and in cancer associated with mismatches. In addition, we have discussed important implications of ligands targeting higher-order structures, such as four-way junctions, G-quadruplexes and triplexes for drug discovery and DNA nanotechnology. We provide an overview of the results and perspectives of such structural studies on ligand-DNA interactions.
Collapse
Affiliation(s)
- Roshan Satange
- Institute of Genomics and Bioinformatics National Chung Hsing University, Taichung 402, Taiwan; Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Ambadas B Rode
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Ming-Hon Hou
- Institute of Genomics and Bioinformatics National Chung Hsing University, Taichung 402, Taiwan; Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
5
|
Usta HM, Forough M, Persil Çetinkol Ö. Coumarin 6H-fused fluorescent probe for highly sensitive detection of coralyne using oligonucleotide-modified silver nanoparticles. Anal Bioanal Chem 2022; 414:7299-7313. [PMID: 35976422 DOI: 10.1007/s00216-022-04282-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022]
Abstract
In this study, a novel, rapid, and sensitive fluorescence sensing platform was developed for the detection of coralyne (COR) by the conjugation of coumarin 6H (C6H) fluorescent dye with oligonucleotide-modified silver nanoparticles [(dT)32-AgNPs]. In the presence of COR, a remarkable and rapid decrease in the fluorescence signal of the probe with a quenching efficiency of around 62% was observed. The quenching response of the system towards COR was possibly due to the displacement of thymidine-rich deoxyoligonucleotides by COR on the surface of AgNPs. The complementary experiments with an adenine-rich single strand as well as with two different secondary structures (i.e., duplex and triplex) revealed a favorable sequence specificity of the sensing platform. The influence of key parameters including the incubation time and temperature was evaluated and optimized to achieve the highest performance. The linear range of 10-183 nM with a correlation coefficient of R = 0.9982 and a limit of detection of 5.24 nM were obtained under the optimized conditions. The selectivity of the proposed probe towards COR was revealed by the evaluation of its response to other small molecules that have molecular structures similar to COR. Finally, the successful applicability of the system was shown with the obtained average recoveries in the range of 87.28-104.52% in human urine samples.
Collapse
Affiliation(s)
- Hatice Müge Usta
- Department of Chemistry, Middle East Technical University, 06800, Çankaya, Ankara, Turkey
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, 06800, Çankaya, Ankara, Turkey
| | - Özgül Persil Çetinkol
- Department of Chemistry, Middle East Technical University, 06800, Çankaya, Ankara, Turkey.
| |
Collapse
|
6
|
Goswami S, Ghosh R, Prasanthan P, Kishore N. Mode of interaction of altretamine with calf thymus DNA: biophysical insights. J Biomol Struct Dyn 2022; 41:3728-3740. [PMID: 35343872 DOI: 10.1080/07391102.2022.2054472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Insights into drug-DNA interactions have importance in medicinal chemistry as it has a major role in the evolution of new therapeutic drugs. Therefore, binding studies of small molecules with DNA are of significant interest. Spectroscopy, coupled with measurements of viscosity and molecular docking studies were employed to obtain mechanistic insights into the binding of altretamine with calf thymus DNA (CT-DNA). The UV-visible spectroscopic measurements study confirmed altretamine-CT-DNA complex formation with affinity constant ([15.68 ± 0.04] × 103 M-1), a value associated with groove binding phenomenon. The associated thermodynamic signatures suggest enthalpically driven interactions. The values of standard molar free energy change (ΔGmo) -(23.93 ± 0.23) kJ mol-1, enthalpy change (ΔvHHmo) -(50.84 ± 0.19) kJ mol-1 and entropy change (ΔSmo) -(90.29 ± 0.12) JK-1 mol-1 indicate the binding is thermodynamically favorable and an important role of the hydrogen bonds and Van der Waals interactions in the binding of altretamine with CT-DNA. Circular dichroism spectroscopy indicated insignificant conformational changes in the DNA backbone upon interaction with altretamine suggesting no distortion and/or unstacking of the base pairs in the DNA helix. UV-melting study suggested that the thermal stability of the DNA backbone is not affected by the binding of the drug. Competitive displacement assays with ethidium bromide, Hoechst-33258 and DAPI established the binding of altretamine with CT-DNA in the minor groove. The mode of binding was further confirmed by viscosity and molecular docking studies. Molecular docking further ascertained binding of altretamine in the minor groove of the CT-DNA, preferably with the A-T rich sequences.
Collapse
Affiliation(s)
- Sathi Goswami
- Department of Chemistry, Indian Institute of Technology Bombay, Maharashtra, India
| | - Ritutama Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Maharashtra, India
| | - Pooja Prasanthan
- Department of Chemistry, Indian Institute of Technology Bombay, Maharashtra, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Maharashtra, India
| |
Collapse
|
7
|
Whitfield C, Zhang M, Winterwerber P, Wu Y, Ng DYW, Weil T. Functional DNA-Polymer Conjugates. Chem Rev 2021; 121:11030-11084. [PMID: 33739829 PMCID: PMC8461608 DOI: 10.1021/acs.chemrev.0c01074] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 02/07/2023]
Abstract
DNA nanotechnology has seen large developments over the last 30 years through the combination of solid phase synthesis and the discovery of DNA nanostructures. Solid phase synthesis has facilitated the availability of short DNA sequences and the expansion of the DNA toolbox to increase the chemical functionalities afforded on DNA, which in turn enabled the conception and synthesis of sophisticated and complex 2D and 3D nanostructures. In parallel, polymer science has developed several polymerization approaches to build di- and triblock copolymers bearing hydrophilic, hydrophobic, and amphiphilic properties. By bringing together these two emerging technologies, complementary properties of both materials have been explored; for example, the synthesis of amphiphilic DNA-polymer conjugates has enabled the production of several nanostructures, such as spherical and rod-like micelles. Through both the DNA and polymer parts, stimuli-responsiveness can be instilled. Nanostructures have consequently been developed with responsive structural changes to physical properties, such as pH and temperature, as well as short DNA through competitive complementary binding. These responsive changes have enabled the application of DNA-polymer conjugates in biomedical applications including drug delivery. This review discusses the progress of DNA-polymer conjugates, exploring the synthetic routes and state-of-the-art applications afforded through the combination of nucleic acids and synthetic polymers.
Collapse
Affiliation(s)
- Colette
J. Whitfield
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Meizhou Zhang
- Hubei
Key Laboratory of Bioinorganic Chemistry and Materia Medica, School
of Chemistry and Chemical Engineering, Huazhong
University of Science and Technology, Luoyu Road 1037, Hongshan, Wuhan 430074, People’s Republic of China
| | - Pia Winterwerber
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuzhou Wu
- Hubei
Key Laboratory of Bioinorganic Chemistry and Materia Medica, School
of Chemistry and Chemical Engineering, Huazhong
University of Science and Technology, Luoyu Road 1037, Hongshan, Wuhan 430074, People’s Republic of China
| | - David Y. W. Ng
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tanja Weil
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
8
|
DNA-BINDING and DNA-protecting activities of small natural organic molecules and food extracts. Chem Biol Interact 2020; 323:109030. [PMID: 32205154 DOI: 10.1016/j.cbi.2020.109030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 01/07/2023]
Abstract
The review summarizes literature data on the DNA-binding, DNA-protecting and DNA-damaging activities of a range of natural human endogenous and exogenous compounds. Small natural organic molecules bind DNA in a site-specific mode, by arranging tight touch with the structure of the major and minor grooves, as well as individual bases in the local duplex DNA. Polyphenols are the best-studied exogenous compounds from this point of view. Many of them demonstrate hormetic effects, producing both beneficial and damaging effects. An attempt to establish the dependence of DNA damage or DNA protection on the concentration of the compound turned out to be successful for some polyphenols, daidzein, genistein and resveratrol, which were DNA protecting in low concentrations and DNA damaging in high concentrations. There was no evident dependence on concentration for quercetin and kaempferol. Probably, the DNA-protecting effect is associated with the affinity to DNA. Caffeine and theophylline are DNA binders; at the same time, they favor DNA repair. Although most alkaloids damage DNA, berberine can protect DNA against damage. Among the endogenous compounds, hormones belonging to the amine class, thyroid and steroid hormones appear to bind DNA and produce some DNA damage. Thus, natural compounds continue to reveal beneficial or adverse effects on genome integrity and provide a promising source of therapeutic activities.
Collapse
|
9
|
Ranjan N, Andreasen KF, Arora Y, Xue L, Arya DP. Surface Dependent Dual Recognition of a G-quadruplex DNA With Neomycin-Intercalator Conjugates. Front Chem 2020; 8:60. [PMID: 32117884 PMCID: PMC7028757 DOI: 10.3389/fchem.2020.00060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/20/2020] [Indexed: 01/17/2023] Open
Abstract
G-quadruplexes have been characterized as structures of vital importance in the cellular functioning of several life forms. They have subsequently been established to serve as a therapeutic target of several diseases including cancer, HIV, tuberculosis and malaria. In this paper, we report the binding of aminosugar-intercalator conjugates with a well-studied anti-parallel G-quadruplex derived from Oxytricha Nova G-quadruplex DNA. Of the four neomycin-intercalator conjugates studied with varying surface areas, BQQ-neomycin conjugate displayed the best binding to this DNA G-quadruplex structure with an association constant of Ka = (1.01 ±0.03) × 107 M−1 which is nearly 100-fold higher than the binding of neomycin to this quadruplex. The binding of BQQ-neomycin displays a binding stoichiometry of 1:1 indicating the presence of a single and unique binding site for this G-quadruplex. In contrast, the BQQ-neomycin displays very weak binding to the bacterial A-site rRNA sequence showing that BQQ-does not enhance the neomycin binding to its natural target, the bacterial rRNA A-site. The BQQ-neomycin conjugate is prone to aggregation even at low micromolar concentrations (4 μM) leading to some ambiguities in the analysis of thermal denaturation profiles. Circular dichroism experiments showed that binding of BQQ-neomycin conjugate causes some structural changes in the quadruplex while still maintaining the overall anti-parallel structure. Finally, the molecular docking experiments suggest that molecular surface plays an important role in the recognition of a second site on the G-quadruplex. Overall, these results show that molecules with more than one binding moieties can be made to specifically recognize G-quadruplexes with high affinities. The dual binding molecules comprise of quadruplex groove binding and intercalator units, and the molecular surface of the intercalator plays an important part in enhancing binding interaction to the G-quadruplex structure.
Collapse
Affiliation(s)
- Nihar Ranjan
- Laboratory for Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC, United States.,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Katrine F Andreasen
- Laboratory for Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC, United States
| | - Yashaswina Arora
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Liang Xue
- Laboratory for Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC, United States
| | - Dev P Arya
- Laboratory for Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC, United States
| |
Collapse
|
10
|
Watkins D, Maiti K, Arya DP. Aminoglycoside Functionalization as a Tool for Targeting Nucleic Acids. Methods Mol Biol 2019; 1973:147-162. [PMID: 31016700 DOI: 10.1007/978-1-4939-9216-4_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Aminoglycoside functionalization as a tool for targeting natural and unnatural nucleic acids holds great promise in their development as diagnostic probes and medicinally relevant compounds. Simple synthetic procedures designed to easily and quickly manipulate amino sugar (neomycin, kanamycin) to more powerful and selective ligands are presented in this chapter. We describe representative procedures for (a) aminoglycoside conjugation and (b) preliminary screening for their nucleic acid binding and selectivity.
Collapse
Affiliation(s)
- Derrick Watkins
- Department of Chemistry, Clemson University, Clemson, SC, USA
| | | | - Dev P Arya
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC, USA.
| |
Collapse
|
11
|
Mukherjee A, Ghosh S, Sarkar R, Samanta S, Ghosh S, Pal M, Majee A, Sen SK, Singh B. Synthesis, characterization and unravelling the molecular interaction of new bioactive 4-hydroxycoumarin derivative with biopolymer: Insights from spectroscopic and theoretical aspect. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 189:124-137. [DOI: 10.1016/j.jphotobiol.2018.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/31/2018] [Accepted: 10/04/2018] [Indexed: 01/18/2023]
|
12
|
Brissos RF, Clavero P, Gallen A, Grabulosa A, Barrios LA, Caballero AB, Korrodi-Gregório L, Pérez-Tomás R, Muller G, Soto-Cerrato V, Gamez P. Highly Cytotoxic Ruthenium(II)-Arene Complexes from Bulky 1-Pyrenylphosphane Ligands. Inorg Chem 2018; 57:14786-14797. [DOI: 10.1021/acs.inorgchem.8b02541] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Rosa F. Brissos
- Department of Inorganic and Organic Chemistry, Inorganic Chemistry Section, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Pau Clavero
- Department of Inorganic and Organic Chemistry, Inorganic Chemistry Section, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Albert Gallen
- Department of Inorganic and Organic Chemistry, Inorganic Chemistry Section, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Arnald Grabulosa
- Department of Inorganic and Organic Chemistry, Inorganic Chemistry Section, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | | | - Ana B. Caballero
- Department of Inorganic and Organic Chemistry, Inorganic Chemistry Section, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Luís Korrodi-Gregório
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Campus Bellvitge, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Spain
| | - Ricardo Pérez-Tomás
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Campus Bellvitge, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Spain
| | - Guillermo Muller
- Department of Inorganic and Organic Chemistry, Inorganic Chemistry Section, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Vanessa Soto-Cerrato
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Campus Bellvitge, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Spain
| | - Patrick Gamez
- Department of Inorganic and Organic Chemistry, Inorganic Chemistry Section, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
13
|
Synthesis, antimicrobial activity, attenuation of aminoglycoside resistance in MRSA, and ribosomal A-site binding of pyrene-neomycin conjugates. Eur J Med Chem 2018; 163:381-393. [PMID: 30530174 DOI: 10.1016/j.ejmech.2018.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 01/27/2023]
Abstract
The development of new ligands that have comparable or enhanced therapeutic efficacy relative to current drugs is vital to the health of the global community in the short and long term. One strategy to accomplish this goal is to functionalize sites on current antimicrobials to enhance specificity and affinity while abating resistance mechanisms of infectious organisms. Herein, we report the synthesis of a series of pyrene-neomycin B (PYR-NEO) conjugates, their binding affinity to A-site RNA targets, resistance to aminoglycoside-modifying enzymes (AMEs), and antibacterial activity against a wide variety of bacterial strains of clinical relevance. PYR-NEO conjugation significantly alters the affinities of NEO for bacterial A-site targets. The conjugation of PYR to NEO significantly increased the resistance of NEO to AME modification. PYR-NEO conjugates exhibited broad-spectrum activity towards Gram-positive bacteria, including improved activity against NEO-resistant methicillin-resistant Staphylococcus aureus (MRSA) strains.
Collapse
|
14
|
Kukielski C, Maiti K, Bhaduri S, Story S, Arya DP. Rapid solid-phase syntheses of a peptidic-aminoglycoside library. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Bhaduri S, Ranjan N, Arya DP. An overview of recent advances in duplex DNA recognition by small molecules. Beilstein J Org Chem 2018; 14:1051-1086. [PMID: 29977379 PMCID: PMC6009268 DOI: 10.3762/bjoc.14.93] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
As the carrier of genetic information, the DNA double helix interacts with many natural ligands during the cell cycle, and is amenable to such intervention in diseases such as cancer biogenesis. Proteins bind DNA in a site-specific manner, not only distinguishing between the geometry of the major and minor grooves, but also by making close contacts with individual bases within the local helix architecture. Over the last four decades, much research has been reported on the development of small non-natural ligands as therapeutics to either block, or in some cases, mimic a DNA–protein interaction of interest. This review presents the latest findings in the pursuit of novel synthetic DNA binders. This article provides recent coverage of major strategies (such as groove recognition, intercalation and cross-linking) adopted in the duplex DNA recognition by small molecules, with an emphasis on major works of the past few years.
Collapse
Affiliation(s)
| | - Nihar Ranjan
- National Institute of Pharmaceutical Education and Research (NIPER), Raebareli 122003, India
| | - Dev P Arya
- NUBAD, LLC, 900B West Faris Rd., Greenville 29605, SC, USA.,Clemson University, Hunter Laboratory, Clemson 29634, SC, USA
| |
Collapse
|
16
|
Šmidlehner T, Kurutos A, Slade J, Belužić R, Ang DL, Rodger A, Piantanida I. Versatile Click Cyanine Amino Acid Conjugates Showing One-Atom-Influenced Recognition of DNA/RNA Secondary Structure and Mitochondrial Localisation in Living Cells. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701765] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tamara Šmidlehner
- Division of Organic Chemistry & Biochemistry; Ruđer Bošković Institute; Bijenička cesta 54 10002 Zagreb Croatia
| | - Atanas Kurutos
- Inter- and IntraMolecular Processes Group; Bulgarian Academy of Science; 1113 Sofia Bulgaria
| | - Jakov Slade
- Division of Organic Chemistry & Biochemistry; Ruđer Bošković Institute; Bijenička cesta 54 10002 Zagreb Croatia
| | - Robert Belužić
- Division of Organic Chemistry & Biochemistry; Ruđer Bošković Institute; Bijenička cesta 54 10002 Zagreb Croatia
| | - Dale L. Ang
- Nanoscale Organisation and Dynamics Group; Western Sydney University; 2560 Campbelltown NSW Australia
| | - Alison Rodger
- Chemistry and Biomolecular Sciences; Macquarie University; 2109 Sydney NSW Australia
| | - Ivo Piantanida
- Division of Organic Chemistry & Biochemistry; Ruđer Bošković Institute; Bijenička cesta 54 10002 Zagreb Croatia
| |
Collapse
|
17
|
Thamban Chandrika N, Garneau-Tsodikova S. Comprehensive review of chemical strategies for the preparation of new aminoglycosides and their biological activities. Chem Soc Rev 2018; 47:1189-1249. [PMID: 29296992 PMCID: PMC5818290 DOI: 10.1039/c7cs00407a] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A systematic analysis of all synthetic and chemoenzymatic methodologies for the preparation of aminoglycosides for a variety of applications (therapeutic and agricultural) reported in the scientific literature up to 2017 is presented. This comprehensive analysis of derivatization/generation of novel aminoglycosides and their conjugates is divided based on the types of modifications used to make the new derivatives. Both the chemical strategies utilized and the biological results observed are covered. Structure-activity relationships based on different synthetic modifications along with their implications for activity and ability to avoid resistance against different microorganisms are also presented.
Collapse
Affiliation(s)
- Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA.
| | | |
Collapse
|
18
|
Ranjan N, Kellish P, King A, Arya DP. Impact of Linker Length and Composition on Fragment Binding and Cell Permeation: Story of a Bisbenzimidazole Dye Fragment. Biochemistry 2017; 56:6434-6447. [PMID: 29131946 DOI: 10.1021/acs.biochem.7b00929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Small molecules that modulate biological functions are targets of modern day drug discovery efforts. In a common platform fragment-based drug discovery, two fragments that bind to adjacent sites on a target are identified and are then linked together using different linkers to identify the linkage for optimum activity. What are not known from these studies are the effects these linkers, which typically contain C, H, and O atoms, have on the properties of the individual fragment. Herein, we investigate such effects in a bisbenzimidazole fragment whose derivatives have a wide range of therapeutic applications in nucleic acid recognition, sensing, and photodynamic therapy and as cellular probes. We report a dramatic effect of linker length and composition of alkynyl (clickable) Hoechst 33258 derivatives in target binding and cell uptake. We show that the binding of Hoechst 33258-modeled bisbenzimidazoles (1-9) that contain linkers of varying lengths (3-21 atoms) display length- and composition-dependent variation in B-DNA stabilization using a variety of spectroscopic methods. For a dodecamer DNA duplex, the thermal stabilization varied from 0.3 to 9.0 °C as the linker length increased from 3 to 21 atoms, respectively. Compounds with linker lengths of ≤11 atoms (such as compounds 1 and 5) are localized in the nucleus, while compounds with long linkers (such as compounds 8 and 9) are distributed in the extranuclear space, as well, with possible interactions with extranuclear targets. These findings provide insights into future drug design by revealing how linkers can influence the biophysical and cellular properties of individual drug fragments.
Collapse
Affiliation(s)
- Nihar Ranjan
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University , Clemson, South Carolina 29634, United States
| | - Patrick Kellish
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University , Clemson, South Carolina 29634, United States
| | - Ada King
- NUBAD LLC , 900 B West Faris Road, Greenville, South Carolina 29605, United States
| | - Dev P Arya
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University , Clemson, South Carolina 29634, United States.,NUBAD LLC , 900 B West Faris Road, Greenville, South Carolina 29605, United States
| |
Collapse
|
19
|
Kamphan A, Gong C, Maiti K, Sur S, Traiphol R, Arya DP. Utilization of chromic polydiacetylene assemblies as a platform to probe specific binding between drug and RNA. RSC Adv 2017; 7:41435-41443. [PMID: 29276583 PMCID: PMC5739335 DOI: 10.1039/c7ra07178g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Recognition of nucleic acids remains an important endeavor in biology. Nucleic acids adopt shapes ranging from A-form (RNA and GC rich DNA) to B-form (AT rich DNA). We show, in this contribution, shape-specific recognition of A-U rich RNA duplex by a neomycin (Neo)-polydiacetylene (PDA) complex. PDA assemblies are fabricated by using a well-known diacetylene (DA) monomer, 10,12-pentacosadiynoic acid (PCDA). The response of poly(PCDA) assemblies is generated by mixing with a modified neomycin-PCDA monomer (Neo-PCDA). The functionalization by neomycin moiety provides specific binding with homopolyribonucleotide poly (rA) - poly (rU) stimulus. Various types of alcohols are utilized as additives to enhance the sensitivity of poly(PCDA)/Neo-PCDA assemblies. A change of absorption spectra is clearly observed when a relatively low concentration of poly (rA)-poly (rU) is added into the system. Furthermore, poly(PCDA)/Neo-PCDA shows a clear specificity for poly (rA)-poly (rU) over the corresponding DNA duplex. The variation of linker between neomycin moiety and conjugated PDA backbone is found to significantly affect its sensitivity. We also investigate other parameters including the concentration of Neo-PCDA and the DA monomer structure. Our results provide here preliminary data for an alternative approach to improve the sensitivity of PDA utilized in biosensing and diagnostic applications.
Collapse
Affiliation(s)
- Anothai Kamphan
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
- Laboratory of Advanced Polymers and Nanomaterials, School of Materials Science and Engineering and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University at Salaya, Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Changjun Gong
- Laboratories of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Krishnagopal Maiti
- Laboratories of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Souvik Sur
- Laboratories of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Rakchart Traiphol
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
- Laboratory of Advanced Polymers and Nanomaterials, School of Materials Science and Engineering and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University at Salaya, Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
- NANOTEC-MU Excellence Center on Intelligent Materials and Systems, Faculty of Science, Mahidol University, Rama 6 Road, Ratchathewi, Bangkok 10400,Thailand
| | - Dev P. Arya
- Laboratories of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
20
|
Two silver(I) complexes with bis(benzimidazole)‐2‐oxopropane ligands: Syntheses, crystal structures and DNA binding studies. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3747] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Ranjan N, Arya DP. Linker dependent intercalation of bisbenzimidazole-aminosugars in an RNA duplex; selectivity in RNA vs. DNA binding. Bioorg Med Chem Lett 2016; 26:5989-5994. [PMID: 27884695 PMCID: PMC6201841 DOI: 10.1016/j.bmcl.2016.10.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 01/08/2023]
Abstract
Neomycin and Hoechst 33258 are two well-known nucleic acid binders that interact with RNA and DNA duplexes with high affinities respectively. In this manuscript, we report that covalent attachment of bisbenzimidazole unit derived from Hoechst 33258 to neomycin leads to intercalative binding of the bisbenzimidazole unit (oriented at 64-74° with respected to the RNA helical axis) in a linker length dependent manner. The dual binding and intercalation of conjugates were supported by thermal denaturation, CD, LD and UV-Vis absorption experiments. These studies highlight the importance of linker length in dual recognition by conjugates, for effective RNA recognition, which can lead to novel ways of recognizing RNA structures. Additionally, the ligand library screens also identify DNA and RNA selective compounds, with compound 9, containing a long linker, showing a 20.3°C change in RNA duplex Tm with only a 13.0°C change in Tm for the corresponding DNA duplex. Significantly, the shorter linker in compound 3 shows almost the reverse trend, a 23.8°C change in DNA Tm, with only a 9.1°C change in Tm for the corresponding RNA duplex.
Collapse
Affiliation(s)
- Nihar Ranjan
- Laboratory of Bioorganic and Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634, United States
| | - Dev P Arya
- Laboratory of Bioorganic and Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634, United States.
| |
Collapse
|
22
|
Probing A-form DNA: A fluorescent aminosugar probe and dual recognition by anthraquinone-neomycin conjugates. Bioorg Med Chem 2016; 25:1309-1319. [PMID: 28129992 DOI: 10.1016/j.bmc.2016.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/30/2016] [Accepted: 11/01/2016] [Indexed: 12/19/2022]
Abstract
Nucleic acids adopt a broad array of hydrogen-bonded structures that enable their diverse roles in the cell; even the familiar DNA double helix displays subtle architectural nuances that are sequence dependent. While there have been many approaches for recognition of B-form nucleic acids, A-form DNA recognition has lagged behind. Here, using a tight binding fluorescein-neomycin (F-neo) conjugate that can probe the electrostatic environment of A-form DNA major groove, we developed a fluorescent displacement assay to be used as a screen for DNA duplex-binding compounds. As opposed to intercalating dyes that can significantly perturb DNA structure, the groove binding F-neo allows the probing of native DNA conformation. In combination with the assay development and probing of DNA grooves, we also report the synthesis and binding of a series of neomycin-anthraquinone conjugates, two units with a known preference for binding GC rich DNA. The assay can be used to identify duplex DNA-binding compounds, as well as probe structural features of a target DNA duplex, and can easily be scaled up for high throughput screening of compound libraries.
Collapse
|
23
|
Agrawal S, Adholeya A, Deshmukh SK. The Pharmacological Potential of Non-ribosomal Peptides from Marine Sponge and Tunicates. Front Pharmacol 2016; 7:333. [PMID: 27826240 PMCID: PMC5078478 DOI: 10.3389/fphar.2016.00333] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
Abstract
Marine biodiversity is recognized by a wide and unique array of fascinating structures. The complex associations of marine microorganisms, especially with sponges, bryozoans, and tunicates, make it extremely difficult to define the biosynthetic source of marine natural products or to deduce their ecological significance. Marine sponges and tunicates are important source of novel compounds for drug discovery and development. Majority of these compounds are nitrogen containing and belong to non-ribosomal peptide (NRPs) or mixed polyketide-NRP natural products. Several of these peptides are currently under trial for developing new drugs against various disease areas, including inflammatory, cancer, neurodegenerative disorders, and infectious disease. This review features pharmacologically active NRPs from marine sponge and tunicates based on their biological activities.
Collapse
Affiliation(s)
| | | | - Sunil K. Deshmukh
- TERI–Deakin Nano Biotechnology Centre, The Energy and Resources InstituteNew Delhi, India
| |
Collapse
|
24
|
Kumar S, Ranjan N, Kellish P, Gong C, Watkins D, Arya DP. Multivalency in the recognition and antagonism of a HIV TAR RNA-TAT assembly using an aminoglycoside benzimidazole scaffold. Org Biomol Chem 2016; 14:2052-6. [PMID: 26765486 DOI: 10.1039/c5ob02016f] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recognition of RNA by high-affinity binding small molecules is crucial for expanding existing approaches in RNA recognition, and for the development of novel RNA binding drugs. A novel neomycin dimer benzimidazole conjugate 5 (DPA 83) was synthesized by conjugating a neomycin-dimer with a benzimidazole alkyne using click chemistry to target multiple binding sites on HIV TAR RNA. Ligand 5 significantly enhances the thermal stability of HIV TAR RNA and interacts stoichiometrically with HIV TAR RNA with a low nanomolar affinity. 5 displayed enhanced binding compared to its individual building blocks including the neomycin dimer azide and benzimidazole alkyne. In essence, a high affinity multivalent ligand was designed and synthesized to target HIV TAR RNA.
Collapse
Affiliation(s)
- Sunil Kumar
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634, USA.
| | - Nihar Ranjan
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634, USA. and Nubad LLC, 900 B West Faris Road, Greenville, SC 29630, USA
| | - Patrick Kellish
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634, USA.
| | - Changjun Gong
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634, USA.
| | | | - Dev P Arya
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
25
|
Kumar S, Newby Spano M, Arya DP. Shape readout of AT-rich DNA by carbohydrates. Biopolymers 2016; 101:720-32. [PMID: 24281844 DOI: 10.1002/bip.22448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/10/2013] [Accepted: 11/23/2013] [Indexed: 12/16/2022]
Abstract
Gene expression can be altered by small molecules that target DNA; sequence as well as shape selectivities are both extremely important for DNA recognition by intercalating and groove-binding ligands. We have characterized a carbohydrate scaffold (1) exhibiting DNA "shape readout" properties. Thermodynamic studies with 1 and model duplex DNAs demonstrate the molecule's high affinity and selectivity towards B* form (continuous AT-rich) DNA. Isothermal titration calorimetry (ITC), circular dichroism (CD) titration, ultraviolet (UV) thermal denaturation, and Differential Scanning Calorimetry were used to characterize the binding of 1 with a B* form AT-rich DNA duplex d[5'-G2 A6 T6 C2 -3']. The binding constant was determined using ITC at various temperatures, salt concentrations, and pH. ITC titrations were fit using a two-binding site model. The first binding event was shown to have a 1:1 binding stoichiometry and was predominantly entropy-driven with a binding constant of approximately 10(8) M(-1) . ITC-derived binding enthalpies were used to obtain the binding-induced change in heat capacity (ΔCp ) of -225 ± 19 cal/mol·K. The ionic strength dependence of the binding constant indicated a significant electrolytic contribution in ligand:DNA binding, with approximately four to five ion pairs involved in binding. Ligand 1 displayed a significantly higher affinity towards AT-tract DNA over sequences containing GC inserts, and binding experiments revealed the order of binding affinity for 1 with DNA duplexes: contiguous B* form AT-rich DNA (d[5'-G2 A6 T6 C2 -3']) >B form alternate AT-rich DNA (d[5'-G2 (AT)6 C2- 3']) > A form GC-rich DNA (d[5'-A2 G6 C6 T2 -3']), demonstrating the preference of ligand 1 for B* form DNA.
Collapse
Affiliation(s)
- Sunil Kumar
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC, 29634
| | | | | |
Collapse
|
26
|
Bera S, Mondal D, Palit S, Schweizer F. Structural modifications of the neomycin class of aminoglycosides. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00079g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review encompasses comprehensive literature on synthetic modification and biological activities of clinically used neomycin-class aminoglycoside antibiotics to alleviate dose-related toxicity and pathogenic resistance.
Collapse
Affiliation(s)
- Smritilekha Bera
- School of Chemical Sciences
- Central University of Gujarat
- Gandhinagar-382030
- India
| | - Dhananjoy Mondal
- School of Chemical Sciences
- Central University of Gujarat
- Gandhinagar-382030
- India
| | - Subhadeep Palit
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology Campus
- Kolkata-700 032
- India
| | - Frank Schweizer
- Department of Chemistry and Medical Microbiology
- University of Manitoba
- Winnipeg
- Canada
| |
Collapse
|
27
|
Chandrika NT, Garneau-Tsodikova S. A review of patents (2011-2015) towards combating resistance to and toxicity of aminoglycosides. MEDCHEMCOMM 2015; 7:50-68. [PMID: 27019689 PMCID: PMC4806794 DOI: 10.1039/c5md00453e] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Since the discovery of the first aminoglycoside (AG), streptomycin, in 1943, these broad-spectrum antibiotics have been extensively used for the treatment of Gram-negative and Gram-positive bacterial infections. The inherent toxicity (ototoxicity and nephrotoxicity) associated with their long-term use as well as the emergence of resistant bacterial strains have limited their usage. Structural modifications of AGs by AG-modifying enzymes, reduced target affinity caused by ribosomal modification, and decrease in their cellular concentration by efflux pumps have resulted in resistance towards AGs. However, the last decade has seen a renewed interest among the scientific community for AGs as exemplified by the recent influx of scientific articles and patents on their therapeutic use. In this review, we use a non-conventional approach to put forth this renaissance on AG development/application by summarizing all patents filed on AGs from 2011-2015 and highlighting some related publications on the most recent work done on AGs to overcome resistance and improving their therapeutic use while reducing ototoxicity and nephrotoxicity. We also present work towards developing amphiphilic AGs for use as fungicides as well as that towards repurposing existing AGs for potential newer applications.
Collapse
Affiliation(s)
- Nishad Thamban Chandrika
- University of Kentucky, Department of Pharmaceutical Sciences, 789 South Limestone Street, Lexington, KY, USA. Fax: 859-257-7585; Tel: 859-218-1686
| | - Sylvie Garneau-Tsodikova
- University of Kentucky, Department of Pharmaceutical Sciences, 789 South Limestone Street, Lexington, KY, USA. Fax: 859-257-7585; Tel: 859-218-1686
| |
Collapse
|
28
|
Jiang L, Watkins D, Jin Y, Gong C, King A, Washington AZ, Green KD, Garneau-Tsodikova S, Oyelere AK, Arya DP. Rapid synthesis, RNA binding, and antibacterial screening of a peptidic-aminosugar (PA) library. ACS Chem Biol 2015; 10:1278-89. [PMID: 25706406 DOI: 10.1021/cb5010367] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A 215-member mono- and diamino acid peptidic-aminosugar (PA) library, with neomycin as the model aminosugar, was systematically and rapidly synthesized via solid phase synthesis. Antibacterial activities of the PA library, on 13 bacterial strains (seven Gram-positive and six Gram-negative bacterial strains), and binding affinities of the PA library for a 27-base model of the bacterial 16S ribosomal A-site RNA were evaluated using high-throughput screening. The results of the two assays were correlated using Ribosomal Binding-Bacterial Inhibition Plot (RB-BIP) analysis to provide structure-activity relationship (SAR) information. From this work, we have identified PAs that can discriminate the E. coli A-site from the human A-site by up to a 28-fold difference in binding affinity. Aminoglycoside-modifying enzyme activity studies indicate that APH(2″)-Ia showed nearly complete removal of activity with a number of PAs. The synthesis of the compound library and screening can both be performed rapidly, allowing for an iterative process of aminoglycoside synthesis and screening of PA libraries for optimal binding and antibacterial activity for lead identification.
Collapse
Affiliation(s)
- Liuwei Jiang
- Laboratory
of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | | | - Yi Jin
- Laboratory
of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Changjun Gong
- Laboratory
of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Ada King
- NUBAD, LLC, Greenville, South Carolina 29605, United States
| | - Arren Z. Washington
- School
of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Keith D. Green
- College
of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Sylvie Garneau-Tsodikova
- College
of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Adegboyega K. Oyelere
- School
of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Dev P. Arya
- Laboratory
of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
- NUBAD, LLC, Greenville, South Carolina 29605, United States
| |
Collapse
|
29
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
30
|
Gershberg J, Radić Stojković M, Škugor M, Tomić S, Rehm TH, Rehm S, Saha-Möller CR, Piantanida I, Würthner F. Sensing of Double-Stranded DNA/RNA Secondary Structures by Water Soluble Homochiral Perylene Bisimide Dyes. Chemistry 2015; 21:7886-95. [DOI: 10.1002/chem.201500184] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Indexed: 12/12/2022]
|
31
|
Syed J, Pandian GN, Sato S, Taniguchi J, Chandran A, Hashiya K, Bando T, Sugiyama H. Targeted suppression of EVI1 oncogene expression by sequence-specific pyrrole-imidazole polyamide. ACTA ACUST UNITED AC 2014; 21:1370-1380. [PMID: 25219965 DOI: 10.1016/j.chembiol.2014.07.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 01/13/2023]
Abstract
Human ectopic viral integration site 1 (EVI1) is an oncogenic transcription factor known to play a critical role in many aggressive forms of cancer. Its selective modulation is thought to alter the cancer-specific gene regulatory networks. Pyrrole-imidazole polyamides (PIPs) are a class of small DNA binders that can be designed to target any destined DNA sequence. Herein, we report a sequence-specific pyrrole-imidazole polyamide, PIP1, which can target specific base pairs of the REL/ELK1 binding site in the EVI1 minimal promoter. The designed PIP1 significantly inhibited EVI1 in MDA-MB-231 cells. Whole-transcriptome analysis confirmed that PIP1 affected a fraction of EVI1-mediated gene regulation. In vitro assays suggested that this polyamide can also effectively inhibit breast cancer cell migration. Taken together, these results suggest that EVI1-targeted PIP1 is an effective transcriptional regulator in cancer cells.
Collapse
Affiliation(s)
- Junetha Syed
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Ganesh N Pandian
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Shinsuke Sato
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Junichi Taniguchi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Anandhakumar Chandran
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
32
|
Kellish PC, Kumar S, Mack TS, Spano MN, Hennig M, Arya DP. Multivalent Amino Sugars to Recognize Different TAR RNA Conformations. MEDCHEMCOMM 2014; 5:1235-1246. [PMID: 27076899 PMCID: PMC4828046 DOI: 10.1039/c4md00165f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neomycin dimers synthesized using "click chemistry" with varying functionality and length in the linker region have been shown to be effective in targeting the HIV-1 TAR RNA region of the HIV virus. TAR (Transactivation Response) RNA region, a 59 base pair stem loop structure located at the 5'-end of all nascent viral transcripts interacts with its target, a key regulatory protein, Tat, and necessitates the replication of HIV-1 virus. Ethidium bromide displacement and FRET competition assays have revealed nanomolar binding affinity between neomycin dimers and wildtype TAR RNA while in case of neomycin, only a weak binding was detected. Here, NMR and FID-based comparisons reveal an extended binding interface for neomycin dimers involving the upper stem of the TAR RNA thereby offering an explanation for increased affinities. To further explore the potential of these modified aminosugars we have extended binding studies to include four TAR RNA mutants that display conformational differences with minimal sequence variation. The differences in binding between neomycin and neomycin dimers is characterized with TAR RNA mutants that include mutations to the bulge region, hairpin region, and both the bulge and hairpin regions. Our results demonstrate the effect of these mutations on neomycin binding and our results show that linker functionalities between dimeric units of neomycin can distinguish between the conformational differences of mutant TAR RNA structures.
Collapse
Affiliation(s)
- Patrick C. Kellish
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Sunil Kumar
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Todd S. Mack
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 70 President St., Charleston, SC 29425
| | | | - Mirko Hennig
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 70 President St., Charleston, SC 29425
| | - Dev P. Arya
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
- NUBAD, LLC, 900B West Faris Rd., Greenville, SC 29605
| |
Collapse
|
33
|
Tateishi-Karimata H, Sugimoto N. Structure, stability and behaviour of nucleic acids in ionic liquids. Nucleic Acids Res 2014; 42:8831-44. [PMID: 25013178 PMCID: PMC4132699 DOI: 10.1093/nar/gku499] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nucleic acids have become a powerful tool in nanotechnology because of their conformational polymorphism. However, lack of a medium in which nucleic acid structures exhibit long-term stability has been a bottleneck. Ionic liquids (ILs) are potential solvents in the nanotechnology field. Hydrated ILs, such as choline dihydrogen phosphate (choline dhp) and deep eutectic solvent (DES) prepared from choline chloride and urea, are 'green' solvents that ensure long-term stability of biomolecules. An understanding of the behaviour of nucleic acids in hydrated ILs is necessary for developing DNA materials. We here review current knowledge about the structures and stabilities of nucleic acids in choline dhp and DES. Interestingly, in choline dhp, A-T base pairs are more stable than G-C base pairs, the reverse of the situation in buffered NaCl solution. Moreover, DNA triplex formation is markedly stabilized in hydrated ILs compared with aqueous solution. In choline dhp, the stability of Hoogsteen base pairs is comparable to that of Watson-Crick base pairs. Moreover, the parallel form of the G-quadruplex is stabilized in DES compared with aqueous solution. The behaviours of various DNA molecules in ILs detailed here should be useful for designing oligonucleotides for the development of nanomaterials and nanodevices.
Collapse
Affiliation(s)
- Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojimaminamimachi, Kobe 650-0047, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojimaminamimachi, Kobe 650-0047, Japan Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojimaminamimachi, Kobe 650-0047, Japan
| |
Collapse
|
34
|
Willis B, Arya DP. Recognition of RNA duplex by a neomycin–Hoechst 33258 conjugate. Bioorg Med Chem 2014; 22:2327-32. [DOI: 10.1016/j.bmc.2014.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/27/2014] [Accepted: 02/06/2014] [Indexed: 01/01/2023]
|
35
|
Comparable stability of Hoogsteen and Watson-Crick base pairs in ionic liquid choline dihydrogen phosphate. Sci Rep 2014; 4:3593. [PMID: 24399194 PMCID: PMC3884231 DOI: 10.1038/srep03593] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/03/2013] [Indexed: 02/06/2023] Open
Abstract
The instability of Hoogsteen base pairs relative to Watson-Crick base pairs has limited biological applications of triplex-forming oligonucleotides. Hydrated ionic liquids (ILs) provide favourable environments for a wide range of chemical reactions and are known to impact the stabilities of Watson-Crick base pairs. We found that DNA triplex formation was significantly stabilized in hydrated choline dihydrogen phosphate as compared with an aqueous buffer at neutral pH. Interestingly, the stability of Hoogsteen base pairs was found to be comparable with that of Watson-Crick base pairs in the hydrated IL. Molecular dynamics simulations of a DNA triplex in the presence of choline ions revealed that the DNA triplex was stabilized because of the binding of choline ion around the third strand in the grooves. Our finding will facilitate the development of new DNA materials. Our data also indicate that triplex formation may be stabilized inside cells where choline ions and their derivatives are abundant in vivo.
Collapse
|
36
|
Ranjan N, Fulcrand G, King A, Brown J, Jiang X, Leng F, Arya DP. Selective Inhibition of Bacterial Topoisomerase I by alkynyl-bisbenzimidazoles. MEDCHEMCOMM 2014; 5:816-825. [PMID: 25083189 DOI: 10.1039/c4md00140k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hoechst dyes are well known DNA binders that non-selectively inhibit the function of mammalian topoisomerase I and II. Herein, we show that Hoechst 33258 based bisbenzimidazoles (DPA 151-154), containing a terminal alkyne, are effective and selective inhibitors of E. coli. topoisomerase I. These bisbenzimidazoles displayed topoisomerase I inhibition much better than Hoechst 33342 or Hoechst 33258 with IC50 values in the range of 2.47-6.63 μM. Bisbenzimidazoles DPA 151-154 also display selective inhibition of E. coli. topoisomerase I over DNA gyrase and Human topoisomerases I and II, and effectively inhibit bacterial growth.
Collapse
Affiliation(s)
- Nihar Ranjan
- Department of Chemistry, Clemson University, Clemson, South Carolina, Unite States 29634
| | - Geraldine Fulcrand
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199 (Unite States)
| | - Ada King
- NUBAD, LLC, 900 B West Faris Road, Greenville, South Carolina 29605
| | - Joseph Brown
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634
| | - Xiuping Jiang
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634
| | - Fenfei Leng
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199 (Unite States)
| | - Dev P Arya
- Department of Chemistry, Clemson University, Clemson, South Carolina, Unite States 29634 ; NUBAD, LLC, 900 B West Faris Road, Greenville, South Carolina 29605
| |
Collapse
|
37
|
Ranjan N, Kumar S, Watkins D, Wang D, Appella DH, Arya DP. Recognition of HIV-TAR RNA using neomycin-benzimidazole conjugates. Bioorg Med Chem Lett 2013; 23:5689-93. [PMID: 24012122 PMCID: PMC4048829 DOI: 10.1016/j.bmcl.2013.08.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 07/30/2013] [Accepted: 08/05/2013] [Indexed: 10/26/2022]
Abstract
Synthesis of a novel class of compounds and their biophysical studies with TAR-RNA are presented. The synthesis of these compounds was achieved by conjugating neomycin, an aminoglycoside, with benzimidazoles modeled from a B-DNA minor groove binder, Hoechst 33258. The neomycin-benzimidazole conjugates have varying linkers that connect the benzimidazole and neomycin units. The linkers of varying length (5-23 atoms) in these conjugates contain one to three triazole units. The UV thermal denaturation experiments showed that the conjugates resulted in greater stabilization of the TAR-RNA than either neomycin or benzimidazole used in the synthesis of conjugates. These results were corroborated by the FID displacement and tat-TAR inhibition assays. The binding of ligands to the TAR-RNA is affected by the length and composition of the linker. Our results show that increasing the number of triazole groups and the linker length in these compounds have diminishing effect on the binding to TAR-RNA. Compounds that have shorter linker length and fewer triazole units in the linker displayed increased affinity towards the TAR RNA.
Collapse
Affiliation(s)
- Nihar Ranjan
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina , United States 29634
| | - Sunil Kumar
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina , United States 29634
| | - Derrick Watkins
- NUBAD LLC, 900 B West Faris Road, Greenville, SC 29630, United States
| | - Deyun Wang
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health,Bethesda, Maryland 20892, United States
| | - Daniel H. Appella
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health,Bethesda, Maryland 20892, United States
| | - Dev P. Arya
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina , United States 29634
- NUBAD LLC, 900 B West Faris Road, Greenville, SC 29630, United States
| |
Collapse
|
38
|
Zhao J, Li W, Ma R, Chen S, Ren S, Jiang T. Design, synthesis and DNA interaction study of new potential DNA bis-intercalators based on glucuronic acid. Int J Mol Sci 2013; 14:16851-65. [PMID: 23955268 PMCID: PMC3759939 DOI: 10.3390/ijms140816851] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/30/2013] [Accepted: 07/07/2013] [Indexed: 11/18/2022] Open
Abstract
A series of novel potential DNA bis-intercalators were designed and synthesized, in which two glucuronic acids were linked by ethylenediamine, and the glucuronic acid was coupled with various chromophores, including quinoline, acridine, indole and purine, at the C-1 position. The preliminary binding properties of these compounds to calf thymus DNA (CT-DNA) have been investigated by UV-absorption and fluorescence spectroscopy. The results indicated that all the target compounds can interact with CT-DNA, and the acridine derivative, 3b, showed the highest key selection vector (KSV) value, which suggested that compound 3b binds most strongly to CT-DNA.
Collapse
Affiliation(s)
- Jiuyang Zhao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Pharmacy, Ocean University of China, Qingdao 266003, China; E-Mails: (J.Z.); (W.L.); (R.M.); (S.C.); (S.R.)
| | - Wei Li
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Pharmacy, Ocean University of China, Qingdao 266003, China; E-Mails: (J.Z.); (W.L.); (R.M.); (S.C.); (S.R.)
- School of Pharmacy, Jining Medical University, Rizhao 276826, China
| | - Rui Ma
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Pharmacy, Ocean University of China, Qingdao 266003, China; E-Mails: (J.Z.); (W.L.); (R.M.); (S.C.); (S.R.)
| | - Shaopeng Chen
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Pharmacy, Ocean University of China, Qingdao 266003, China; E-Mails: (J.Z.); (W.L.); (R.M.); (S.C.); (S.R.)
| | - Sumei Ren
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Pharmacy, Ocean University of China, Qingdao 266003, China; E-Mails: (J.Z.); (W.L.); (R.M.); (S.C.); (S.R.)
| | - Tao Jiang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Pharmacy, Ocean University of China, Qingdao 266003, China; E-Mails: (J.Z.); (W.L.); (R.M.); (S.C.); (S.R.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-532-8203-2712; Fax: +86-532-8203-3054
| |
Collapse
|
39
|
Ranjan N, Davis E, Xue L, Arya DP. Dual recognition of the human telomeric G-quadruplex by a neomycin-anthraquinone conjugate. Chem Commun (Camb) 2013; 49:5796-8. [PMID: 23698792 PMCID: PMC3977216 DOI: 10.1039/c3cc42721h] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The authors report the recognition of a G-quadruplex formed by four repeat human telomeric DNA with aminosugar intercalator conjugates. The recognition of the G-quadruplex through dual binding mode ligands significantly increased the affinity of ligands for the G-quadruplex. One such example is a neomycin-anthraquinone conjugate (2) which exhibited nanomolar affinity for the quadruplex, and the affinity of (2) is nearly 1000 fold higher for the human telomeric G-quadruplex DNA than its constituent units, neomycin and anthraquinone.
Collapse
Affiliation(s)
- Nihar Ranjan
- Laboratory of Bioorganic and Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson SC, USA 29634. Fax:+1-864-656-6613; Tel:+1-864-656-1106
| | - Erik Davis
- Laboratory of Bioorganic and Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson SC, USA 29634. Fax:+1-864-656-6613; Tel:+1-864-656-1106
| | - Liang Xue
- Department of Chemistry, University of Pacific, Stockton, CA, USA 95211
| | - Dev P. Arya
- Laboratory of Bioorganic and Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson SC, USA 29634. Fax:+1-864-656-6613; Tel:+1-864-656-1106
| |
Collapse
|
40
|
Sheng J, Gan J, Huang Z. Structure-based DNA-targeting strategies with small molecule ligands for drug discovery. Med Res Rev 2013; 33:1119-73. [PMID: 23633219 DOI: 10.1002/med.21278] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nucleic acids are the molecular targets of many clinical anticancer drugs. However, compared with proteins, nucleic acids have traditionally attracted much less attention as drug targets in structure-based drug design, partially because limited structural information of nucleic acids complexed with potential drugs is available. Over the past several years, enormous progresses in nucleic acid crystallization, heavy-atom derivatization, phasing, and structural biology have been made. Many complicated nucleic acid structures have been determined, providing new insights into the molecular functions and interactions of nucleic acids, especially DNAs complexed with small molecule ligands. Thus, opportunities have been created to further discover nucleic acid-targeting drugs for disease treatments. This review focuses on the structure studies of DNAs complexed with small molecule ligands for discovering lead compounds, drug candidates, and/or therapeutics.
Collapse
Affiliation(s)
- Jia Sheng
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | |
Collapse
|
41
|
Bai LP, Ho HM, Ma DL, Yang H, Fu WC, Jiang ZH. Aminoglycosylation can enhance the G-quadruplex binding activity of epigallocatechin. PLoS One 2013; 8:e53962. [PMID: 23335983 PMCID: PMC3545880 DOI: 10.1371/journal.pone.0053962] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/04/2012] [Indexed: 01/16/2023] Open
Abstract
With the aim of enhancing G-quadruplex binding activity, two new glucosaminosides (16, 18) of penta-methylated epigallocatechin were synthesized by chemical glycosylation. Subsequent ESI-TOF-MS analysis demonstrated that these two glucosaminoside derivatives exhibit much stronger binding activity to human telomeric DNA and RNA G-quadruplexes than their parent structure (i.e., methylated EGC) (14) as well as natural epigallocatechin (EGC, 6). The DNA G-quadruplex binding activity of 16 and 18 is even more potent than strong G-quadruplex binder quercetin, which has a more planar structure. These two synthetic compounds also showed a higher binding strength to human telomeric RNA G-quadruplex than its DNA counterpart. Analysis of the structure-activity relationship revealed that the more basic compound, 16, has a higher binding capacity with DNA and RNA G-quadruplexes than its N-acetyl derivative, 18, suggesting the importance of the basicity of the aminoglycoside for G-quadruplex binding activity. Molecular docking simulation predicted that the aromatic ring of 16 π-stacks with the aromatic ring of guanine nucleotides, with the glucosamine moiety residing in the groove of G-quadruplex. This research indicates that glycosylation of natural products with aminosugar can significantly enhance their G-quadruplex binding activities, thus is an effective way to generate small molecules targeting G-quadruplexes in nucleic acids. In addition, this is the first report that green tea catechin can bind to nucleic acid G-quadruplex structures.
Collapse
Affiliation(s)
- Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong
| | - Hing-Man Ho
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong
| | - Hui Yang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong
| | - Wai-Chung Fu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| |
Collapse
|
42
|
Watkins D, Norris FA, Kumar S, Arya DP. A fluorescence-based screen for ribosome binding antibiotics. Anal Biochem 2012; 434:300-7. [PMID: 23262284 DOI: 10.1016/j.ab.2012.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/30/2012] [Accepted: 12/03/2012] [Indexed: 12/12/2022]
Abstract
The development of new antibacterial agents has become necessary to treat the large number of emerging bacterial strains resistant to current antibiotics. Despite the different methods of resistance developed by these new strains, the A-site of the bacterial ribosome remains an attractive target for new antibiotics. To develop new drugs that target the ribosomal A-site, a high-throughput screen is necessary to identify compounds that bind to the target with high affinity. To this end, we present an assay that uses a novel fluorescein-conjugated neomycin (F-neo) molecule as a binding probe to determine the relative binding affinity of a drug library. We show here that the binding of F-neo to a model Escherichia coli ribosomal A-site results in a large decrease in the fluorescence of the molecule. Furthermore, we have determined that the change in fluorescence is due to the relative change in the pK(a) of the probe resulting from the change in the electrostatic environment that occurs when the probe is taken from the solvent and localized into the negative potential of the A-site major groove. Finally, we demonstrate that F-neo can be used in a robust, highly reproducible assay, determined by a Z'-factor greater than 0.80 for 3 consecutive days. The assay is capable of rapidly determining the relative binding affinity of a compound library in a 96-well plate format using a single channel electronic pipette. The current assay format will be easily adaptable to a high-throughput format with the use of a liquid handling robot for large drug libraries currently available and under development.
Collapse
|
43
|
Charles I, Davis E, Arya DP. Efficient stabilization of phosphodiester (PO), phosphorothioate (PS), and 2'-O-methoxy (2'-OMe) DNA·RNA hybrid duplexes by amino sugars. Biochemistry 2012; 51:5496-505. [PMID: 22639785 DOI: 10.1021/bi3004507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Antisense strategies that target DNA·RNA hybrid structures offer potential for the development of new therapeutic drugs. The α-sarcin loop region of the 23S [corrected] rRNA domain has been shown to be a high value target for such strategies. Herein, aminoglycoside interaction with three RNA·DNA α-sarcin targeted duplexes (rR·dY, rR·S-dY, and rR·2'OMe-rY) have been investigated to determine the overall effect of aminoglycoside interaction on the stability, affinity, and conformation of these hybrid duplexes. To this end, UV thermal denaturation, circular dichroism spectroscopy, fluorescence intercalator displacement, and ITC as well as DSC calorimetry experiments were carried out. The results suggest the following. (1) Of all the aminoglycosides studied, neomycin confers the highest thermal stability on all three hybrid duplexes studied. (2) There is no appreciable difference in aminoglycoside-induced thermal stability between the unmodified rR·dY and phophorothioate modified rR·S-dY duplexes. (3) The rR·2'OMe-rY duplexes thermal stability is slightly less than the other two hybrids. (4) In all three duplexes, aminoglycoside-induced thermal stability decreased as the number of amino groups decreased. (5) CD scans revealed similar spectra for the rR·dY and rR·S-dY duplexes as well as a more pronounced A-form signal for the rR·2'OMe-rY duplex. (6) FID assays paralleled the CD results, yielding similar affinity values between the rR·dY and rR·S-dY duplexes and higher affinities with the rR·2'OMe-rY duplex. (7) The overall affinity trend between aminoglycosides and the three duplexes was determined to be neomycin > paromomycin > neamine > ribostamycin. (8) ITC K(a) values revealed similar binding constants for the rR·dY and rR·S-dY duplexes with rR·dY having a K(1) of (1.03 ± 0.58) × 10(7) M(-1) and K(2) of (1.13 ± 0.07) × 10(5) M(-1) while rR·S-dY produced a K(1) of (1.17 ± 0.54) × 10(7) M(-1) and K(2) of (1.27 ± 0.69) × 10(5) M(-1). (8) The rR·2'OMe-rY produced a slightly higher binding constant values with a K(1) of (1.25 ± 0.24) × 10(7) M(-1) and K(2) of (3.62 ± 0.18) × 10(5) M(-1). (9) The ΔT(m)-derived K(Tm) of 3.81 × 10(7) M(-1) for rR·S-dY was in relative agreement with the corresponding K(1) of 1.17 × 10(7) M(-1) derived constant from the fitted ITC. These results illustrate that the increased DNA·RNA hybrid duplex stability in the presence of aminoglycosides can help extend the roles of aminoglycosides in designing modified ODNs for targeting RNA.
Collapse
Affiliation(s)
- I Charles
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, South Carolina 29634, United States
| | | | | |
Collapse
|
44
|
Chang YM, Chen CKM, Hou MH. Conformational changes in DNA upon ligand binding monitored by circular dichroism. Int J Mol Sci 2012; 13:3394-3413. [PMID: 22489158 PMCID: PMC3317384 DOI: 10.3390/ijms13033394] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 02/22/2012] [Accepted: 02/24/2012] [Indexed: 11/16/2022] Open
Abstract
Circular dichroism (CD) spectroscopy is an optical technique that measures the difference in the absorption of left and right circularly polarized light. This technique has been widely employed in the studies of nucleic acids structures and the use of it to monitor conformational polymorphism of DNA has grown tremendously in the past few decades. DNA may undergo conformational changes to B-form, A-form, Z-form, quadruplexes, triplexes and other structures as a result of the binding process to different compounds. Here we review the recent CD spectroscopic studies of the induction of DNA conformational changes by different ligands, which includes metal derivative complex of aureolic family drugs, actinomycin D, neomycin, cisplatin, and polyamine. It is clear that CD spectroscopy is extremely sensitive and relatively inexpensive, as compared with other techniques. These studies show that CD spectroscopy is a powerful technique to monitor DNA conformational changes resulting from drug binding and also shows its potential to be a drug-screening platform in the future.
Collapse
Affiliation(s)
- Yu-Ming Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; E-Mails: (Y.-M.C.); (C.K.-M.C.)
| | - Cammy K.-M. Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; E-Mails: (Y.-M.C.); (C.K.-M.C.)
| | - Ming-Hon Hou
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
45
|
Kumar S, Kellish P, Robinson WE, Wang D, Appella DH, Arya DP. Click dimers to target HIV TAR RNA conformation. Biochemistry 2012; 51:2331-47. [PMID: 22339203 DOI: 10.1021/bi201657k] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of neomycin dimers have been synthesized using "click chemistry" with varying functionality and length in the linker region to target the human immunodeficiency virus type 1 (HIV-1) TAR RNA region of the HIV virus. The TAR (Trans-Activation Responsive) RNA region, a 59 bp stem-loop structure located at the 5'-end of all nascent viral transcripts, interacts with its target, a key regulatory protein, Tat, and necessitates the replication of HIV-1. Neomycin, an aminosugar, has been shown to exhibit multiple binding sites on TAR RNA. This observation prompted us to design and synthesize a library of triazole-linked neomycin dimers using click chemistry. The binding between neomycin dimers and TAR RNA was characterized using spectroscopic techniques, including FID (fluorescent intercalator displacement), a FRET (fluorescence resonance energy transfer) competitive assay, circular dichroism (CD), and UV thermal denaturation. UV thermal denaturation studies demonstrate that binding of neomycin dimers increases the melting temperature (T(m)) of the HIV TAR RNA up to 10 °C. Ethidium bromide displacement (FID) and a FRET competition assay revealed nanomolar binding affinity between neomycin dimers and HIV TAR RNA, while in case of neomycin, only weak binding was detected. More importantly, most of the dimers exhibited lower IC(50) values toward HIV TAR RNA, when compared to the fluorescent Tat peptide, and show increased selectivity over mutant TAR RNA. Cytopathic effects investigated using MT-2 cells indicate a number of the dimers with high affinity toward TAR show promising anti-HIV activity.
Collapse
Affiliation(s)
- Sunil Kumar
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Rehm TH, Stojković MR, Rehm S, Škugor M, Piantanida I, Würthner F. Interaction of spermine-alanine functionalized perylene bisimide dye aggregates with ds-DNA/RNA secondary structure. Chem Sci 2012. [DOI: 10.1039/c2sc20825c] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
48
|
A V-shaped ligand 1,3-bis(1-methylbenzimidazol-2-yl)-2-oxapropane and its Cu(II) complex: Synthesis, crystal structure, antioxidation and DNA-binding properties. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 105:190-7. [DOI: 10.1016/j.jphotobiol.2011.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/01/2011] [Accepted: 09/05/2011] [Indexed: 01/22/2023]
|
49
|
Kumar S, Arya DP. Recognition of HIV TAR RNA by triazole linked neomycin dimers. Bioorg Med Chem Lett 2011; 21:4788-92. [PMID: 21757341 PMCID: PMC3673547 DOI: 10.1016/j.bmcl.2011.06.058] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/10/2011] [Accepted: 06/13/2011] [Indexed: 10/18/2022]
Abstract
A series of neomycin dimers have been synthesized using 'click chemistry' with varying linker functionality and length to target the TAR RNA region of HIV virus. TAR (trans activation response) RNA region, a 59 base pair stem loop structure located at 5'-end of all nascent HIV-1 transcripts interacts with a key regulatory protein, Tat, and necessitates the replication of HIV-1 virus. Neomycin, an aminosugar, has been shown to exhibit more than one binding site with HIV TAR RNA. Multiple TAR binding sites of neomycin prompted us to design and synthesize a small library of neomycin dimers using click chemistry. The binding between neomycin dimers and HIV TAR RNA was characterized using spectroscopic techniques including FID (Fluorescent Intercalator Displacement) titration and UV-thermal denaturation. UV thermal denaturation studies demonstrate that neomycin dimer binding increase the melting temperature (T(m)) of the HIV TAR RNA up to 10°C. Ethidium bromide displacement titrations revealed nanomolar IC(50) between neomycin dimers and HIV TAR RNA, whereas with neomycin, a much higher IC(50) in the micromolar range is observed.
Collapse
Affiliation(s)
- Sunil Kumar
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634, United States
| | | |
Collapse
|
50
|
Kumar S, Xue L, Arya DP. Neomycin-neomycin dimer: an all-carbohydrate scaffold with high affinity for AT-rich DNA duplexes. J Am Chem Soc 2011; 133:7361-75. [PMID: 21524066 PMCID: PMC3641821 DOI: 10.1021/ja108118v] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A dimeric neomycin-neomycin conjugate 3 with a flexible linker, 2,2'-(ethylenedioxy)bis(ethylamine), has been synthesized and characterized. Dimer 3 can selectively bind to AT-rich DNA duplexes with high affinity. Biophysical studies have been performed between 3 and different nucleic acids with varying base composition and conformation by using ITC (isothermal calorimetry), CD (circular dichroism), FID (fluorescent intercalator displacement), and UV (ultraviolet) thermal denaturation experiments. A few conclusions can be drawn from this study: (1) FID assay with 3 and polynucleotides demonstrates the preference of 3 toward AT-rich sequences over GC-rich sequences. (2) FID assay and UV thermal denaturation experiments show that 3 has a higher affinity for the poly(dA)·poly(dT) DNA duplex than for the poly(dA)·2poly(dT) DNA triplex. Contrary to neomycin, 3 destabilizes poly(dA)·2poly(dT) triplex but stabilizes poly(dA)·poly(dT) duplex, suggesting the major groove as the binding site. (3) UV thermal denaturation studies and ITC experiments show that 3 stabilizes continuous AT-tract DNA better than DNA duplexes with alternating AT bases. (4) CD and FID titration studies show a DNA binding site size of 10-12 base pairs/drug, depending upon the structure/sequence of the duplex for AT-rich DNA duplexes. (5) FID and ITC titration between 3 and an intramolecular DNA duplex [d(5'-A(12)-x-T(12)-3'), x = hexaethylene glycol linker] results in a binding stoichiometry of 1:1 with a binding constant ∼10(8) M(-1) at 100 mM KCl. (6) FID assay using 3 and 512 hairpin DNA sequences that vary in their AT base content and placement also show a higher binding selectivity of 3 toward continuous AT-rich than toward DNA duplexes with alternate AT base pairs. (7) Salt-dependent studies indicate the formation of three ion pairs during binding of the DNA duplex d[5'-A(12)-x-T(12)-3'] and 3. (8) ITC-derived binding constants between 3 and DNA duplexes have the following order: AT continuous, d[5'-G(3)A(5)T(5)C(3)-3'] > AT alternate, d[5'-G(3)(AT)(5)C(3)-3'] > GC-rich d[5'-A(3)G(5)C(5)T(3)-3']. (9) 3 binds to the AT-tract-containing DNA duplex (B* DNA, d[5'-G(3)A(5)T(5)C(3)-3']) with 1 order of magnitude higher affinity than to a DNA duplex with alternating AT base pairs (B DNA, d[5'-G(3)(AT)(5)C(3)-3']) and with almost 3 orders of magnitude higher affinity than a GC-rich DNA (A-form, d[5'-A(3)G(5)C(5)T(3)-3']).
Collapse
Affiliation(s)
- Sunil Kumar
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634
| | | | - Dev P. Arya
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634
| |
Collapse
|