1
|
Sneider A, Liu Y, Starich B, Du W, Nair PR, Marar C, Faqih N, Ciotti GE, Kim JH, Krishnan S, Ibrahim S, Igboko M, Locke A, Lewis DM, Hong H, Karl MN, Vij R, Russo GC, Gómez-de-Mariscal E, Habibi M, Muñoz-Barrutia A, Gu L, Eisinger-Mathason TK, Wirtz D. Small Extracellular Vesicles Promote Stiffness-mediated Metastasis. CANCER RESEARCH COMMUNICATIONS 2024; 4:1240-1252. [PMID: 38630893 PMCID: PMC11080964 DOI: 10.1158/2767-9764.crc-23-0431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/13/2024] [Accepted: 04/15/2024] [Indexed: 04/19/2024]
Abstract
Tissue stiffness is a critical prognostic factor in breast cancer and is associated with metastatic progression. Here we show an alternative and complementary hypothesis of tumor progression whereby physiologic matrix stiffness affects the quantity and protein cargo of small extracellular vesicles (EV) produced by cancer cells, which in turn aid cancer cell dissemination. Primary patient breast tissue released by cancer cells on matrices that model human breast tumors (25 kPa; stiff EVs) feature increased adhesion molecule presentation (ITGα2β1, ITGα6β4, ITGα6β1, CD44) compared with EVs from softer normal tissue (0.5 kPa; soft EVs), which facilitates their binding to extracellular matrix proteins including collagen IV, and a 3-fold increase in homing ability to distant organs in mice. In a zebrafish xenograft model, stiff EVs aid cancer cell dissemination. Moreover, normal, resident lung fibroblasts treated with stiff and soft EVs change their gene expression profiles to adopt a cancer-associated fibroblast phenotype. These findings show that EV quantity, cargo, and function depend heavily on the mechanical properties of the extracellular microenvironment. SIGNIFICANCE Here we show that the quantity, cargo, and function of breast cancer-derived EVs vary with mechanical properties of the extracellular microenvironment.
Collapse
Affiliation(s)
- Alexandra Sneider
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences–Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Ying Liu
- Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Bartholomew Starich
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences–Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Wenxuan Du
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences–Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Praful R. Nair
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences–Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Carolyn Marar
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Najwa Faqih
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Gabrielle E. Ciotti
- Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Joo Ho Kim
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Sejal Krishnan
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Salma Ibrahim
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Muna Igboko
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Alexus Locke
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Daniel M. Lewis
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences–Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Hanna Hong
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Michelle N. Karl
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences–Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Raghav Vij
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Gabriella C. Russo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences–Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Estibaliz Gómez-de-Mariscal
- Bioengineering and Aerospace Engineering Department, Universidad Carlos III de Madrid, Leganés, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Mehran Habibi
- Johns Hopkins Breast Center, Johns Hopkins Bayview Medical Center, Baltimore, Maryland
| | - Arrate Muñoz-Barrutia
- Bioengineering and Aerospace Engineering Department, Universidad Carlos III de Madrid, Leganés, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Luo Gu
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - T.S. Karin Eisinger-Mathason
- Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences–Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
2
|
Sneider A, Liu Y, Starich B, Du W, Marar C, Faqih N, Ciotti GE, Kim JH, Krishnan S, Ibrahim S, Igboko M, Locke A, Lewis DM, Hong H, Karl M, Vij R, Russo GC, Nair P, Gómez-de-Mariscal E, Habibi M, Muñoz-Barrutia A, Gu L, Eisinger-Mathason TSK, Wirtz D. Small extracellular vesicles promote stiffness-mediated metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.01.545937. [PMID: 37425743 PMCID: PMC10327142 DOI: 10.1101/2023.07.01.545937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Tissue stiffness is a critical prognostic factor in breast cancer and is associated with metastatic progression. Here we show an alternative and complementary hypothesis of tumor progression whereby physiological matrix stiffness affects the quantity and protein cargo of small EVs produced by cancer cells, which in turn drive their metastasis. Primary patient breast tissue produces significantly more EVs from stiff tumor tissue than soft tumor adjacent tissue. EVs released by cancer cells on matrices that model human breast tumors (25 kPa; stiff EVs) feature increased adhesion molecule presentation (ITGα 2 β 1 , ITGα 6 β 4 , ITGα 6 β 1 , CD44) compared to EVs from softer normal tissue (0.5 kPa; soft EVs), which facilitates their binding to extracellular matrix (ECM) protein collagen IV, and a 3-fold increase in homing ability to distant organs in mice. In a zebrafish xenograft model, stiff EVs aid cancer cell dissemination through enhanced chemotaxis. Moreover, normal, resident lung fibroblasts treated with stiff and soft EVs change their gene expression profiles to adopt a cancer associated fibroblast (CAF) phenotype. These findings show that EV quantity, cargo, and function depend heavily on the mechanical properties of the extracellular microenvironment.
Collapse
|
3
|
Amlexanox-loaded nanoliposomes showing enhanced anti-inflammatory activity in cultured macrophages: A potential formulation for treatment of oral aphthous stomatitis. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
The potential value of amlexanox in the treatment of cancer: Molecular targets and therapeutic perspectives. Biochem Pharmacol 2021; 197:114895. [PMID: 34968491 DOI: 10.1016/j.bcp.2021.114895] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
Amlexanox (AMX) is an azoxanthone drug used for decades for the treatment of mouth aphthous ulcers and now considered for the treatment of diabetes and obesity. The drug is usually viewed as a dual inhibitor of the non-canonical IκB kinases IKK-ɛ (inhibitor-kappaB kinase epsilon) and TBK1 (TANK-binding kinase 1). But a detailed target profile analysis indicated that AMX binds directly to twelve protein targets, including different enzymes (IKK-ɛ, TBK1, GRK1, GRK5, PDE4B, 5- and 12-lipoxygenases) and non-enzyme proteins (FGF-1, HSP90, S100A4, S100A12, S100A13). AMX has been demonstrated to have marked anticancer effects in multiple models of xenografted tumors in mice, including breast, colon, lung and gastric cancers and in onco-hematological models. The anticancer potency is generally modest but largely enhanced upon combination with cytotoxic (temozolide, docetaxel), targeted (selumetinib) or biotherapeutic agents (anti-PD-1 and anti-CTLA4 antibodies). The multiple targets participate in the anticancer effects, chiefly IKK-ɛ/TBK1 but also S100A proteins and PDE4B. The review presents the molecular basis of the antitumor effects of AMX. The capacity of the drug to block nonsense-mediated mRNA decay (NMD) is also discussed, as well as AMX-induced reduction of cancer-related pain. Altogether, the analysis provides a survey of the anticancer action of AMX, with the implicated protein targets. The use of this well-tolerated drug to treat cancer should be further considered and the design of newer analogues encouraged.
Collapse
|
5
|
A Novel S100 Family-Based Signature Associated with Prognosis and Immune Microenvironment in Glioma. JOURNAL OF ONCOLOGY 2021; 2021:3586589. [PMID: 34712325 PMCID: PMC8548170 DOI: 10.1155/2021/3586589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/13/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022]
Abstract
Background Glioma is the most common central nervous system (CNS) cancer with a short survival period and a poor prognosis. The S100 family gene, comprising 25 members, relates to diverse biological processes of human malignancies. Nonetheless, the significance of S100 genes in predicting the prognosis of glioma remains largely unclear. We aimed to build an S100 family-based signature for glioma prognosis. Methods We downloaded 665 and 313 glioma patients, respectively, from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) database with RNAseq data and clinical information. This study established a prognostic signature based on the S100 family genes through multivariate COX and LASSO regression. The Kaplan-Meier curve was plotted to compare overall survival (OS) among groups, whereas Receiver Operating Characteristic (ROC) analysis was performed to evaluate model accuracy. A representative gene S100B was further verified by in vitro experiments. Results An S100 family-based signature comprising 5 genes was constructed to predict the glioma that stratified TCGA-derived cases as a low- or high-risk group, whereas the significance of prognosis was verified based on CGGA-derived cases. Kaplan-Meier analysis revealed that the high-risk group was associated with the dismal prognosis. Furthermore, the S100 family-based signature was proved to be closely related to immune microenvironment. In vitro analysis showed S100B gene in the signature promoted glioblastoma (GBM) cell proliferation and migration. Conclusions We constructed and verified a novel S100 family-based signature associated with tumor immune microenvironment (TIME), which may shed novel light on the glioma diagnosis and treatment.
Collapse
|
6
|
Zhang D, Luo N, Gan J, Wan X, Wang C. Piperidine-Mediated [3 + 3] Cyclization of 2-Amino-4 H-chromen-4-ones and 2-Benzylidenemalononitriles: To Access 2-Aminochromeno[2,3- b]pyridine Derivatives. J Org Chem 2021; 86:9218-9224. [PMID: 34161098 DOI: 10.1021/acs.joc.1c00797] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Piperidine-mediated [3 + 3] cyclization of 2-amino-4H-chromen-4-ones and substituted 2-benzylidenemalononitriles was developed for the synthesis of 2-amino-4-aryl-5H-chromeno[2,3-b]pyridin-5-one derivatives. This novel transformation provides a highly efficient and facile route to functionalized 5H-chromeno[2,3-b]pyridines from readily available substrates under mild reaction conditions.
Collapse
Affiliation(s)
- Dan Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University,180 Siwangting Street, Yangzhou 225002, P. R. China
| | - Naili Luo
- School of Chemistry and Chemical Engineering, Yangzhou University,180 Siwangting Street, Yangzhou 225002, P. R. China
| | - Jianbo Gan
- School of Chemistry and Chemical Engineering, Yangzhou University,180 Siwangting Street, Yangzhou 225002, P. R. China
| | - Xinyi Wan
- School of Chemistry and Chemical Engineering, Yangzhou University,180 Siwangting Street, Yangzhou 225002, P. R. China
| | - Cunde Wang
- School of Chemistry and Chemical Engineering, Yangzhou University,180 Siwangting Street, Yangzhou 225002, P. R. China
| |
Collapse
|
7
|
Li T, Xu Y, Shi Y, Chen J, Lin S, Zhu J, Xu X, Lu L, Zou H. Genome-wide analysis of DNA methylation identifies S100A13 as an epigenetic biomarker in individuals with chronic (≥ 30 years) type 2 diabetes without diabetic retinopathy. Clin Epigenetics 2020; 12:77. [PMID: 32493412 PMCID: PMC7268721 DOI: 10.1186/s13148-020-00871-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/21/2020] [Indexed: 01/13/2023] Open
Abstract
Background This study aimed to determine the epigenetic biomarkers of diabetic retinopathy (DR) in subjects with type 2 diabetes mellitus (T2DM). This retrospective study is based on the Shanghai Xinjing community prevention and treatment administrative system of chronic diseases. The subjects enrolled herein were T2DM patients who had undergone long-term follow-up evaluation in the system. Two consecutive studies were conducted. In the discovery cohort, among 19 subjects who had developed DR with a DM duration < 3 years and 21 subjects without DR > 30 years after being diagnosed with DM, an Infinium Human Methylation 850 Beadchip was used to identify differential methylation regions (DMRs) and differential methylation sites (DMSs). The function of the genes was assessed through KEGG enrichment analysis, Gene Ontology (GO) analysis, and pathway network analysis. In the replication cohort, 87 DR patients with a short DM duration and 89 patients without DR over a DM duration > 20 years were compared to assess the association between DMSs and DR upon pyrosequencing. Results A total of 34 DMRs were identified. Genes containing DMSs with the top 5 highest beta value differences between DR and non-DR participants were located on chromosome 1 and were present in the S100A13 gene, which was associated with 71 GO terms. Two S100A13 gene sites, i.e., cg02873163 and cg11343894, displayed a good correlation with DR on pyrosequencing. Conclusions DMSs in the S100A13 gene may be potential biomarkers of DR.
Collapse
Affiliation(s)
- Tao Li
- Shanghai Eye Diseases Prevention & Treatment Center/Shanghai Eye Hospital, No. 380, Kangding Road, Shanghai, 200040, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yi Xu
- Shanghai Eye Diseases Prevention & Treatment Center/Shanghai Eye Hospital, No. 380, Kangding Road, Shanghai, 200040, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiaotong University, Shanghai, China
| | - Jianhua Chen
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Senlin Lin
- Shanghai Eye Diseases Prevention & Treatment Center/Shanghai Eye Hospital, No. 380, Kangding Road, Shanghai, 200040, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianfeng Zhu
- Shanghai Eye Diseases Prevention & Treatment Center/Shanghai Eye Hospital, No. 380, Kangding Road, Shanghai, 200040, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xian Xu
- Shanghai Eye Diseases Prevention & Treatment Center/Shanghai Eye Hospital, No. 380, Kangding Road, Shanghai, 200040, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lina Lu
- Shanghai Eye Diseases Prevention & Treatment Center/Shanghai Eye Hospital, No. 380, Kangding Road, Shanghai, 200040, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haidong Zou
- Shanghai Eye Diseases Prevention & Treatment Center/Shanghai Eye Hospital, No. 380, Kangding Road, Shanghai, 200040, China. .,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Sluzalska KD, Slawski J, Sochacka M, Lampart A, Otlewski J, Zakrzewska M. Intracellular partners of fibroblast growth factors 1 and 2 - implications for functions. Cytokine Growth Factor Rev 2020; 57:93-111. [PMID: 32475760 DOI: 10.1016/j.cytogfr.2020.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 01/01/2023]
Abstract
Fibroblast growth factors 1 and 2 (FGF1 and FGF2) are mainly considered as ligands of surface receptors through which they regulate a broad spectrum of biological processes. They are secreted in non-canonical way and, unlike other growth factors, they are able to translocate from the endosome to the cell interior. These unique features, as well as the role of the intracellular pool of FGF1 and FGF2, are far from being fully understood. An increasing number of reports address this problem, focusing on the intracellular interactions of FGF1 and 2. Here, we summarize the current state of knowledge of the FGF1 and FGF2 binding partners inside the cell and the possible role of these interactions. The partner proteins are grouped according to their function, including proteins involved in secretion, cell signaling, nucleocytoplasmic transport, binding and processing of nucleic acids, ATP binding, and cytoskeleton assembly. An in-depth analysis of the network of these binding partners could indicate novel, non-classical functions of FGF1 and FGF2 and uncover an additional level of a fine control of the well-known FGF-regulated cellular processes.
Collapse
Affiliation(s)
- Katarzyna Dominika Sluzalska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Jakub Slawski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Martyna Sochacka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Agata Lampart
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
9
|
Bresnick AR. S100 proteins as therapeutic targets. Biophys Rev 2018; 10:1617-1629. [PMID: 30382555 PMCID: PMC6297089 DOI: 10.1007/s12551-018-0471-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/21/2018] [Indexed: 12/13/2022] Open
Abstract
The human genome codes for 21 S100 protein family members, which exhibit cell- and tissue-specific expression patterns. Despite sharing a high degree of sequence and structural similarity, the S100 proteins bind a diverse range of protein targets and contribute to a broad array of intracellular and extracellular functions. Consequently, the S100 proteins regulate multiple cellular processes such as proliferation, migration and/or invasion, and differentiation, and play important roles in a variety of cancers, autoimmune diseases, and chronic inflammatory disorders. This review focuses on the development of S100 neutralizing antibodies and small molecule inhibitors and their potential therapeutic use in controlling disease progression and severity.
Collapse
Affiliation(s)
- Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
10
|
Brenner AK, Bruserud Ø. S100 Proteins in Acute Myeloid Leukemia. Neoplasia 2018; 20:1175-1186. [PMID: 30366122 PMCID: PMC6215056 DOI: 10.1016/j.neo.2018.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 01/02/2023] Open
Abstract
The S100 protein family contains 20 functionally expressed members, which are commonly dysregulated in cancer. Their wide range of functions includes cell proliferation, cell differentiation, regulation of transcription factors, inflammation, chemotaxis, and angiogenesis. S100 proteins have in several types of cancer proven to be biomarkers for disease progression and prognosis. Acute myeloid leukemia (AML) is a highly heterogeneous and aggressive disease in which immature myeloblasts replace normal hematopoietic cells in the bone marrow. This review focuses on the S100 protein family members, which commonly are dysregulated in AML, and on the consequences of their dysregulation in the disorder. Like in other cancers, it appears as if S100 proteins are potential biomarkers for leukemogenesis. Furthermore, several S100 members seem to be involved in maintaining the leukemic phenotype. For these reasons, specific S100 proteins might serve as prognostic biomarkers, especially in the patient subset with intermediate/undetermined risk, and as potential targets for patient-adjusted therapy. Because the question of the most suitable candidate S100 biomarkers in AML still is under discussion, because particular AML subgroups lead to specific S100 signatures, and because downstream effects and the significance of co-expression of potential S100 binding partners in AML are not fully elucidated yet, we conclude that a panel of S100 proteins will probably be best suited for prognostic purposes.
Collapse
Affiliation(s)
- Annette K Brenner
- Department of Medicine, Haukeland University Hospital, P.O. Box 1400, 5021 Bergen, Norway; Section for Hematology, Department of Clinical Science, University of Bergen, P.O. Box 7804, 5020 Bergen, Norway
| | - Øystein Bruserud
- Department of Medicine, Haukeland University Hospital, P.O. Box 1400, 5021 Bergen, Norway; Section for Hematology, Department of Clinical Science, University of Bergen, P.O. Box 7804, 5020 Bergen, Norway.
| |
Collapse
|
11
|
McCarthy GM, Warden AS, Bridges CR, Blednov YA, Harris RA. Chronic ethanol consumption: role of TLR3/TRIF-dependent signaling. Addict Biol 2018; 23:889-903. [PMID: 28840972 PMCID: PMC5828779 DOI: 10.1111/adb.12539] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 12/27/2022]
Abstract
Chronic ethanol consumption stimulates neuroimmune signaling in the brain, and Toll-like receptor (TLR) activation plays a key role in ethanol-induced inflammation. However, it is unknown which of the TLR signaling pathways, the myeloid differentiation primary response gene 88 (MyD88) dependent or the TIR-domain-containing adapter-inducing interferon-β (TRIF) dependent, is activated in response to chronic ethanol. We used voluntary (every-other-day) chronic ethanol consumption in adult C57BL/6J mice and measured expression of TLRs and their signaling molecules immediately following consumption and 24 hours after removing alcohol. We focused on the prefrontal cortex where neuroimmune changes are the most robust and also investigated the nucleus accumbens and amygdala. Tlr mRNA and components of the TRIF-dependent pathway (mRNA and protein) were increased in the prefrontal cortex 24 hours after ethanol and Cxcl10 expression increased 0 hour after ethanol. Expression of Tlr3 and TRIF-related components increased in the nucleus accumbens, but slightly decreased in the amygdala. In addition, we demonstrate that the IKKε/TBK1 inhibitor Amlexanox decreases immune activation of TRIF-dependent pathway in the brain and reduces ethanol consumption, suggesting the TRIF-dependent pathway regulates drinking. Our results support the importance of TLR3 and the TRIF-dependent pathway in ethanol-induced neuroimmune signaling and suggest that this pathway could be a target in the treatment of alcohol use disorders.
Collapse
Affiliation(s)
- Gizelle M. McCarthy
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX USA
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX USA
| | - Anna S. Warden
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX USA
- Insitute for Neuroscience, University of Texas at Austin, Austin, TX USA
| | - Courtney R. Bridges
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX USA
| | - Yuri A. Blednov
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX USA
| | - R. Adron Harris
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX USA
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX USA
- Insitute for Neuroscience, University of Texas at Austin, Austin, TX USA
| |
Collapse
|
12
|
Zhang CH, Huang R, Hu XM, Lin J, Yan SJ. Three-Component Site-Selective Synthesis of Highly Substituted 5H-Chromeno-[4,3-b]pyridines. J Org Chem 2018; 83:4981-4989. [DOI: 10.1021/acs.joc.8b00099] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Cong-Hai Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Rong Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Xing-Mei Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| |
Collapse
|
13
|
Todd I, Negm OH, Reps J, Radford P, Figueredo G, McDermott EM, Drewe E, Powell RJ, Bainbridge S, Hamed M, Crouch S, Garibaldi J, St-Gallay S, Fairclough LC, Tighe PJ. A signalome screening approach in the autoinflammatory disease TNF receptor associated periodic syndrome (TRAPS) highlights the anti-inflammatory properties of drugs for repurposing. Pharmacol Res 2017; 125:188-200. [PMID: 28860008 DOI: 10.1016/j.phrs.2017.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/10/2017] [Accepted: 08/22/2017] [Indexed: 12/26/2022]
Abstract
TNF receptor associated periodic syndrome (TRAPS) is an autoinflammatory disease caused by mutations in TNF Receptor 1 (TNFR1). Current therapies for TRAPS are limited and do not target the pro-inflammatory signalling pathways that are central to the disease mechanism. Our aim was to identify drugs for repurposing as anti-inflammatories based on their ability to down-regulate molecules associated with inflammatory signalling pathways that are activated in TRAPS. This was achieved using rigorously optimized, high through-put cell culture and reverse phase protein microarray systems to screen compounds for their effects on the TRAPS-associated inflammatory signalome. 1360 approved, publically available, pharmacologically active substances were investigated for their effects on 40 signalling molecules associated with pro-inflammatory signalling pathways that are constitutively upregulated in TRAPS. The drugs were screened at four 10-fold concentrations on cell lines expressing both wild-type (WT) TNFR1 and TRAPS-associated C33Y mutant TNFR1, or WT TNFR1 alone; signalling molecule levels were then determined in cell lysates by the reverse-phase protein microarray. A novel mathematical methodology was developed to rank the compounds for their ability to reduce the expression of signalling molecules in the C33Y-TNFR1 transfectants towards the level seen in the WT-TNFR1 transfectants. Seven high-ranking drugs were selected and tested by RPPA for effects on the same 40 signalling molecules in lysates of peripheral blood mononuclear cells (PBMCs) from C33Y-TRAPS patients compared to PBMCs from normal controls. The fluoroquinolone antibiotic lomefloxacin, as well as others from this class of compounds, showed the most significant effects on multiple pro-inflammatory signalling pathways that are constitutively activated in TRAPS; lomefloxacin dose-dependently significantly reduced expression of 7/40 signalling molecules across the Jak/Stat, MAPK, NF-κB and PI3K/AKT pathways. This study demonstrates the power of signalome screening for identifying candidates for drug repurposing.
Collapse
Affiliation(s)
- Ian Todd
- School of Life Sciences, The University of Nottingham, Life Sciences Building, University Park, Nottingham NG7 2RD, UK
| | - Ola H Negm
- School of Life Sciences, The University of Nottingham, Life Sciences Building, University Park, Nottingham NG7 2RD, UK; Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Egypt
| | - Jenna Reps
- Advanced Data Analysis Centre, School of Computer Science, The University of Nottingham, Jubilee Campus, Nottingham NG8 1BB, UK
| | - Paul Radford
- School of Life Sciences, The University of Nottingham, Life Sciences Building, University Park, Nottingham NG7 2RD, UK
| | - Grazziela Figueredo
- Advanced Data Analysis Centre, School of Computer Science, The University of Nottingham, Jubilee Campus, Nottingham NG8 1BB, UK
| | - Elizabeth M McDermott
- Nottingham University Hospitals National Health Service Trust, Queen's Medical Centre Campus, Nottingham NG7 2UH, UK
| | - Elizabeth Drewe
- Nottingham University Hospitals National Health Service Trust, Queen's Medical Centre Campus, Nottingham NG7 2UH, UK
| | - Richard J Powell
- School of Life Sciences, The University of Nottingham, Life Sciences Building, University Park, Nottingham NG7 2RD, UK
| | - Susan Bainbridge
- School of Life Sciences, The University of Nottingham, Life Sciences Building, University Park, Nottingham NG7 2RD, UK
| | - Mohamed Hamed
- School of Life Sciences, The University of Nottingham, Life Sciences Building, University Park, Nottingham NG7 2RD, UK
| | - Sharon Crouch
- Business Engagement and Innovation Services, The University of Nottingham, Jubilee Campus, Nottingham NG8 1BB, UK
| | - Jon Garibaldi
- Advanced Data Analysis Centre, School of Computer Science, The University of Nottingham, Jubilee Campus, Nottingham NG8 1BB, UK
| | - Steve St-Gallay
- Sygnature Discovery Limited, BioCity, Pennyfoot Street, Nottingham NG1 1GF, UK
| | - Lucy C Fairclough
- School of Life Sciences, The University of Nottingham, Life Sciences Building, University Park, Nottingham NG7 2RD, UK.
| | - Patrick J Tighe
- School of Life Sciences, The University of Nottingham, Life Sciences Building, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
14
|
Tamai H, Yamaguchi H, Miyake K, Takatori M, Kitano T, Yamanaka S, Yui S, Fukunaga K, Nakayama K, Inokuchi K. Amlexanox Downregulates S100A6 to Sensitize KMT2A/AFF1-Positive Acute Lymphoblastic Leukemia to TNFα Treatment. Cancer Res 2017. [DOI: 10.1158/0008-5472.can-16-2974] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Liu W, Hajjar KA. The annexin A2 system and angiogenesis. Biol Chem 2017; 397:1005-16. [PMID: 27366903 DOI: 10.1515/hsz-2016-0166] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/28/2016] [Indexed: 01/23/2023]
Abstract
The formation of new blood vessels from pre-existing vasculature, the process known as angiogenesis, is highly regulated by pro- and anti-angiogenic signaling molecules including growth factors and proteases. As an endothelial cell-surface co-receptor for plasminogen and tissue plasminogen activator, the annexin A2 (ANXA2) complex accelerates plasmin generation and facilitates fibrinolysis. Plasmin can subsequently activate a downstream proteolytic cascade involving multiple matrix metalloproteinases. Thus, in addition to maintaining blood vessel patency, the ANXA2 complex can also promote angiogenesis via its pro-fibrinolytic activity. The generation of ANXA2-deficient mice allowed us to first observe the pro-angiogenic role of ANXA2 in vivo. Further investigations have provided additional details regarding the mechanism for ANXA2 regulation of retinal and corneal angiogenesis. Other studies have reported that ANXA2 supports angiogenesis in specific tumor-related settings. Here, we summarize results from in vivo studies that illustrate the pro-angiogenic role of ANXA2, and discuss the critical questions that may lead to an advanced understanding of the molecular mechanisms for ANXA2-mediated angiogenesis. Finally, highlights from studies on ANXA2-interacting agents offer potential therapeutic opportunities for the application of ANXA2-centered pharmaceuticals in angiogenesis-related disorders.
Collapse
|
16
|
Zhong J, Liu C, Chen YJ, Zhang QH, Yang J, Kang X, Chen SR, Wen GB, Zu XY, Cao RX. The association between S100A13 and HMGA1 in the modulation of thyroid cancer proliferation and invasion. J Transl Med 2016; 14:80. [PMID: 27008379 PMCID: PMC4804518 DOI: 10.1186/s12967-016-0824-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/02/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND S100A13 and high mobility group A (HMGA1) are known to play essential roles in the carcinogenesis and progression of cancer. However, the correlation between S100A13 and HMGA1 during cancer progression is not yet well understood. In this study, we determined the effects of S100A13 on HMGA1 expression in thyroid cancer cells and examined the role of HMGA1 in thyroid cancer progression. METHODS Stable ectopic S100A13 expression TT cellular proliferation was evaluated by nude mice xenografts assays. The effect of lentivirus-mediated S100A13 knockdown on thyroid cancer cellular oncogenic properties were evaluated by MTT, colony formation assays and transwell assays in TPC1 and SW579 cells. The effect of siRNA-mediated HMGA1 knockdown on thyroid cancer cellular proliferation and invasion were evaluated by MTT, colony formation assays and transwell assays. The tissue microarray was performed to investigate the correlation between S100A13 and HMGA1 expression in tumor tissues. RESULTS The ectopic expression of S100A13 could increase tumor growth in a TT cell xenograft mouse model. Moreover, lentivirus-mediated S100A13 knockdown led to the inhibition of cellular oncogenic properties in thyroid cancer cells, and HMGA1 was found to be involved in the effect of S100A13 on thyroid cancer growth and invasion. Furthermore, siRNA-mediated HMGA1 knockdown was proved to inhibit the growth of TPC1 cells and invasive abilities of SW579 cells. Clinically, it was revealed that both S100A13 and HMGA1 showed a higher expression levels in thyroid cancer cases compared with those in matched normal thyroid cases (P = 0.007 and P = 0.000); S100A13 and HMGA1 expressions were identified to be positively correlated (P = 0.004, R = 0.316) when analyzed regardless of thyroid cancer types. CONCLUSIONS This is the first report for the association between HMGA1 and S100A13 expression in the modulation of thyroid cancer growth and invasion. Those results would provide an essential insight into the effect of S100A13 on carcinogenesis of thyroid tumor, rending S100A13 to be potential biological marker for the diagnosis of thyroid cancer.
Collapse
Affiliation(s)
- Jing Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Chang Liu
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China.,Department of Metabolism and Endocrinology, The First People's Hospital of Chenzhou, Luojiajing Road, 102, 423000, Chenzhou, Hunan, People's Republic of China
| | - Ya-jun Chen
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China.,Department of Metabolism and Endocrinology, The Second Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Qing-hai Zhang
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Jing Yang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Xuan Kang
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Si-Rui Chen
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Ge-bo Wen
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China.,Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Xu-yu Zu
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China.
| | - Ren-xian Cao
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China. .,Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China.
| |
Collapse
|
17
|
Omotuyi O, Ueda H. Energetics and protomer communication in the dynamical structure of S100A13 in free and protein-bound states. MOLECULAR SIMULATION 2015. [DOI: 10.1080/08927022.2015.1091936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Oi Omotuyi
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Center for Drug Discovery and Therapeutic Innovation, Nagasaki University, Nagasaki, Japan
| | - H Ueda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Center for Drug Discovery and Therapeutic Innovation, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
18
|
Abstract
In humans, the S100 protein family is composed of 21 members that exhibit a high degree of structural similarity, but are not functionally interchangeable. This family of proteins modulates cellular responses by functioning both as intracellular Ca(2+) sensors and as extracellular factors. Dysregulated expression of multiple members of the S100 family is a common feature of human cancers, with each type of cancer showing a unique S100 protein profile or signature. Emerging in vivo evidence indicates that the biology of most S100 proteins is complex and multifactorial, and that these proteins actively contribute to tumorigenic processes such as cell proliferation, metastasis, angiogenesis and immune evasion. Drug discovery efforts have identified leads for inhibiting several S100 family members, and two of the identified inhibitors have progressed to clinical trials in patients with cancer. This Review highlights new findings regarding the role of S100 family members in cancer diagnosis and treatment, the contribution of S100 signalling to tumour biology, and the discovery and development of S100 inhibitors for treating cancer.
Collapse
Affiliation(s)
- Anne R. Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - David J. Weber
- Center for Biomolecular Therapeutics and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, Maryland 20102, USA
| | - Danna B. Zimmer
- Center for Biomolecular Therapeutics and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, Maryland 20102, USA
| |
Collapse
|
19
|
Abstract
The S100 protein family consists of 24 members functionally distributed into three main subgroups: those that only exert intracellular regulatory effects, those with intracellular and extracellular functions and those which mainly exert extracellular regulatory effects. S100 proteins are only expressed in vertebrates and show cell-specific expression patterns. In some instances, a particular S100 protein can be induced in pathological circumstances in a cell type that does not express it in normal physiological conditions. Within cells, S100 proteins are involved in aspects of regulation of proliferation, differentiation, apoptosis, Ca2+ homeostasis, energy metabolism, inflammation and migration/invasion through interactions with a variety of target proteins including enzymes, cytoskeletal subunits, receptors, transcription factors and nucleic acids. Some S100 proteins are secreted or released and regulate cell functions in an autocrine and paracrine manner via activation of surface receptors (e.g. the receptor for advanced glycation end-products and toll-like receptor 4), G-protein-coupled receptors, scavenger receptors, or heparan sulfate proteoglycans and N-glycans. Extracellular S100A4 and S100B also interact with epidermal growth factor and basic fibroblast growth factor, respectively, thereby enhancing the activity of the corresponding receptors. Thus, extracellular S100 proteins exert regulatory activities on monocytes/macrophages/microglia, neutrophils, lymphocytes, mast cells, articular chondrocytes, endothelial and vascular smooth muscle cells, neurons, astrocytes, Schwann cells, epithelial cells, myoblasts and cardiomyocytes, thereby participating in innate and adaptive immune responses, cell migration and chemotaxis, tissue development and repair, and leukocyte and tumor cell invasion.
Collapse
Affiliation(s)
- R Donato
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | | | | | | | | | | | | |
Collapse
|
20
|
Ghai R, Falconer RJ, Collins BM. Applications of isothermal titration calorimetry in pure and applied research--survey of the literature from 2010. J Mol Recognit 2012; 25:32-52. [PMID: 22213449 DOI: 10.1002/jmr.1167] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Isothermal titration calorimetry (ITC) is a biophysical technique for measuring the formation and dissociation of molecular complexes and has become an invaluable tool in many branches of science from cell biology to food chemistry. By measuring the heat absorbed or released during bond formation, ITC provides accurate, rapid, and label-free measurement of the thermodynamics of molecular interactions. In this review, we survey the recent literature reporting the use of ITC and have highlighted a number of interesting studies that provide a flavour of the diverse systems to which ITC can be applied. These include measurements of protein-protein and protein-membrane interactions required for macromolecular assembly, analysis of enzyme kinetics, experimental validation of molecular dynamics simulations, and even in manufacturing applications such as food science. Some highlights include studies of the biological complex formed by Staphylococcus aureus enterotoxin C3 and the murine T-cell receptor, the mechanism of membrane association of the Parkinson's disease-associated protein α-synuclein, and the role of non-specific tannin-protein interactions in the quality of different beverages. Recent developments in automation are overcoming limitations on throughput imposed by previous manual procedures and promise to greatly extend usefulness of ITC in the future. We also attempt to impart some practical advice for getting the most out of ITC data for those researchers less familiar with the method.
Collapse
Affiliation(s)
- Rajesh Ghai
- Institute for Molecular Bioscience (IMB), University of Queensland, St. Lucia, Queensland, 4072, Australia
| | | | | |
Collapse
|
21
|
Duda B, Tverdomed SN, Röschenthaler GV. CF2-containing acetylenephosphonates in heterocyclization reactions: the first synthesis of 2-difluoromethyl azaxanth-3-ylphosphonates. Org Biomol Chem 2011; 9:8228-32. [PMID: 22011698 DOI: 10.1039/c1ob06379k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acetylenephosphonates carrying the XCF(2) group have been studied in a base-mediated heterocyclization reaction with selected 2-amino-3-formylchromones to give 2-difluoromethyl azaxanth-3-ylphosphonates. The presence of the fluorinated substituent determined the regioselectivity as well as the reactivity of this process.
Collapse
Affiliation(s)
- Blazej Duda
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | | | | |
Collapse
|
22
|
Mohan SK, Yu C. The IL1alpha-S100A13 heterotetrameric complex structure: a component in the non-classical pathway for interleukin 1alpha secretion. J Biol Chem 2011; 286:14608-17. [PMID: 21270123 DOI: 10.1074/jbc.m110.201954] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Interleukin 1α (IL1α) plays an important role in several key biological functions, such as angiogenesis, cell proliferation, and tumor growth in several types of cancer. IL1α is a potent cytokine that induces a wide spectrum of immunological and inflammatory activities. The biological effects of IL1α are mediated through the activation of transmembrane receptors (IL1Rs) and therefore require the release of the protein into the extracellular space. IL1α is exported through a non-classical release pathway involving the formation of a specific multiprotein complex, which includes IL1α and S100A13. Because IL1α plays an important role in cell proliferation and angiogenesis, inhibiting the formation of the IL1α-S100A13 complex would be an effective strategy to inhibit a wide range of cancers. To understand the molecular events in the IL1α release pathway, we studied the structure of the IL1α-S100A13 tetrameric complex, which is the key complex formed during the non-classical pathway of IL1α release.
Collapse
Affiliation(s)
- Sepuru K Mohan
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | |
Collapse
|