1
|
Ding E, Chaudhury SN, Prajapati JD, Onuchic JN, Sanbonmatsu KY. Magnesium ions mitigate metastable states in the regulatory landscape of mRNA elements. RNA (NEW YORK, N.Y.) 2024; 30:992-1010. [PMID: 38777381 PMCID: PMC11251524 DOI: 10.1261/rna.079767.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 03/27/2024] [Indexed: 05/25/2024]
Abstract
Residing in the 5' untranslated region of the mRNA, the 2'-deoxyguanosine (2'-dG) riboswitch mRNA element adopts an alternative structure upon binding of the 2'-dG molecule, which terminates transcription. RNA conformations are generally strongly affected by positively charged metal ions (especially Mg2+). We have quantitatively explored the combined effect of ligand (2'-dG) and Mg2+ binding on the energy landscape of the aptamer domain of the 2'-dG riboswitch with both explicit solvent all-atom molecular dynamics simulations (99 μsec aggregate sampling for the study) and selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) experiments. We show that both ligand and Mg2+ are required for the stabilization of the aptamer domain; however, the two factors act with different modalities. The addition of Mg2+ remodels the energy landscape and reduces its frustration by the formation of additional contacts. In contrast, the binding of 2'-dG eliminates the metastable states by nucleating a compact core for the aptamer domain. Mg2+ ions and ligand binding are required to stabilize the least stable helix, P1 (which needs to unfold to activate the transcription platform), and the riboswitch core formed by the backbone of the P2 and P3 helices. Mg2+ and ligand also facilitate a more compact structure in the three-way junction region.
Collapse
Affiliation(s)
- Erdong Ding
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | - Susmit Narayan Chaudhury
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
- Department of Biosciences, Rice University, Houston, Texas 77005, USA
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- New Mexico Consortium, Los Alamos, New Mexico 87544, USA
| |
Collapse
|
2
|
Kumar S, Reddy G. Mechanism of Fluoride Ion Encapsulation by Magnesium Ions in a Bacterial Riboswitch. J Phys Chem B 2023; 127:9267-9281. [PMID: 37851949 DOI: 10.1021/acs.jpcb.3c03941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Riboswitches sense various ions in bacteria and activate gene expression to synthesize proteins that help maintain ion homeostasis. The crystal structure of the aptamer domain (AD) of the fluoride riboswitch shows that the F- ion is encapsulated by three Mg2+ ions bound to the ligand-binding domain (LBD) located at the core of the AD. The assembly mechanism of this intricate structure is unknown. To this end, we performed computer simulations using coarse-grained and all-atom RNA models to bridge multiple time scales involved in riboswitch folding and ion binding. We show that F- encapsulation by the Mg2+ ions bound to the riboswitch involves multiple sequential steps. Broadly, two Mg2+ ions initially interact with the phosphate groups of the LBD using water-mediated outer-shell coordination and transition to a direct inner-shell interaction through dehydration to strengthen their interaction with the LBD. We propose that the efficient binding mode of the third Mg2+ and F- is that they form a water-mediated ion pair and bind to the LBD simultaneously to minimize the electrostatic repulsion between three Mg2+ bound to the LBD. The tertiary stacking interactions among the LBD nucleobases alone are insufficient to stabilize the alignment of the phosphate groups to facilitate Mg2+ binding. We show that the stability of the whole assembly is an intricate balance of the interactions among the five phosphate groups, three Mg2+, and the encapsulated F- ion aided by the Mg2+ solvated water. These insights are helpful in the rational design of RNA-based ion sensors and fast-switching logic gates.
Collapse
Affiliation(s)
- Sunil Kumar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
3
|
Li J, Zhang X, Hong L, Liu Y. Entropy Driving the Mg 2+-Induced Folding of TPP Riboswitch RNA. J Phys Chem B 2022; 126:9457-9464. [PMID: 36379020 DOI: 10.1021/acs.jpcb.2c03688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mg2+ is well known to facilitate the structural folding of RNA. However, the thermodynamic and dynamic roles of Mg2+ in RNA folding remain elusive. Here, we exploit single-molecule fluorescence resonance energy transfer (smFRET) and isothermal titration calorimetry (ITC) to study the mechanism of Mg2+ in facilitating the folding of thiamine pyrophosphate (TPP) riboswitch RNA. The results of smFRET identify that the presence of Mg2+ compacts the RNA and enlarges the conformational dispersity among individual RNA molecules, resulting in a large gain of entropy. The compact yet flexible conformations triggered by Mg2+ may help the riboswitch recognize its specific ligand and further fold. This is supported by the ITC experiments, in which the Mg2+-induced RNA folding is driven by entropy (ΔS) instead of enthalpy (ΔH). Our results complement the understanding of the Mg2+-induced RNA folding. The strategy developed in this work can be used to model other RNAs' folding under different conditions.
Collapse
Affiliation(s)
- Jun Li
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyu Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liang Hong
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Liu
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Kumar S, Reddy G. TPP Riboswitch Populates Holo-Form-like Structure Even in the Absence of Cognate Ligand at High Mg 2+ Concentration. J Phys Chem B 2022; 126:2369-2381. [PMID: 35298161 DOI: 10.1021/acs.jpcb.1c10794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Riboswitches are noncoding RNA that regulate gene expression by folding into specific three-dimensional structures (holo-form) upon binding by their cognate ligand in the presence of Mg2+. Riboswitch functioning is also hypothesized to be under kinetic control requiring large cognate ligand concentrations. We ask the question under thermodynamic conditions, can the riboswitches populate structures similar to the holo-form only in the presence of Mg2+ and absence of cognate ligand binding. We addressed this question using thiamine pyrophosphate (TPP) riboswitch as a model system and computer simulations using a coarse-grained model for RNA. The folding free energy surface (FES) shows that with the initial increase in Mg2+ concentration ([Mg2+]), the aptamer domain (AD) of TPP riboswitch undergoes a barrierless collapse in its dimensions. On further increase in [Mg2+], intermediates separated by barriers appear on the FES, and one of the intermediates has a TPP ligand-binding competent structure. We show that site-specific binding of the Mg2+ aids in the formation of tertiary contacts. For [Mg2+] greater than physiological concentration, AD folds into a structure similar to the crystal structure of the TPP holo-form even in the absence of the TPP ligand. The folding kinetics shows that TPP AD populates an intermediate due to the misalignment of two arms present in the structure, which acts as a kinetic trap, leading to larger folding timescales. The predictions of the intermediate structures from the simulations are amenable for experimental verification.
Collapse
Affiliation(s)
- Sunil Kumar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
5
|
You J, Pan X, Yang C, Du Y, Osire T, Yang T, Zhang X, Xu M, Xu G, Rao Z. Microbial production of riboflavin: Biotechnological advances and perspectives. Metab Eng 2021; 68:46-58. [PMID: 34481976 DOI: 10.1016/j.ymben.2021.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 10/24/2022]
Abstract
Riboflavin is an essential nutrient for humans and animals, and its derivatives flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are cofactors in the cells. Therefore, riboflavin and its derivatives are widely used in the food, pharmaceutical, nutraceutical and cosmetic industries. Advances in biotechnology have led to a complete shift in the commercial production of riboflavin from chemical synthesis to microbial fermentation. In this review, we provide a comprehensive review of biotechnologies that enhance riboflavin production in microorganisms, as well as representative examples. Firstly, the synthesis pathways and metabolic regulatory processes of riboflavin in microorganisms; and the current strategies and methods of metabolic engineering for riboflavin production are systematically summarized and compared. Secondly, the using of systematic metabolic engineering strategies to enhance riboflavin production is discussed, including laboratory evolution, histological analysis and high-throughput screening. Finally, the challenges for efficient microbial production of riboflavin and the strategies to overcome these challenges are prospected.
Collapse
Affiliation(s)
- Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Chen Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yuxuan Du
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Tolbert Osire
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Taowei Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guoqiang Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
6
|
St-Pierre P, Shaw E, Jacques S, Dalgarno PA, Perez-Gonzalez C, Picard-Jean F, Penedo JC, Lafontaine DA. A structural intermediate pre-organizes the add adenine riboswitch for ligand recognition. Nucleic Acids Res 2021; 49:5891-5904. [PMID: 33963862 PMCID: PMC8191784 DOI: 10.1093/nar/gkab307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/23/2021] [Accepted: 05/04/2021] [Indexed: 12/02/2022] Open
Abstract
Riboswitches are RNA sequences that regulate gene expression by undergoing structural changes upon the specific binding of cellular metabolites. Crystal structures of purine-sensing riboswitches have revealed an intricate network of interactions surrounding the ligand in the bound complex. The mechanistic details about how the aptamer folding pathway is involved in the formation of the metabolite binding site have been previously shown to be highly important for the riboswitch regulatory activity. Here, a combination of single-molecule FRET and SHAPE assays have been used to characterize the folding pathway of the adenine riboswitch from Vibrio vulnificus. Experimental evidences suggest a folding process characterized by the presence of a structural intermediate involved in ligand recognition. This intermediate state acts as an open conformation to ensure ligand accessibility to the aptamer and folds into a structure nearly identical to the ligand-bound complex through a series of structural changes. This study demonstrates that the add riboswitch relies on the folding of a structural intermediate that pre-organizes the aptamer global structure and the ligand binding site to allow efficient metabolite sensing and riboswitch genetic regulation.
Collapse
Affiliation(s)
- Patrick St-Pierre
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Euan Shaw
- Centre of Biophotonics, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, KY16 9SS, UK
| | - Samuel Jacques
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Paul A Dalgarno
- Centre of Biophotonics, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, KY16 9SS, UK
| | - Cibran Perez-Gonzalez
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife, KY16 9SS, UK
| | - Frédéric Picard-Jean
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - J Carlos Penedo
- Centre of Biophotonics, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, KY16 9SS, UK.,Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife, KY16 9SS, UK
| | - Daniel A Lafontaine
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| |
Collapse
|
7
|
Drogalis LK, Batey RT. Requirements for efficient ligand-gated co-transcriptional switching in designed variants of the B. subtilis pbuE adenine-responsive riboswitch in E. coli. PLoS One 2020; 15:e0243155. [PMID: 33259551 PMCID: PMC7707468 DOI: 10.1371/journal.pone.0243155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/16/2020] [Indexed: 11/18/2022] Open
Abstract
Riboswitches, generally located in the 5'-leader of bacterial mRNAs, direct expression via a small molecule-dependent structural switch that informs the transcriptional or translational machinery. While the structure and function of riboswitch effector-binding (aptamer) domains have been intensely studied, only recently have the requirements for efficient linkage between small molecule binding and the structural switch in the cellular and co-transcriptional context begun to be actively explored. To address this aspect of riboswitch function, we have performed a structure-guided mutagenic analysis of the B. subtilis pbuE adenine-responsive riboswitch, one of the simplest riboswitches that employs a strand displacement switching mechanism to regulate transcription. Using a cell-based fluorescent protein reporter assay to assess ligand-dependent regulatory activity in E. coli, these studies revealed previously unrecognized features of the riboswitch. Within the aptamer domain, local and long-range conformational dynamics influenced by sequences within helices have a significant effect upon efficient regulatory switching. Sequence features of the expression platform including the pre-aptamer leader sequence, a toehold helix and an RNA polymerase pause site all serve to promote strong ligand-dependent regulation. By optimizing these features, we were able to improve the performance of the B. subtilis pbuE riboswitch in E. coli from 5.6-fold induction of reporter gene expression by the wild type riboswitch to over 120-fold in the top performing designed variant. Together, these data point to sequence and structural features distributed throughout the riboswitch required to strike a balance between rates of ligand binding, transcription and secondary structural switching via a strand exchange mechanism and yield new insights into the design of artificial riboswitches.
Collapse
MESH Headings
- Adenine/metabolism
- Aptamers, Nucleotide/chemistry
- Aptamers, Nucleotide/genetics
- Aptamers, Nucleotide/metabolism
- Bacillus subtilis/genetics
- Bacillus subtilis/metabolism
- Escherichia coli K12/genetics
- Genes, Reporter
- Genetic Variation
- Ligands
- Models, Genetic
- Models, Molecular
- Mutagenesis
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- Riboswitch/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Lea K. Drogalis
- Department of Biochemistry, University of Colorado, Boulder, Colorado, United States of America
| | - Robert T. Batey
- Department of Biochemistry, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|
8
|
Hu G, Li H, Xu S, Wang J. Ligand Binding Mechanism and Its Relationship with Conformational Changes in Adenine Riboswitch. Int J Mol Sci 2020; 21:ijms21061926. [PMID: 32168940 PMCID: PMC7139962 DOI: 10.3390/ijms21061926] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/01/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
Riboswitches are naturally occurring RNA aptamers that control the expression of essential bacterial genes by binding to specific small molecules. The binding with both high affinity and specificity induces conformational changes. Thus, riboswitches were proposed as a possible molecular target for developing antibiotics and chemical tools. The adenine riboswitch can bind not only to purine analogues but also to pyrimidine analogues. Here, long molecular dynamics (MD) simulations and molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) computational methodologies were carried out to show the differences in the binding model and the conformational changes upon five ligands binding. The binding free energies of the guanine riboswitch aptamer with C74U mutation complexes were compared to the binding free energies of the adenine riboswitch (AR) aptamer complexes. The calculated results are in agreement with the experimental data. The differences for the same ligand binding to two different aptamers are related to the electrostatic contribution. Binding dynamical analysis suggests a flexible binding pocket for the pyrimidine ligand in comparison with the purine ligand. The 18 μs of MD simulations in total indicate that both ligand-unbound and ligand-bound aptamers transfer their conformation between open and closed states. The ligand binding obviously affects the conformational change. The conformational states of the aptamer are associated with the distance between the mass center of two key nucleotides (U51 and A52) and the mass center of the other two key nucleotides (C74 and C75). The results suggest that the dynamical character of the binding pocket would affect its biofunction. To design new ligands of the adenine riboswitch, it is recommended to consider the binding affinities of the ligand and the conformational change of the ligand binding pocket.
Collapse
Affiliation(s)
- Guodong Hu
- Correspondence: (G.H.); (J.W.); Tel.: +86-534-8987536 (G.H.); +86-534-8985933 (J.W.)
| | | | | | - Jihua Wang
- Correspondence: (G.H.); (J.W.); Tel.: +86-534-8987536 (G.H.); +86-534-8985933 (J.W.)
| |
Collapse
|
9
|
McCluskey K, Boudreault J, St-Pierre P, Perez-Gonzalez C, Chauvier A, Rizzi A, Beauregard PB, Lafontaine DA, Penedo JC. Unprecedented tunability of riboswitch structure and regulatory function by sub-millimolar variations in physiological Mg2. Nucleic Acids Res 2020; 47:6478-6487. [PMID: 31045204 PMCID: PMC6614840 DOI: 10.1093/nar/gkz316] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023] Open
Abstract
Riboswitches are cis-acting regulatory RNA biosensors that rival the efficiency of those found in proteins. At the heart of their regulatory function is the formation of a highly specific aptamer–ligand complex. Understanding how these RNAs recognize the ligand to regulate gene expression at physiological concentrations of Mg2+ ions and ligand is critical given their broad impact on bacterial gene expression and their potential as antibiotic targets. In this work, we used single-molecule FRET and biochemical techniques to demonstrate that Mg2+ ions act as fine-tuning elements of the amino acid-sensing lysC aptamer's ligand-free structure in the mesophile Bacillus subtilis. Mg2+ interactions with the aptamer produce encounter complexes with strikingly different sensitivities to the ligand in different, yet equally accessible, physiological ionic conditions. Our results demonstrate that the aptamer adapts its structure and folding landscape on a Mg2+-tunable scale to efficiently respond to changes in intracellular lysine of more than two orders of magnitude. The remarkable tunability of the lysC aptamer by sub-millimolar variations in the physiological concentration of Mg2+ ions suggests that some single-aptamer riboswitches have exploited the coupling of cellular levels of ligand and divalent metal ions to tightly control gene expression.
Collapse
Affiliation(s)
- Kaley McCluskey
- SUPA School of Physics and Astronomy, University of St. Andrews, Scotland KY16 9SS, UK
| | - Julien Boudreault
- Département de Biologie, Université de Sherbrooke, Québec, Canada J1K 2R1
| | - Patrick St-Pierre
- Département de Biologie, Université de Sherbrooke, Québec, Canada J1K 2R1
| | - Cibran Perez-Gonzalez
- SUPA School of Physics and Astronomy, University of St. Andrews, Scotland KY16 9SS, UK.,Centre SÈVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Adrien Chauvier
- Département de Biologie, Université de Sherbrooke, Québec, Canada J1K 2R1
| | - Adrien Rizzi
- Département de Chimie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Pascale B Beauregard
- Centre SÈVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | | | - J Carlos Penedo
- SUPA School of Physics and Astronomy, University of St. Andrews, Scotland KY16 9SS, UK.,Biomedical Sciences Research Complex, School of Biology, University of St. Andrews, Scotland KY16 9ST, UK
| |
Collapse
|
10
|
Chen J, Wang X, Pang L, Zhang JZH, Zhu T. Effect of mutations on binding of ligands to guanine riboswitch probed by free energy perturbation and molecular dynamics simulations. Nucleic Acids Res 2020; 47:6618-6631. [PMID: 31173143 PMCID: PMC6649850 DOI: 10.1093/nar/gkz499] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022] Open
Abstract
Riboswitches can regulate gene expression by direct and specific interactions with ligands and have recently attracted interest as potential drug targets for antibacterial. In this work, molecular dynamics (MD) simulations, free energy perturbation (FEP) and molecular mechanics generalized Born surface area (MM-GBSA) methods were integrated to probe the effect of mutations on the binding of ligands to guanine riboswitch (GR). The results not only show that binding free energies predicted by FEP and MM-GBSA obtain an excellent correlation, but also indicate that mutations involved in the current study can strengthen the binding affinity of ligands GR. Residue-based free energy decomposition was applied to compute ligand-nucleotide interactions and the results suggest that mutations highly affect interactions of ligands with key nucleotides U22, U51 and C74. Dynamics analyses based on MD trajectories indicate that mutations not only regulate the structural flexibility but also change the internal motion modes of GR, especially for the structures J12, J23 and J31, which implies that the aptamer domain activity of GR is extremely plastic and thus readily tunable by nucleotide mutations. This study is expected to provide useful molecular basis and dynamics information for the understanding of the function of GR and possibility as potential drug targets for antibacterial.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357 China
| | - Xingyu Wang
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Laixue Pang
- School of Science, Shandong Jiaotong University, Jinan 250357 China
| | - John Z H Zhang
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China.,Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Tong Zhu
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China.,Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
11
|
Jones CP, Panja S, Woodson SA, Ferré-D'Amaré AR. Monitoring co-transcriptional folding of riboswitches through helicase unwinding. Methods Enzymol 2019; 623:209-227. [PMID: 31239047 DOI: 10.1016/bs.mie.2019.05.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the cell, RNAs fold and begin to function as they are being transcribed. In contrast, in the laboratory, RNAs are typically studied after transcription is completed. Co-transcriptional folding can regulate the function of riboswitches and ribozymes and dictate the order of ribonucleoprotein assembly. Methods to observe and investigate RNA folding and activity during transcription are therefore desirable, yet synchronizing RNA polymerases and incorporating labels at specific sites for biophysical studies can be challenging. A recent methodological advance has been to harness highly processive, engineered "super-helicases" to unwind hybrid RNA-DNA duplexes, thereby releasing the RNA 5'-3'. When combined with single-molecule fluorescence detection, RNA folding and concomitant activity can be studied in vitro in a manner that mimics vectorial folding during transcription. Herein, we describe methods for designing and preparing fluorescently labeled RNA-DNA duplex substrates for sequential helicase-dependent RNA folding experiments.
Collapse
Affiliation(s)
- Christopher P Jones
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, United States
| | - Subrata Panja
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States
| | - Sarah A Woodson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, United States.
| |
Collapse
|
12
|
Sung HL, Nesbitt DJ. Single-Molecule FRET Kinetics of the Mn 2+ Riboswitch: Evidence for Allosteric Mg 2+ Control of "Induced-Fit" vs "Conformational Selection" Folding Pathways. J Phys Chem B 2019; 123:2005-2015. [PMID: 30739441 DOI: 10.1021/acs.jpcb.8b11841] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gene expression in bacteria is often regulated dynamically by conformational changes in a riboswitch upon ligand binding, a detailed understanding of which is very much in its infancy. For example, the manganese riboswitch is a widespread RNA motif that conformationally responds in regulating bacterial gene expression to micromolar levels of its eponymous ligand, Mn2+, but the mechanistic pathways are poorly understood. In this work, we quantitatively explore the dynamic folding behavior of the manganese riboswitch by single-molecule fluorescence resonance energy transfer spectroscopy as a function of cation/ligand conditions. From the detailed analysis of the kinetics, the Mn2+ is shown to fold the riboswitch by a "bind-then-fold" (i.e., "induced-fit", IF) mechanism, whereby the ligand binds first and then promotes folding. On the other hand, the data also clearly reveal the presence of a folded yet ligand-free structure predominating due to the addition of physiological Mg2+ to a nonselective metal ion binding site. Of particular kinetic interest, such a Mg2+ "prefolded" conformation of the riboswitch is shown to exhibit a significantly increased affinity for Mn2+ and further stabilization by subsequent binding of the ligand, thereby promoting efficient riboswitch folding by a "fold-then-bind" (i.e., "conformational selection", CS) mechanism. Our results not only demonstrate Mg2+-controlled switching between IF and CS riboswitch folding pathways but also suggest a novel heterotropic allosteric control in the manganese riboswitch activity co-regulated by Mg2+ binding.
Collapse
|
13
|
SUN LL, SU YY, GAO YJ, Li W, LYU H, LI B, LI D. Progresses of Single Molecular Fluorescence Resonance Energy Transfer in Studying Biomacromolecule Dynamic Process. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61088-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
14
|
Ray S, Widom JR, Walter NG. Life under the Microscope: Single-Molecule Fluorescence Highlights the RNA World. Chem Rev 2018; 118:4120-4155. [PMID: 29363314 PMCID: PMC5918467 DOI: 10.1021/acs.chemrev.7b00519] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The emergence of single-molecule (SM) fluorescence techniques has opened up a vast new toolbox for exploring the molecular basis of life. The ability to monitor individual biomolecules in real time enables complex, dynamic folding pathways to be interrogated without the averaging effect of ensemble measurements. In parallel, modern biology has been revolutionized by our emerging understanding of the many functions of RNA. In this comprehensive review, we survey SM fluorescence approaches and discuss how the application of these tools to RNA and RNA-containing macromolecular complexes in vitro has yielded significant insights into the underlying biology. Topics covered include the three-dimensional folding landscapes of a plethora of isolated RNA molecules, their assembly and interactions in RNA-protein complexes, and the relation of these properties to their biological functions. In all of these examples, the use of SM fluorescence methods has revealed critical information beyond the reach of ensemble averages.
Collapse
Affiliation(s)
| | | | - Nils G. Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
15
|
Uhm H, Hohng S. Ligand Recognition Mechanism of Thiamine Pyrophosphate Riboswitch Aptamer. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Heesoo Uhm
- Department of Physics and Astronomy; Seoul National University; Seoul 151-747 Korea
- National Center of Creative Research Initiatives; Seoul National University; Seoul 151-747 Korea
| | - Sungchul Hohng
- Department of Physics and Astronomy; Seoul National University; Seoul 151-747 Korea
- National Center of Creative Research Initiatives; Seoul National University; Seoul 151-747 Korea
- Department of Biophysics and Chemical Biology; Seoul National University; Seoul 151-747 Korea
| |
Collapse
|
16
|
Warhaut S, Mertinkus KR, Höllthaler P, Fürtig B, Heilemann M, Hengesbach M, Schwalbe H. Ligand-modulated folding of the full-length adenine riboswitch probed by NMR and single-molecule FRET spectroscopy. Nucleic Acids Res 2017; 45:5512-5522. [PMID: 28204648 PMCID: PMC5605240 DOI: 10.1093/nar/gkx110] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/06/2017] [Indexed: 01/20/2023] Open
Abstract
The full-length translation-regulating add adenine riboswitch (Asw) from Vibrio vulnificus has a more complex conformational space than its isolated aptamer domain. In addition to the predicted apo (apoA) and holo conformation that feature the conserved three-way junctional purine riboswitch aptamer, it adopts a second apo (apoB) conformation with a fundamentally different secondary structure. Here, we characterized the ligand-dependent conformational dynamics of the full-length add Asw by NMR and by single-molecule FRET (smFRET) spectroscopy. Both methods revealed an adenine-induced secondary structure switch from the apoB-form to the apoA-form that involves no tertiary structural interactions between aptamer and expression platform. This strongly suggests that the add Asw triggers translation by capturing the apoA-form secondary structure in the holo state. Intriguingly, NMR indicated a homogenous, docked aptamer kissing loop fold for apoA and holo, while smFRET showed persistent aptamer kissing loop docking dynamics between comparably stable, undocked and docked substates of the apoA and the holo conformation. Unraveling the folding of large junctional riboswitches thus requires the integration of complementary solution structural techniques such as NMR and smFRET.
Collapse
Affiliation(s)
- Sven Warhaut
- Institute of Organic Chemistry and Chemical Biology, Centre for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität, Frankfurt am Main, Hessen 60438, Germany
| | - Klara Rebecca Mertinkus
- Institute of Organic Chemistry and Chemical Biology, Centre for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität, Frankfurt am Main, Hessen 60438, Germany
| | - Philipp Höllthaler
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Hessen 60438, Germany
| | - Boris Fürtig
- Institute of Organic Chemistry and Chemical Biology, Centre for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität, Frankfurt am Main, Hessen 60438, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Hessen 60438, Germany
| | - Martin Hengesbach
- Institute of Organic Chemistry and Chemical Biology, Centre for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität, Frankfurt am Main, Hessen 60438, Germany
| | - Harald Schwalbe
- Institute of Organic Chemistry and Chemical Biology, Centre for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität, Frankfurt am Main, Hessen 60438, Germany
| |
Collapse
|
17
|
Hanke CA, Gohlke H. Ligand-mediated and tertiary interactions cooperatively stabilize the P1 region in the guanine-sensing riboswitch. PLoS One 2017; 12:e0179271. [PMID: 28640851 PMCID: PMC5480868 DOI: 10.1371/journal.pone.0179271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 05/27/2017] [Indexed: 12/18/2022] Open
Abstract
Riboswitches are genetic regulatory elements that control gene expression depending on ligand binding. The guanine-sensing riboswitch (Gsw) binds ligands at a three-way junction formed by paired regions P1, P2, and P3. Loops L2 and L3 cap the P2 and P3 helices and form tertiary interactions. Part of P1 belongs to the switching sequence dictating the fate of the mRNA. Previous studies revealed an intricate relationship between ligand binding and presence of the tertiary interactions, and between ligand binding and influence on the P1 region. However, no information is available on the interplay among these three main regions in Gsw. Here we show that stabilization of the L2-L3 region by tertiary interactions, and the ligand binding site by ligand binding, cooperatively influences the structural stability of terminal base pairs in the P1 region in the presence of Mg2+ ions. The results are based on molecular dynamics simulations with an aggregate simulation time of ~10 μs across multiple systems of the unbound state of the Gsw aptamer and a G37A/C61U mutant, and rigidity analyses. The results could explain why the three-way junction is a central structural element also in other riboswitches and how the cooperative effect could become contextual with respect to intracellular Mg2+ concentration. The results suggest that the transmission of allosteric information to P1 can be entropy-dominated.
Collapse
Affiliation(s)
- Christian A. Hanke
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Holger Gohlke
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
18
|
Hu G, Ma A, Wang J. Ligand Selectivity Mechanism and Conformational Changes in Guanine Riboswitch by Molecular Dynamics Simulations and Free Energy Calculations. J Chem Inf Model 2017; 57:918-928. [PMID: 28345904 DOI: 10.1021/acs.jcim.7b00139] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Riboswitches regulate gene expression through direct and specific interactions with small metabolite molecules. Binding of a ligand to its RNA target is high selectivity and affinity and induces conformational changes of the RNA's secondary and tertiary structure. The structural difference of two purine riboswitches aptamers is caused by only one single mutation, where cytosine 74 in the guanine riboswitch is corresponding to a uracil 74 in adenine riboswitch. Here we employed molecular dynamics (MD) simulation, molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and thermodynamic integration computational methodologies to evaluate the energetic and conformational changes of ligands binding to purine riboswitches. The snapshots used in MM-PBSA calculation were extracted from ten 50 ns MD simulation trajectories for each complex. These free energy results are in consistent with the experimental data and rationalize the selectivity of the riboswitches for different ligands. In particular, it is found that the loss in binding free energy upon mutation is mainly electrostatic in guanine (GUA) and riboswitch complex. Furthermore, new hydrogen bonds are found in mutated complexes. To reveal the conformational properties of guanine riboswitch, we performed a total of 6 μs MD simulations in both the presence and the absence of the ligand GUA. The MD simulations suggest that the conformation of guanine riboswitch depends on the distance of two groups in the binding pocket of ligand. The conformation is in a close conformation when U51-A52 is close to C74-U75.
Collapse
Affiliation(s)
- Guodong Hu
- Shandong Provincial Key Laboratory of Biophysics, College of Physics and Electronic Information, Dezhou University , Dezhou 253023, China
| | - Aijing Ma
- Shandong Provincial Key Laboratory of Biophysics, College of Physics and Electronic Information, Dezhou University , Dezhou 253023, China
| | - Jihua Wang
- Shandong Provincial Key Laboratory of Biophysics, College of Physics and Electronic Information, Dezhou University , Dezhou 253023, China
| |
Collapse
|
19
|
Jones CP, Ferré-D'Amaré AR. Long-Range Interactions in Riboswitch Control of Gene Expression. Annu Rev Biophys 2017; 46:455-481. [PMID: 28375729 DOI: 10.1146/annurev-biophys-070816-034042] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Riboswitches are widespread RNA motifs that regulate gene expression in response to fluctuating metabolite concentrations. Known primarily from bacteria, riboswitches couple specific ligand binding and changes in RNA structure to mRNA expression in cis. Crystal structures of the ligand binding domains of most of the phylogenetically widespread classes of riboswitches, each specific to a particular metabolite or ion, are now available. Thus, the bound states-one end point-have been thoroughly characterized, but the unbound states have been more elusive. Consequently, it is less clear how the unbound, sensing riboswitch refolds into the ligand binding-induced output state. The ligand recognition mechanisms of riboswitches are diverse, but we find that they share a common structural strategy in positioning their binding sites at the point of the RNA three-dimensional fold where the residues farthest from one another in sequence meet. We review how riboswitch folds adhere to this fundamental strategy and propose future research directions for understanding and harnessing their ability to specifically control gene expression.
Collapse
Affiliation(s)
- Christopher P Jones
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20824;
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20824;
| |
Collapse
|
20
|
Chandra V, Hannan Z, Xu H, Mandal M. Single-molecule analysis reveals multi-state folding of a guanine riboswitch. Nat Chem Biol 2016; 13:194-201. [PMID: 27941758 DOI: 10.1038/nchembio.2252] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 10/03/2016] [Indexed: 12/29/2022]
Abstract
Guanine-responsive riboswitches undergo ligand-dependent structural rearrangements to control gene expression by transcription termination. While the molecular basis for ligand recognition is well established, the associated structural rearrangements and the kinetics involved in the formation of the aptamer domain are less well understood. Using high-resolution optical tweezers, we followed the folding trajectories of a single molecule of the xpt-pbuX guanine aptamer from Bacillus subtilis. We report a rapid six-state conformational rearrangement, in which three of the states are guanine dependent, during the transition from the linear to the native receptor conformation. The folding completes in <1 s. The force-dependent equilibrium kinetics and the mutational data indicated that the flexible J2-J3 junction undergoes a ligand-dependent conformational switching, which triggers the formation of the long-range tertiary interactions and the P1 helix. In the absence of the right ligand, the junction failed to initiate the series of conformational rearrangements required for the riboswitch activities.
Collapse
Affiliation(s)
- Vishnu Chandra
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Zain Hannan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Huizhong Xu
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Maumita Mandal
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.,Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
21
|
Börner R, Kowerko D, Miserachs HG, Schaffer MF, Sigel RK. Metal ion induced heterogeneity in RNA folding studied by smFRET. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Perez-Gonzalez C, Lafontaine DA, Penedo JC. Fluorescence-Based Strategies to Investigate the Structure and Dynamics of Aptamer-Ligand Complexes. Front Chem 2016; 4:33. [PMID: 27536656 PMCID: PMC4971091 DOI: 10.3389/fchem.2016.00033] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/11/2016] [Indexed: 12/11/2022] Open
Abstract
In addition to the helical nature of double-stranded DNA and RNA, single-stranded oligonucleotides can arrange themselves into tridimensional structures containing loops, bulges, internal hairpins and many other motifs. This ability has been used for more than two decades to generate oligonucleotide sequences, so-called aptamers, that can recognize certain metabolites with high affinity and specificity. More recently, this library of artificially-generated nucleic acid aptamers has been expanded by the discovery that naturally occurring RNA sequences control bacterial gene expression in response to cellular concentration of a given metabolite. The application of fluorescence methods has been pivotal to characterize in detail the structure and dynamics of these aptamer-ligand complexes in solution. This is mostly due to the intrinsic high sensitivity of fluorescence methods and also to significant improvements in solid-phase synthesis, post-synthetic labeling strategies and optical instrumentation that took place during the last decade. In this work, we provide an overview of the most widely employed fluorescence methods to investigate aptamer structure and function by describing the use of aptamers labeled with a single dye in fluorescence quenching and anisotropy assays. The use of 2-aminopurine as a fluorescent analog of adenine to monitor local changes in structure and fluorescence resonance energy transfer (FRET) to follow long-range conformational changes is also covered in detail. The last part of the review is dedicated to the application of fluorescence techniques based on single-molecule microscopy, a technique that has revolutionized our understanding of nucleic acid structure and dynamics. We finally describe the advantages of monitoring ligand-binding and conformational changes, one molecule at a time, to decipher the complexity of regulatory aptamers and summarize the emerging folding and ligand-binding models arising from the application of these single-molecule FRET microscopy techniques.
Collapse
Affiliation(s)
- Cibran Perez-Gonzalez
- Laboratory for Biophysics and Biomolecular Dynamics, SUPA School of Physics and Astronomy, University of St. AndrewsSt Andrews, UK
| | - Daniel A. Lafontaine
- RNA Group, Department of Biology, Faculty of Science, Université de SherbrookeSherbrooke, QC, Canada
| | - J. Carlos Penedo
- Laboratory for Biophysics and Biomolecular Dynamics, SUPA School of Physics and Astronomy, University of St. AndrewsSt Andrews, UK
- Laboratory for Biophysics and Biomolecular Dynamics, Biomedical Sciences Research Complex, School of Biology, University of St. AndrewsSt. Andrews, UK
| |
Collapse
|
23
|
Perez-Gonzalez C, Grondin JP, Lafontaine DA, Carlos Penedo J. Biophysical Approaches to Bacterial Gene Regulation by Riboswitches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 915:157-91. [PMID: 27193543 DOI: 10.1007/978-3-319-32189-9_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The last decade has witnessed the discovery of a variety of non-coding RNA sequences that perform a broad range of crucial biological functions. Among these, the ability of certain RNA sequences, so-called riboswitches, has attracted considerable interest. Riboswitches control gene expression in response to the concentration of particular metabolites to which they bind without the need for any protein. These RNA switches not only need to adopt a very specific tridimensional structure to perform their function, but also their sequence has been evolutionary optimized to recognize a particular metabolite with high affinity and selectivity. Thus, riboswitches offer a unique opportunity to get fundamental insights into RNA plasticity and how folding dynamics and ligand recognition mechanisms have been efficiently merged to control gene regulation. Because riboswitch sequences have been mostly found in bacterial organisms controlling the expression of genes associated to the synthesis, degradation or transport of crucial metabolites for bacterial survival, they offer exciting new routes for antibiotic development in an era where bacterial resistance is more than ever challenging conventional drug discovery strategies. Here, we give an overview of the architecture, diversity and regulatory mechanisms employed by riboswitches with particular emphasis on the biophysical methods currently available to characterise their structure and functional dynamics.
Collapse
Affiliation(s)
- Cibran Perez-Gonzalez
- SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, KY16 9SS, UK
| | - Jonathan P Grondin
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Daniel A Lafontaine
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
| | - J Carlos Penedo
- SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, KY16 9SS, UK. .,Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife, KY16 9ST, UK.
| |
Collapse
|
24
|
Kerpedjiev P, Höner Zu Siederdissen C, Hofacker IL. Predicting RNA 3D structure using a coarse-grain helix-centered model. RNA (NEW YORK, N.Y.) 2015; 21:1110-1121. [PMID: 25904133 PMCID: PMC4436664 DOI: 10.1261/rna.047522.114] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
A 3D model of RNA structure can provide information about its function and regulation that is not possible with just the sequence or secondary structure. Current models suffer from low accuracy and long running times and either neglect or presume knowledge of the long-range interactions which stabilize the tertiary structure. Our coarse-grained, helix-based, tertiary structure model operates with only a few degrees of freedom compared with all-atom models while preserving the ability to sample tertiary structures given a secondary structure. It strikes a balance between the precision of an all-atom tertiary structure model and the simplicity and effectiveness of a secondary structure representation. It provides a simplified tool for exploring global arrangements of helices and loops within RNA structures. We provide an example of a novel energy function relying only on the positions of stems and loops. We show that coupling our model to this energy function produces predictions as good as or better than the current state of the art tools. We propose that given the wide range of conformational space that needs to be explored, a coarse-grain approach can explore more conformations in less iterations than an all-atom model coupled to a fine-grain energy function. Finally, we emphasize the overarching theme of providing an ensemble of predicted structures, something which our tool excels at, rather than providing a handful of the lowest energy structures.
Collapse
Affiliation(s)
| | - Christian Höner Zu Siederdissen
- Institute for Theoretical Chemistry, A-1090 Vienna, Austria Bioinformatics Group, Department of Computer Science, Universität Leipzig, D-04107 Leipzig, Germany Interdisciplinary Center for Bioinformatics, Universität Leipzig, D-04107 Leipzig, Germany
| | - Ivo L Hofacker
- Institute for Theoretical Chemistry, A-1090 Vienna, Austria Research Group Bioinformatics and Computational Biology, University of Vienna, A-1090 Vienna, Austria Center for non-coding RNA in Technology and Health, Department of Veterinary Clinical and Animal Science, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| |
Collapse
|
25
|
Boudreault J, Perez-Gonzalez DC, Penedo JC, Lafontaine DA. Single-Molecule Approaches for the Characterization of Riboswitch Folding Mechanisms. Methods Mol Biol 2015; 1334:101-107. [PMID: 26404145 DOI: 10.1007/978-1-4939-2877-4_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Riboswitches are highly structured RNA molecules that control genetic expression by altering their structure as a function of metabolite binding. Accumulating evidence suggests that riboswitch structures are highly dynamic and perform conformational exchange between structural states that are important for the outcome of genetic regulation. To understand how ligand binding influences the folding of riboswitches, it is important to monitor in real time the riboswitch folding pathway as a function of experimental conditions. Single-molecule FRET (sm-FRET) is unique among biophysical techniques to study riboswitch conformational changes as it allows to both monitor steady-state populations of riboswitch conformers and associated interconversion dynamics. Since FRET fluorophores can be attached to virtually any nucleotide position, FRET assays can be adapted to monitor specific conformational changes, thus enabling to deduce complex riboswitch folding pathways. Herein, we show how to employ sm-FRET to study the folding pathway of the S-adenosylmethionine (SAM) and how this can be used to understand very specific conformational changes that are at the heart of riboswitch regulation mechanism.
Collapse
Affiliation(s)
- Julien Boudreault
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada, J1K 2R1
| | | | - J Carlos Penedo
- School of Physics and Astronomy, University of St. Andrews, St. Andrews, UK
| | - Daniel A Lafontaine
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada, J1K 2R1.
| |
Collapse
|
26
|
Ruff KM, Strobel SA. Ligand binding by the tandem glycine riboswitch depends on aptamer dimerization but not double ligand occupancy. RNA (NEW YORK, N.Y.) 2014; 20:1775-88. [PMID: 25246650 PMCID: PMC4201829 DOI: 10.1261/rna.047266.114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/22/2014] [Indexed: 05/21/2023]
Abstract
The glycine riboswitch predominantly exists as a tandem structure, with two adjacent, homologous ligand-binding domains (aptamers), followed by a single expression platform. The recent identification of a leader helix, the inclusion of which eliminates cooperativity between the aptamers, has reopened the debate over the purpose of the tandem structure of the glycine riboswitch. An equilibrium dialysis-based assay was combined with binding-site mutations to monitor glycine binding in each ligand-binding site independently to understand the role of each aptamer in glycine binding and riboswitch tertiary interactions. A series of mutations disrupting the dimer interface was used to probe how dimerization impacts ligand binding by the tandem glycine riboswitch. While the wild-type tandem riboswitch binds two glycine equivalents, one for each aptamer, both individual aptamers are capable of binding glycine when the other aptamer is unoccupied. Intriguingly, glycine binding by aptamer-1 is more sensitive to dimerization than glycine binding by aptamer-2 in the context of the tandem riboswitch. However, monomeric aptamer-2 shows dramatically weakened glycine-binding affinity. In addition, dimerization of the two aptamers in trans is dependent on glycine binding in at least one aptamer. We propose a revised model for tandem riboswitch function that is consistent with these results, wherein ligand binding in aptamer-1 is linked to aptamer dimerization and stabilizes the P1 stem of aptamer-2, which controls the expression platform.
Collapse
Affiliation(s)
- Karen M Ruff
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | - Scott A Strobel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| |
Collapse
|
27
|
Porter EB, Marcano-Velázquez JG, Batey RT. The purine riboswitch as a model system for exploring RNA biology and chemistry. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1839:919-930. [PMID: 24590258 PMCID: PMC4148472 DOI: 10.1016/j.bbagrm.2014.02.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 12/11/2022]
Abstract
Over the past decade the purine riboswitch, and in particular its nucleobase-binding aptamer domain, has emerged as an important model system for exploring various aspects of RNA structure and function. Its relatively small size, structural simplicity and readily observable activity enable application of a wide variety of experimental approaches towards the study of this RNA. These analyses have yielded important insights into small molecule recognition, co-transcriptional folding and secondary structural switching, and conformational dynamics that serve as a paradigm for other RNAs. In this article, the current state of understanding of the purine riboswitch family and how this growing knowledge base is starting to be exploited in the creation of novel RNA devices are examined. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Ely B Porter
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado, Boulder, CO 80309-0596, USA
| | - Joan G Marcano-Velázquez
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado, Boulder, CO 80309-0596, USA
| | - Robert T Batey
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado, Boulder, CO 80309-0596, USA.
| |
Collapse
|
28
|
Stephenson W, Wan G, Tenenbaum SA, Li PTX. Nanomanipulation of single RNA molecules by optical tweezers. J Vis Exp 2014. [PMID: 25177917 DOI: 10.3791/51542] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A large portion of the human genome is transcribed but not translated. In this post genomic era, regulatory functions of RNA have been shown to be increasingly important. As RNA function often depends on its ability to adopt alternative structures, it is difficult to predict RNA three-dimensional structures directly from sequence. Single-molecule approaches show potentials to solve the problem of RNA structural polymorphism by monitoring molecular structures one molecule at a time. This work presents a method to precisely manipulate the folding and structure of single RNA molecules using optical tweezers. First, methods to synthesize molecules suitable for single-molecule mechanical work are described. Next, various calibration procedures to ensure the proper operations of the optical tweezers are discussed. Next, various experiments are explained. To demonstrate the utility of the technique, results of mechanically unfolding RNA hairpins and a single RNA kissing complex are used as evidence. In these examples, the nanomanipulation technique was used to study folding of each structural domain, including secondary and tertiary, independently. Lastly, the limitations and future applications of the method are discussed.
Collapse
Affiliation(s)
- William Stephenson
- Nanoscale Engineering Graduate Program, College of Nanoscale Science and Engineering, University at Albany, State University of New York
| | - Gorby Wan
- Nanoscale Science Undergraduate Program, College of Nanoscale Science and Engineering, University at Albany, State University of New York
| | - Scott A Tenenbaum
- Nanobioscience Constellation, College of Nanoscale Science and Engineering, University at Albany, State University of New York; The RNA Institute, University at Albany, State University of New York
| | - Pan T X Li
- The RNA Institute, University at Albany, State University of New York; Department of Biological Sciences, University at Albany, State University of New York;
| |
Collapse
|
29
|
St-Pierre P, McCluskey K, Shaw E, Penedo JC, Lafontaine DA. Fluorescence tools to investigate riboswitch structural dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1005-1019. [PMID: 24863161 DOI: 10.1016/j.bbagrm.2014.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 11/15/2022]
Abstract
Riboswitches are novel regulatory elements that respond to cellular metabolites to control gene expression. They are constituted of highly conserved domains that have evolved to recognize specific metabolites. Such domains, so-called aptamers, are folded into intricate structures to enable metabolite recognition. Over the years, the development of ensemble and single-molecule fluorescence techniques has allowed to probe most of the mechanistic aspects of aptamer folding and ligand binding. In this review, we summarize the current fluorescence toolkit available to study riboswitch structural dynamics. We fist describe those methods based on fluorescent nucleotide analogues, mostly 2-aminopurine (2AP), to investigate short-range conformational changes, including some key steady-state and time-resolved examples that exemplify the versatility of fluorescent analogues as structural probes. The study of long-range structural changes by Förster resonance energy transfer (FRET) is mostly discussed in the context of single-molecule studies, including some recent developments based on the combination of single-molecule FRET techniques with controlled chemical denaturation methods. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Patrick St-Pierre
- RNA Group, Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Kaley McCluskey
- SUPA, School of Physics and Astronomy University of St Andrews, St Andrews, Fife KY16 9SS, United Kingdom
| | - Euan Shaw
- SUPA, School of Physics and Astronomy University of St Andrews, St Andrews, Fife KY16 9SS, United Kingdom
| | - J C Penedo
- SUPA, School of Physics and Astronomy University of St Andrews, St Andrews, Fife KY16 9SS, United Kingdom; Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9SS, United Kingdom.
| | - D A Lafontaine
- RNA Group, Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
| |
Collapse
|
30
|
Savinov A, Perez CF, Block SM. Single-molecule studies of riboswitch folding. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1030-1045. [PMID: 24727093 DOI: 10.1016/j.bbagrm.2014.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/27/2014] [Accepted: 04/03/2014] [Indexed: 10/25/2022]
Abstract
The folding dynamics of riboswitches are central to their ability to modulate gene expression in response to environmental cues. In most cases, a structural competition between the formation of a ligand-binding aptamer and an expression platform (or some other competing off-state) determines the regulatory outcome. Here, we review single-molecule studies of riboswitch folding and function, predominantly carried out using single-molecule FRET or optical trapping approaches. Recent results have supplied new insights into riboswitch folding energy landscapes, the mechanisms of ligand binding, the roles played by divalent ions, the applicability of hierarchical folding models, and kinetic vs. thermodynamic control schemes. We anticipate that future work, based on improved data sets and potentially combining multiple experimental techniques, will enable the development of more complete models for complex RNA folding processes. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Andrew Savinov
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | | | - Steven M Block
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
31
|
Abstract
RNA dynamics play a fundamental role in many cellular functions. However, there is no general framework to describe these complex processes, which typically consist of many structural maneuvers that occur over timescales ranging from picoseconds to seconds. Here, we classify RNA dynamics into distinct modes representing transitions between basins on a hierarchical free-energy landscape. These transitions include large-scale secondary-structural transitions at >0.1-s timescales, base-pair/tertiary dynamics at microsecond-to-millisecond timescales, stacking dynamics at timescales ranging from nanoseconds to microseconds, and other "jittering" motions at timescales ranging from picoseconds to nanoseconds. We review various modes within these three different tiers, the different mechanisms by which they are used to regulate function, and how they can be coupled together to achieve greater functional complexity.
Collapse
|
32
|
Jain SS, Sonavane UB, Uppuladinne MVN, McLaughlin EC, Wang W, Black S, Joshi RR. Structural insights into the interactions of xpt riboswitch with novel guanine analogues: a molecular dynamics simulation study. J Biomol Struct Dyn 2014; 33:234-43. [PMID: 24404773 DOI: 10.1080/07391102.2013.870930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ligand recognition in purine riboswitches is a complex process requiring different levels of conformational changes. Recent efforts in the area of purine riboswitch research have focused on ligand analogue binding studies. In the case of the guanine xanthine phosphoribosyl transferase (xpt) riboswitch, synthetic analogues that resemble guanine have the potential to tightly bind and subsequently influence the genetic expression of xpt mRNA in prokaryotes. We have carried out 25 ns Molecular Dynamics (MD) simulation studies of the aptamer domain of the xpt G-riboswitch in four different states: guanine riboswitch in free form, riboswitch bound with its cognate ligand guanine, and with two guanine analogues SJ1 and SJ2. Our work reveals novel interactions of SJ1 and SJ2 ligands with the binding core residues of the riboswitch. The ligands proposed in this work bind to the riboswitch with greater overall stability and lower root mean square deviations and fluctuations compared to guanine ligand. Reporter gene assay data demonstrate that the ligand analogues, upon binding to the RNA, lower the genetic expression of the guanine riboswitch. Our work has important implications for future ligand design and binding studies in the exciting field of riboswitches.
Collapse
Affiliation(s)
- Swapan S Jain
- a Department of Chemistry , Bard College , 30 Campus Rd, Annandale-on-Hudson, NY 12504 , USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Single-molecule fluorescence studies of nucleic acids are revolutionizing our understanding of fundamental cellular processes related to DNA and RNA processing mechanisms. Detailed molecular insights into DNA repair, replication, transcription, and RNA folding and function are continuously being uncovered by using the full repertoire of single-molecule fluorescence techniques. The fundamental reason behind the stunning growth in the application of single-molecule techniques to study nucleic acid structure and dynamics is the unmatched ability of single-molecule fluorescence, and mostly single-molecule FRET, to resolve heterogeneous static and dynamic populations and identify transient and low-populated states without the need for sample synchronization. New advances in DNA and RNA synthesis, post-synthetic dye-labeling methods, immobilization and passivation strategies, improved dye photophysics, and standardized analysis methods have enabled the implementation of single-molecule techniques beyond specialized laboratories. In this chapter, we introduce the practical aspects of applying single-molecule techniques to investigate nucleic acid structure, dynamics, and function.
Collapse
Affiliation(s)
- Kaley McCluskey
- SUPA School of Physics and Astronomy, University of St. Andrews, St. Andrews, Scotland, UK
| | | | | | | |
Collapse
|
34
|
Abstract
Riboswitches are structured noncoding RNA elements that control the expression of their embedding messenger RNAs by sensing the intracellular concentration of diverse metabolites. As the name suggests, riboswitches are dynamic in nature so that studying their inherent conformational dynamics and ligand-mediated folding is important for understanding their mechanism of action. Single-molecule fluorescence energy transfer (smFRET) microscopy is a powerful and versatile technique for studying the folding pathways and intra- and intermolecular dynamics of biological macromolecules, especially RNA. The ability of smFRET to monitor intramolecular distances and their temporal evolution make it a particularly insightful tool for probing the structure and dynamics of riboswitches. Here, we detail the general steps for using prism-based total internal reflection fluorescence microscopy for smFRET studies of the structure, dynamics, and ligand-binding mechanisms of riboswitches.
Collapse
|
35
|
Sugimoto N. Noncanonical structures and their thermodynamics of DNA and RNA under molecular crowding: beyond the Watson-Crick double helix. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 307:205-73. [PMID: 24380597 DOI: 10.1016/b978-0-12-800046-5.00008-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
How does molecular crowding affect the stability of nucleic acid structures inside cells? Water is the major solvent component in living cells, and the properties of water in the highly crowded media inside cells differ from that in buffered solution. As it is difficult to measure the thermodynamic behavior of nucleic acids in cells directly and quantitatively, we recently developed a cell-mimicking system using cosolutes as crowding reagents. The influences of molecular crowding on the structures and thermodynamics of various nucleic acid sequences have been reported. In this chapter, we discuss how the structures and thermodynamic properties of nucleic acids differ under various conditions such as highly crowded environments, compartment environments, and in the presence of ionic liquids, and the major determinants of the crowding effects on nucleic acids are discussed. The effects of molecular crowding on the activities of ribozymes and riboswitches on noncanonical structures of DNA- and RNA-like quadruplexes that play important roles in transcription and translation are also described.
Collapse
Affiliation(s)
- Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER) and Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, Japan.
| |
Collapse
|
36
|
Zhang H, Endrizzi JA, Shu Y, Haque F, Sauter C, Shlyakhtenko LS, Lyubchenko Y, Guo P, Chi YI. Crystal structure of 3WJ core revealing divalent ion-promoted thermostability and assembly of the Phi29 hexameric motor pRNA. RNA (NEW YORK, N.Y.) 2013; 19:1226-37. [PMID: 23884902 PMCID: PMC3753930 DOI: 10.1261/rna.037077.112] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 06/06/2013] [Indexed: 05/22/2023]
Abstract
The bacteriophage phi29 DNA packaging motor, one of the strongest biological motors characterized to date, is geared by a packaging RNA (pRNA) ring. When assembled from three RNA fragments, its three-way junction (3WJ) motif is highly thermostable, is resistant to 8 M urea, and remains associated at extremely low concentrations in vitro and in vivo. To elucidate the structural basis for its unusual stability, we solved the crystal structure of this pRNA 3WJ motif at 3.05 Å. The structure revealed two divalent metal ions that coordinate 4 nt of the RNA fragments. Single-molecule fluorescence resonance energy transfer (smFRET) analysis confirmed a structural change of 3WJ upon addition of Mg²⁺. The reported pRNA 3WJ conformation is different from a previously published construct that lacks the metal coordination sites. The phi29 DNA packaging motor contains a dodecameric connector at the vertex of the procapsid, with a central pore for DNA translocation. This portal connector serves as the foothold for pRNA binding to procapsid. Subsequent modeling of a connector/pRNA complex suggests that the pRNA of the phi29 DNA packaging motor exists as a hexameric complex serving as a sheath over the connector. The model of hexameric pRNA on the connector agrees with AFM images of the phi29 pRNA hexamer acquired in air and matches all distance parameters obtained from cross-linking, complementary modification, and chemical modification interference.
Collapse
Affiliation(s)
- Hui Zhang
- Nanobiotechnology Center, Markey Cancer Center and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, USA
| | - James A. Endrizzi
- Section of Structural Biology, Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | - Yi Shu
- Nanobiotechnology Center, Markey Cancer Center and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Farzin Haque
- Nanobiotechnology Center, Markey Cancer Center and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Claude Sauter
- Institut de Biologie Moléculaire et Cellulaire (IBMC-ARN-CNRS) Cristallogenèse & Biologie Structurale, F-67084 Strasbourg, France
| | - Lyudmila S. Shlyakhtenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Yuri Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Peixuan Guo
- Nanobiotechnology Center, Markey Cancer Center and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, USA
- Corresponding authorsE-mail E-mail
| | - Young-In Chi
- Section of Structural Biology, Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
- Corresponding authorsE-mail E-mail
| |
Collapse
|
37
|
Allnér O, Nilsson L, Villa A. Loop-loop interaction in an adenine-sensing riboswitch: a molecular dynamics study. RNA (NEW YORK, N.Y.) 2013; 19:916-926. [PMID: 23716711 PMCID: PMC3683926 DOI: 10.1261/rna.037549.112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/28/2013] [Indexed: 06/01/2023]
Abstract
Riboswitches are mRNA-based molecules capable of controlling the expression of genes. They undergo conformational changes upon ligand binding, and as a result, they inhibit or promote the expression of the associated gene. The close connection between structural rearrangement and function makes a detailed knowledge of the molecular interactions an important step to understand the riboswitch mechanism and efficiency. We have performed all-atom molecular dynamics simulations of the adenine-sensing add A-riboswitch to study the breaking of the kissing loop, one key tertiary element in the aptamer structure. We investigated the aptamer domain of the add A-riboswitch in complex with its cognate ligand and in the absence of the ligand. The opening of the hairpins was simulated using umbrella sampling using the distance between two loops as the reaction coordinate. A two-step process was observed in all the simulated systems. First, a general loss of stacking and hydrogen bond interactions is seen. The last interactions that break are the two base pairs G37-C61 and G38-C60, but the break does not affect the energy profile, indicating their pivotal role in the tertiary structure formation but not in the structure stabilization. The junction area is partially organized before the kissing loop formation and residue A24 anchors together the loop helices. Moreover, when the distance between the loops is increased, one of the hairpins showed more flexibility by changing its orientation in the structure, while the other conserved its coaxial arrangement with the rest of the structure.
Collapse
Affiliation(s)
- Olof Allnér
- Department of Biosciences and Nutrition, Karolinska Institutet, Center for Biosciences, SE-14183 Huddinge, Sweden.
| | | | | |
Collapse
|
38
|
Synthesis of spin-labeled riboswitch RNAs using convertible nucleosides and DNA-catalyzed RNA ligation. Bioorg Med Chem 2013; 21:6171-80. [PMID: 23664496 DOI: 10.1016/j.bmc.2013.04.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/21/2013] [Accepted: 04/05/2013] [Indexed: 12/23/2022]
Abstract
Chemically stable nitroxide radicals that can be monitored by electron paramagnetic resonance (EPR) spectroscopy can provide information on structural and dynamic properties of functional RNA such as riboswitches. The convertible nucleoside approach is used to install 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) and 2,2,5,5-tetramethylpyrrolidin-1-oxyl (proxyl) labels at the exocyclic N(4)-amino group of cytidine and 2'-O-methylcytidine nucleotides in RNA. To obtain site-specifically labeled long riboswitch RNAs beyond the limit of solid-phase synthesis, we report the ligation of spin-labeled RNA using an in vitro selected deoxyribozyme as catalyst, and demonstrate the synthesis of TEMPO-labeled 53 nt SAM-III and 118 nt SAM-I riboswitch domains (SAM=S-adenosylmethionine).
Collapse
|
39
|
Serganov A, Patel DJ. Metabolite recognition principles and molecular mechanisms underlying riboswitch function. Annu Rev Biophys 2013; 41:343-70. [PMID: 22577823 DOI: 10.1146/annurev-biophys-101211-113224] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Riboswitches are mRNA elements capable of modulating gene expression in response to specific binding by cellular metabolites. Riboswitches exert their function through the interplay of alternative ligand-free and ligand-bound conformations of the metabolite-sensing domain, which in turn modulate the formation of adjacent gene expression controlling elements. X-ray crystallography and NMR spectroscopy have determined three-dimensional structures of virtually all the major riboswitch classes in the ligand-bound state and, for several riboswitches, in the ligand-free state. The resulting spatial topologies have demonstrated the wide diversity of riboswitch folds and revealed structural principles for specific recognition by cognate metabolites. The available three-dimensional information, supplemented by structure-guided biophysical and biochemical experimentation, has led to an improved understanding of how riboswitches fold, what RNA conformations are required for ligand recognition, and how ligand binding can be transduced into gene expression modulation. These studies have greatly facilitated the dissection of molecular mechanisms underlying riboswitch action and should in turn guide the anticipated development of tools for manipulating gene regulatory circuits.
Collapse
Affiliation(s)
- Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA.
| | | |
Collapse
|
40
|
Folding and ligand recognition of the TPP riboswitch aptamer at single-molecule resolution. Proc Natl Acad Sci U S A 2013; 110:4188-93. [PMID: 23440214 DOI: 10.1073/pnas.1218062110] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Thiamine pyrophosphate (TPP)-sensitive mRNA domains are the most prevalent riboswitches known. Despite intensive investigation, the complex ligand recognition and concomitant folding processes in the TPP riboswitch that culminate in the regulation of gene expression remain elusive. Here, we used single-molecule fluorescence resonance energy transfer imaging to probe the folding landscape of the TPP aptamer domain in the absence and presence of magnesium and TPP. To do so, distinct labeling patterns were used to sense the dynamics of the switch helix (P1) and the two sensor arms (P2/P3 and P4/P5) of the aptamer domain. The latter structural elements make interdomain tertiary contacts (L5/P3) that span a region immediately adjacent to the ligand-binding site. In each instance, conformational dynamics of the TPP riboswitch were influenced by ligand binding. The P1 switch helix, formed by the 5' and 3' ends of the aptamer domain, adopts a predominantly folded structure in the presence of Mg(2+) alone. However, even at saturating concentrations of Mg(2+) and TPP, the P1 helix, as well as distal regions surrounding the TPP-binding site, exhibit an unexpected degree of residual dynamics and disperse kinetic behaviors. Such plasticity results in a persistent exchange of the P3/P5 forearms between open and closed configurations that is likely to facilitate entry and exit of the TPP ligand. Correspondingly, we posit that such features of the TPP aptamer domain contribute directly to the mechanism of riboswitch-mediated translational regulation.
Collapse
|
41
|
Lambert D, Draper DE. Denaturation of RNA secondary and tertiary structure by urea: simple unfolded state models and free energy parameters account for measured m-values. Biochemistry 2012; 51:9014-26. [PMID: 23088364 PMCID: PMC3505219 DOI: 10.1021/bi301103j] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
To investigate the mechanism by which urea destabilizes RNA structure, urea-induced unfolding of four different RNA secondary and tertiary structures was quantified in terms of an m-value, the rate at which the free energy of unfolding changes with urea molality. From literature data and our osmometric study of a backbone analogue, we derived average interaction potentials (per square angstrom of solvent accessible surface) between urea and three kinds of RNA surfaces: phosphate, ribose, and base. Estimates of the increases in solvent accessible surface areas upon RNA denaturation were based on a simple model of unfolded RNA as a combination of helical and single-strand segments. These estimates, combined with the three interaction potentials and a term to account for interactions of urea with released ions, yield calculated m-values that are in good agreement with experimental values (200 mm monovalent salt). Agreement was obtained only if single-stranded RNAs were modeled in a highly stacked, A-form conformation. The primary driving force for urea-induced denaturation is the strong interaction of urea with the large surface areas of bases that become exposed upon denaturation of either RNA secondary or tertiary structure, though interactions of urea with backbone and released ions may account for up to a third of the m-value. Urea m-values for all four RNAs are salt-dependent, which we attribute to an increased extension (or decreased charge density) of unfolded RNAs with an increased urea concentration. The sensitivity of the urea m-value to base surface exposure makes it a potentially useful probe of the conformations of RNA unfolded states.
Collapse
Affiliation(s)
| | - David E. Draper
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
42
|
Abstract
A riboswitch is a non-protein coding sequence capable of directly binding a small molecule effector without the assistance of accessory proteins to regulate expression of the mRNA in which it is embedded. Currently, over 20 different classes of riboswitches have been validated in bacteria with the promise of many more to come, making them an important means of regulating the genome in the bacterial kingdom. Strikingly, half of the known riboswitches recognize effector compounds that contain a purine or related moiety. In the last decade, significant progress has been made to determine how riboswitches specifically recognize these compounds against the background of many other similar cellular metabolites and transduce this signal into a regulatory response. Of the known riboswitches, the purine family containing guanine, adenine and 2'-deoxyguanosine-binding classes are the most extensively studied, serving as a simple and useful paradigm for understanding how these regulatory RNAs function. This review provides a comprehensive summary of the current state of knowledge regarding the structure and mechanism of these riboswitches, as well as insights into how they might be exploited as therapeutic targets and novel biosensors.
Collapse
|
43
|
Wood S, Ferré-D’Amaré AR, Rueda D. Allosteric tertiary interactions preorganize the c-di-GMP riboswitch and accelerate ligand binding. ACS Chem Biol 2012; 7:920-7. [PMID: 22380737 DOI: 10.1021/cb300014u] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cyclic diguanylate (c-di-GMP) is a bacterial second messenger important for physiologic adaptation and virulence. Class-I c-di-GMP riboswitches are phylogenetically widespread and thought to mediate pleiotropic genetic responses to the second messenger. Previous studies suggest that the RNA aptamer domain switches from an extended free state to a compact, c-di-GMP-bound conformation in which two helical stacks dock side-by-side. Single molecule fluorescence resonance energy transfer (smFRET) experiments now reveal that the free RNA exists in four distinct populations that differ in dynamics in the extended and docked conformations. In the presence of c-di-GMP and Mg(2+), a stably docked population (>30 min) becomes predominant. smFRET mutant analysis demonstrates that tertiary interactions distal to the c-di-GMP binding site strongly modulate the RNA population structure, even in the absence of c-di-GMP. These allosteric interactions accelerate ligand recognition by preorganizing the RNA, favoring rapid c-di-GMP binding.
Collapse
Affiliation(s)
- Sharla Wood
- Department of Chemistry, Wayne State University, Detroit, Michigan, United States
| | | | - David Rueda
- Department of Chemistry, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
44
|
Serganov A, Patel DJ. Molecular recognition and function of riboswitches. Curr Opin Struct Biol 2012; 22:279-86. [PMID: 22579413 DOI: 10.1016/j.sbi.2012.04.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 04/22/2012] [Accepted: 04/23/2012] [Indexed: 11/27/2022]
Abstract
Regulatory mRNAs elements termed riboswitches respond to elevated concentrations of cellular metabolites by modulating expression of associated genes. Riboswitches attain their high metabolite selectivity by capitalizing on the intrinsic tertiary structures of their sensor domains. Over the years, riboswitch structure and folding have been amongst the most researched topics in the RNA field. Most recently, novel structures of single-ligand and cooperative double-ligand sensors have broadened our knowledge of architectural and molecular recognition principles exploited by riboswitches. The structural information has been complemented by extensive folding studies, which have provided several important clues on the formation of ligand-competent conformations and mechanisms of ligand discrimination. These studies have greatly improved our understanding of molecular events in riboswitch-mediated gene expression control and provided the molecular basis for intervention into riboswitch-controlled genetic circuits.
Collapse
Affiliation(s)
- Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Ave., MSB-393, New York, NY 10016, USA
| | | |
Collapse
|
45
|
Loakes D. Nucleotides and nucleic acids; oligo- and polynucleotides. ORGANOPHOSPHORUS CHEMISTRY 2012. [DOI: 10.1039/9781849734875-00169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- David Loakes
- Medical Research Council Laboratory of Molecular Biology, Hills Road Cambridge CB2 2QH UK
| |
Collapse
|
46
|
Gong Z, Zhao Y, Chen C, Xiao Y. Role of ligand binding in structural organization of add A-riboswitch aptamer: a molecular dynamics simulation. J Biomol Struct Dyn 2012; 29:403-16. [PMID: 21875158 DOI: 10.1080/07391102.2011.10507394] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The specific binding of ligands is the first step of gene expression or translation regulation by riboswitches. However, understanding the mechanism of the specific binding is still difficult because the tertiary structures of the riboswitch aptamers are available almost only for ligand-bound state at present. In this paper we hope to give some insights into this problem through the studies of the role of ligand-aptamer interaction in the structural organization of add A-riboswitch aptamer, based on the crystal structure of the ligand-bound aptamer. We use all-atom molecular dynamics to simulate the behaviors of the aptamer in ligand-bound, free and mutated states by Amber force field. The results show that the correct paring of the ligand adenine with the nucleotide U74 in the binding pocket is crucial to stabilizing the conformations of the ligand-bound aptamer, especially the helix P1 connecting the expression platform. Our results also suggest that both the nucleotide U74 and U51 may be the key sites of the ligand recognition but the former has much higher probability as the initial docking site. This is in agreement with previous experimental results.
Collapse
Affiliation(s)
- Zhou Gong
- Biomolecular Physics and Modeling Group, Department of Physics Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | | | | | | |
Collapse
|
47
|
Kumar V, Endoh T, Murakami K, Sugimoto N. Dehydration from conserved stem regions is fundamental for ligand-dependent conformational transition of the adenine-specific riboswitch. Chem Commun (Camb) 2012; 48:9693-5. [DOI: 10.1039/c2cc34506d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
48
|
Haller A, Soulière MF, Micura R. The dynamic nature of RNA as key to understanding riboswitch mechanisms. Acc Chem Res 2011; 44:1339-48. [PMID: 21678902 DOI: 10.1021/ar200035g] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Riboswitches are gene regulation elements within RNA that recognize specific metabolites. They predominantly occur in the untranslated leader regions of bacterial messenger RNA (mRNA). Upon metabolite binding to the aptamer domain, a structural change in the adjoining downstream expression platform signals "on" or "off" for gene expression. Researchers have achieved much progress in characterizing ligand-bound riboswitch states at the molecular level; an impressive number of high-resolution structures of aptamer-ligand complexes is now available. These structures have significantly contributed toward our understanding of how riboswitches interact with their natural ligands and with structurally related analogues. In contrast, relatively little is known about the nature of the unbound (apo) form of riboswitches. Moreover, the details of how changes in the aptamer domain are transduced into conformational changes in the decision-making expression platform remain murky. In this Account, we report on recent efforts aimed at the characterization of free states, ligand recognition, and ligand-induced folding in riboswitches. Riboswitch action is best approached as a cotranscriptional process, which implies sequential folding and release of the aptamer prior to the signaling of the expression platform. Thus, a complex interplay of several factors has to be taken into account, such as speed of transcription, transcriptional pausing, kinetics and thermodynamics of RNA structure formation, and kinetics and thermodynamics of ligand binding. The response mechanism appears to be best described as a process in which ligand recognition critically dictates the folding pathway of the nascent mRNA during its expression; the resulting structures determine the interactions with the transcriptional or translational apparatus. We discuss experimental methods that offer insight into the dynamics of the free riboswitch state. These include probing experiments, such as in-line and selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) techniques, small-angle X-ray scattering (SAXS) analysis, NMR spectroscopy, and fluorescence spectroscopy, including single-molecule fluorescence resonance energy transfer (smFRET) imaging. One of our research contributions is an approach, termed 2ApFold, that incorporates noninvasive 2-aminopurine modifications in riboswitches. The fluorescence response of these moieties is used to delineate the order of secondary-tertiary structure formation and rearrangements taking place during ligand-induced folding. This information can be used to explore the kinetics of ligand recognition and to analyze the degree of structure preorganization of the free riboswitch state. Furthermore, we discuss a recent smFRET study on the SAM-II riboswitch; this report underscores the importance of choosing strategic labeling patterns that leave maximal conformational freedom to the regulatory interaction. Finally, we comment on how riboswitch ligand recognition appeals to the concepts of conformational selection and induced fit, and on the question of whether riboswitches act under thermodynamic or kinetic control. This Account highlights the fact that a thorough understanding of RNA dynamics in vitro is required to shed light on cellular riboswitch mechanisms. Elucidating these mechanisms will contribute not only to ongoing efforts to target riboswitches with antibiotics but also to attempts to engineer artificial cell regulation systems.
Collapse
Affiliation(s)
- Andrea Haller
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 52a, 6020 Innsbruck, Austria
| | - Marie F. Soulière
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 52a, 6020 Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 52a, 6020 Innsbruck, Austria
| |
Collapse
|
49
|
Liberman JA, Wedekind JE. Riboswitch structure in the ligand-free state. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:369-84. [PMID: 21957061 DOI: 10.1002/wrna.114] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Molecular investigations of riboswitches bound to small-molecule effectors have produced a wealth of information on how these molecules achieve high affinity and specificity for a target ligand. X-ray crystal structures have been determined for the ligand-free state for representatives of the preQ₁-I, S-adenosylmethionine I, lysine, and glycine aptamer classes. These structures in conjunction with complimentary techniques, such as in-line probing, NMR spectroscopy, Förster resonance energy transfer, small-angle scattering, and computational simulations, have demonstrated that riboswitches adopt multiple conformations in the absence of ligand. Despite a number of investigations that support ligand-dependent folding, mounting evidence suggests that free-state riboswitches interact with their effectors in the sub-populations of largely prefolded states as embodied by the principle of conformational selection, which has been documented extensively for protein-mediated ligand interactions. Fundamental riboswitch investigations of the bound and free states have advanced our understanding of RNA folding, ligand recognition, and how these factors culminate in communication between an aptamer and its expression platform. An understanding of these topics is essential to comprehend riboswitch gene regulation at the molecular level, which has already provided a basis to understand the mechanism of action of natural antimicrobials.
Collapse
Affiliation(s)
- Joseph A Liberman
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | |
Collapse
|
50
|
Structural principles of nucleoside selectivity in a 2'-deoxyguanosine riboswitch. Nat Chem Biol 2011; 7:748-55. [PMID: 21841796 PMCID: PMC3781940 DOI: 10.1038/nchembio.631] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 07/08/2011] [Indexed: 01/15/2023]
Abstract
Purine riboswitches play an essential role in genetic regulation of bacterial metabolism. This family includes the 2′-deoxyguanosine (dG) riboswitch, involved in feedback control of deoxyguanosine biosynthesis. To understand the principles that define dG selectivity, we determined crystal structures of natural Mesoplasma florum riboswitch bound to cognate dG, as well as non-cognate guanosine, deoxyguanosine monophosphate and guanosine monophosphate. Comparison with related purine riboswitch structures reveals that the dG riboswitch achieves its specificity by modifying key interactions involving the nucleobase and through rearrangement of the ligand-binding pocket, so as to accommodate the additional sugar moiety. In addition, we observe novel conformational changes beyond the junctional binding pocket, extending as far as peripheral loop-loop interactions. It appears that re-engineering riboswitch scaffolds will require consideration of selectivity features dispersed throughout the riboswitch tertiary fold, and that structure-guided drug design efforts targeted to junctional RNA scaffolds need to be addressed within such an expanded framework.
Collapse
|