1
|
Maiti S, Singh A, Maji T, Saibo NV, De S. Experimental methods to study the structure and dynamics of intrinsically disordered regions in proteins. Curr Res Struct Biol 2024; 7:100138. [PMID: 38707546 PMCID: PMC11068507 DOI: 10.1016/j.crstbi.2024.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 05/07/2024] Open
Abstract
Eukaryotic proteins often feature long stretches of amino acids that lack a well-defined three-dimensional structure and are referred to as intrinsically disordered proteins (IDPs) or regions (IDRs). Although these proteins challenge conventional structure-function paradigms, they play vital roles in cellular processes. Recent progress in experimental techniques, such as NMR spectroscopy, single molecule FRET, high speed AFM and SAXS, have provided valuable insights into the biophysical basis of IDP function. This review discusses the advancements made in these techniques particularly for the study of disordered regions in proteins. In NMR spectroscopy new strategies such as 13C detection, non-uniform sampling, segmental isotope labeling, and rapid data acquisition methods address the challenges posed by spectral overcrowding and low stability of IDPs. The importance of various NMR parameters, including chemical shifts, hydrogen exchange rates, and relaxation measurements, to reveal transient secondary structures within IDRs and IDPs are presented. Given the high flexibility of IDPs, the review outlines NMR methods for assessing their dynamics at both fast (ps-ns) and slow (μs-ms) timescales. IDPs exert their functions through interactions with other molecules such as proteins, DNA, or RNA. NMR-based titration experiments yield insights into the thermodynamics and kinetics of these interactions. Detailed study of IDPs requires multiple experimental techniques, and thus, several methods are described for studying disordered proteins, highlighting their respective advantages and limitations. The potential for integrating these complementary techniques, each offering unique perspectives, is explored to achieve a comprehensive understanding of IDPs.
Collapse
Affiliation(s)
| | - Aakanksha Singh
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Tanisha Maji
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Nikita V. Saibo
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Soumya De
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| |
Collapse
|
2
|
Kaushik V, Chadda R, Kuppa S, Pokhrel N, Vayyeti A, Grady S, Arnatt C, Antony E. Fluorescent human RPA to track assembly dynamics on DNA. Methods 2024; 223:95-105. [PMID: 38301751 PMCID: PMC10923064 DOI: 10.1016/j.ymeth.2024.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
DNA metabolic processes including replication, repair, recombination, and telomere maintenance occur on single-stranded DNA (ssDNA). In each of these complex processes, dozens of proteins function together on the ssDNA template. However, when double-stranded DNA is unwound, the transiently open ssDNA is protected and coated by the high affinity heterotrimeric ssDNA binding Replication Protein A (RPA). Almost all downstream DNA processes must first remodel/remove RPA or function alongside to access the ssDNA occluded under RPA. Formation of RPA-ssDNA complexes trigger the DNA damage checkpoint response and is a key step in activating most DNA repair and recombination pathways. Thus, in addition to protecting the exposed ssDNA, RPA functions as a gatekeeper to define functional specificity in DNA maintenance and genomic integrity. RPA achieves functional dexterity through a multi-domain architecture utilizing several DNA binding and protein-interaction domains connected by flexible linkers. This flexible and modular architecture enables RPA to adopt a myriad of configurations tailored for specific DNA metabolic roles. To experimentally capture the dynamics of the domains of RPA upon binding to ssDNA and interacting proteins we here describe the generation of active site-specific fluorescent versions of human RPA (RPA) using 4-azido-L-phenylalanine (4AZP) incorporation and click chemistry. This approach can also be applied to site-specific modifications of other multi-domain proteins. Fluorescence-enhancement through non-canonical amino acids (FEncAA) and Förster Resonance Energy Transfer (FRET) assays for measuring dynamics of RPA on DNA are also described. The fluorescent human RPA described here will enable high-resolution structure-function analysis of RPA-ssDNA interactions.
Collapse
Affiliation(s)
- Vikas Kaushik
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Rahul Chadda
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Sahiti Kuppa
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Nilisha Pokhrel
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Abhinav Vayyeti
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Scott Grady
- Department of Chemistry, St. Louis University, St. Louis, MO 63103, USA
| | - Chris Arnatt
- Department of Chemistry, St. Louis University, St. Louis, MO 63103, USA
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
3
|
Fousek-Schuller VJ, Borgstahl GEO. The Intriguing Mystery of RPA Phosphorylation in DNA Double-Strand Break Repair. Genes (Basel) 2024; 15:167. [PMID: 38397158 PMCID: PMC10888239 DOI: 10.3390/genes15020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Human Replication Protein A (RPA) was historically discovered as one of the six components needed to reconstitute simian virus 40 DNA replication from purified components. RPA is now known to be involved in all DNA metabolism pathways that involve single-stranded DNA (ssDNA). Heterotrimeric RPA comprises several domains connected by flexible linkers and is heavily regulated by post-translational modifications (PTMs). The structure of RPA has been challenging to obtain. Various structural methods have been applied, but a complete understanding of RPA's flexible structure, its function, and how it is regulated by PTMs has yet to be obtained. This review will summarize recent literature concerning how RPA is phosphorylated in the cell cycle, the structural analysis of RPA, DNA and protein interactions involving RPA, and how PTMs regulate RPA activity and complex formation in double-strand break repair. There are many holes in our understanding of this research area. We will conclude with perspectives for future research on how RPA PTMs control double-strand break repair in the cell cycle.
Collapse
Affiliation(s)
| | - Gloria E. O. Borgstahl
- Eppley Institute for Research in Cancer & Allied Diseases, UNMC, Omaha, NE 68198-6805, USA
| |
Collapse
|
4
|
Kaushik V, Chadda R, Kuppa S, Pokhrel N, Vayyeti A, Grady S, Arnatt C, Antony E. Fluorescent human RPA to track assembly dynamics on DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.23.568455. [PMID: 38045304 PMCID: PMC10690285 DOI: 10.1101/2023.11.23.568455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
DNA metabolic processes including replication, repair, recombination, and telomere maintenance occur on single-stranded DNA (ssDNA). In each of these complex processes, dozens of proteins function together on the ssDNA template. However, when double-stranded DNA is unwound, the transiently open ssDNA is protected and coated by the high affinity heterotrimeric ssDNA binding Replication Protein A (RPA). Almost all downstream DNA processes must first remodel/remove RPA or function alongside to access the ssDNA occluded under RPA. Formation of RPA-ssDNA complexes trigger the DNA damage checkpoint response and is a key step in activating most DNA repair and recombination pathways. Thus, in addition to protecting the exposed ssDNA, RPA functions as a gatekeeper to define functional specificity in DNA maintenance and genomic integrity. RPA achieves functional dexterity through a multi-domain architecture utilizing several DNA binding and protein-interaction domains connected by flexible linkers. This flexible and modular architecture enables RPA to adopt a myriad of configurations tailored for specific DNA metabolic roles. To experimentally capture the dynamics of the domains of RPA upon binding to ssDNA and interacting proteins we here describe the generation of active site-specific fluorescent versions of human RPA (RPA) using 4-azido-L-phenylalanine (4AZP) incorporation and click chemistry. This approach can also be applied to site-specific modifications of other multi-domain proteins. Fluorescence-enhancement through non-canonical amino acids (FEncAA) and Förster Resonance Energy Transfer (FRET) assays for measuring dynamics of RPA on DNA are also described.
Collapse
Affiliation(s)
- Vikas Kaushik
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104
| | - Rahul Chadda
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104
| | - Sahiti Kuppa
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104
| | - Nilisha Pokhrel
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Abhinav Vayyeti
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104
| | - Scott Grady
- Department of Chemistry, St. Louis University, St. Louis, MO 63103
| | - Chris Arnatt
- Department of Chemistry, St. Louis University, St. Louis, MO 63103
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104
| |
Collapse
|
5
|
Choi T, Maiti G, Chakravarti S. Three-Dimensional Modeling of CpG DNA Binding with Matrix Lumican Shows Leucine-Rich Repeat Motif Involvement as in TLR9-CpG DNA Interactions. Int J Mol Sci 2023; 24:14990. [PMID: 37834438 PMCID: PMC10573802 DOI: 10.3390/ijms241914990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Lumican is an extracellular matrix proteoglycan known to regulate toll-like receptor (TLR) signaling in innate immune cells. In experimental settings, lumican suppresses TLR9 signaling by binding to and sequestering its synthetic ligand, CpG-DNA, in non-signal permissive endosomes. However, the molecular details of lumican interactions with CpG-DNA are obscure. Here, the 3-D structure of the 22 base-long CpG-DNA (CpG ODN_2395) bound to lumican or TLR9 were modeled using homology modeling and docking methods. Some of the TLR9-CpG ODN_2395 features predicted by our model are consistent with the previously reported TLR9-CpG DNA crystal structure, substantiating our current analysis. Our modeling indicated a smaller buried surface area for lumican-CpG ODN_2395 (1803 Å2) compared to that of TLR9-CpG ODN_2395 (2094 Å2), implying a potentially lower binding strength for lumican and CpG-DNA than TLR9 and CpG-DNA. The docking analysis identified 32 amino acids in lumican LRR1-11 interacting with CpG ODN_2395, primarily through hydrogen bonding, salt-bridges, and hydrophobic interactions. Our study provides molecular insights into lumican and CpG-DNA interactions that may lead to molecular targets for modulating TLR9-mediated inflammation and autoimmunity.
Collapse
Affiliation(s)
- Tansol Choi
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10016, USA;
| | - George Maiti
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10016, USA;
| | - Shukti Chakravarti
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10016, USA;
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
6
|
Roshan P, Kuppa S, Mattice JR, Kaushik V, Chadda R, Pokhrel N, Tumala BR, Biswas A, Bothner B, Antony E, Origanti S. An Aurora B-RPA signaling axis secures chromosome segregation fidelity. Nat Commun 2023; 14:3008. [PMID: 37230964 PMCID: PMC10212944 DOI: 10.1038/s41467-023-38711-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
Errors in chromosome segregation underlie genomic instability associated with cancers. Resolution of replication and recombination intermediates and protection of vulnerable single-stranded DNA (ssDNA) intermediates during mitotic progression requires the ssDNA binding protein Replication Protein A (RPA). However, the mechanisms that regulate RPA specifically during unperturbed mitotic progression are poorly resolved. RPA is a heterotrimer composed of RPA70, RPA32 and RPA14 subunits and is predominantly regulated through hyperphosphorylation of RPA32 in response to DNA damage. Here, we have uncovered a mitosis-specific regulation of RPA by Aurora B kinase. Aurora B phosphorylates Ser-384 in the DNA binding domain B of the large RPA70 subunit and highlights a mode of regulation distinct from RPA32. Disruption of Ser-384 phosphorylation in RPA70 leads to defects in chromosome segregation with loss of viability and a feedback modulation of Aurora B activity. Phosphorylation at Ser-384 remodels the protein interaction domains of RPA. Furthermore, phosphorylation impairs RPA binding to DSS1 that likely suppresses homologous recombination during mitosis by preventing recruitment of DSS1-BRCA2 to exposed ssDNA. We showcase a critical Aurora B-RPA signaling axis in mitosis that is essential for maintaining genomic integrity.
Collapse
Affiliation(s)
- Poonam Roshan
- Department of Biology, St. Louis University, St. Louis, MO, 63103, USA
| | - Sahiti Kuppa
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Jenna R Mattice
- Department of Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Vikas Kaushik
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Rahul Chadda
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Nilisha Pokhrel
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53217, USA
| | - Brunda R Tumala
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Aparna Biswas
- Department of Biology, St. Louis University, St. Louis, MO, 63103, USA
| | - Brian Bothner
- Department of Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO, 63104, USA.
| | - Sofia Origanti
- Department of Biology, St. Louis University, St. Louis, MO, 63103, USA.
| |
Collapse
|
7
|
Interdomain dynamics in human Replication Protein A regulates kinetics and thermodynamics of its binding to ssDNA. PLoS One 2023; 18:e0278396. [PMID: 36656834 PMCID: PMC9851514 DOI: 10.1371/journal.pone.0278396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/15/2022] [Indexed: 01/20/2023] Open
Abstract
Human Replication Protein A (hRPA) is a multidomain protein that interacts with ssDNA intermediates to provide the latter much-needed stability during DNA metabolism and maintain genomic integrity. Although the ssDNA organization with hRPA was studied recently through experimental means, characterizing the underlying mechanism at the atomic level remains challenging because of the dynamic domain architecture of hRPA and poorly understood heterogeneity of ssDNA-protein interactions. Here, we used a computational framework, precisely tailored to capture protein-ssDNA interactions, and investigated the binding of hRPA with a 60 nt ssDNA. Two distinct binding mechanisms are realized based on the hRPA domain flexibility. For a rigid domain architecture of hRPA, ssDNA binds sequentially with hRPA domains, resulting in slow association kinetics. The binding pathway involves the formation of stable and distinct intermediate states. On contrary, for a flexible domain architecture of hRPA, ssDNA binds synergistically to the A and B domains followed by the rest of hRPA. The domain dynamics in hRPA alleviates the free energy cost of domain orientation necessary for specific binding with ssDNA, leading to fast association kinetics along a downhill binding free energy landscape. An ensemble of free energetically degenerate intermediate states is encountered that makes it arduous to characterize them structurally. An excellent match between our results with the available experimental observations provides new insights into the rich dynamics of hRPA binding to ssDNA and in general paves the way to investigate intricate details of ssDNA-protein interactions, crucial for cellular functioning.
Collapse
|
8
|
Tsutakawa SE, Bacolla A, Katsonis P, Bralić A, Hamdan SM, Lichtarge O, Tainer JA, Tsai CL. Decoding Cancer Variants of Unknown Significance for Helicase-Nuclease-RPA Complexes Orchestrating DNA Repair During Transcription and Replication. Front Mol Biosci 2021; 8:791792. [PMID: 34966786 PMCID: PMC8710748 DOI: 10.3389/fmolb.2021.791792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/16/2021] [Indexed: 01/13/2023] Open
Abstract
All tumors have DNA mutations, and a predictive understanding of those mutations could inform clinical treatments. However, 40% of the mutations are variants of unknown significance (VUS), with the challenge being to objectively predict whether a VUS is pathogenic and supports the tumor or whether it is benign. To objectively decode VUS, we mapped cancer sequence data and evolutionary trace (ET) scores onto crystallography and cryo-electron microscopy structures with variant impacts quantitated by evolutionary action (EA) measures. As tumors depend on helicases and nucleases to deal with transcription/replication stress, we targeted helicase–nuclease–RPA complexes: (1) XPB-XPD (within TFIIH), XPF-ERCC1, XPG, and RPA for transcription and nucleotide excision repair pathways and (2) BLM, EXO5, and RPA plus DNA2 for stalled replication fork restart. As validation, EA scoring predicts severe effects for most disease mutations, but disease mutants with low ET scores not only are likely destabilizing but also disrupt sophisticated allosteric mechanisms. For sites of disease mutations and VUS predicted to be severe, we found strong co-localization to ordered regions. Rare discrepancies highlighted the different survival requirements between disease and tumor mutations, as well as the value of examining proteins within complexes. In a genome-wide analysis of 33 cancer types, we found correlation between the number of mutations in each tumor and which pathways or functional processes in which the mutations occur, revealing different mutagenic routes to tumorigenesis. We also found upregulation of ancient genes including BLM, which supports a non-random and concerted cancer process: reversion to a unicellular, proliferation-uncontrolled, status by breaking multicellular constraints on cell division. Together, these genes and global analyses challenge the binary “driver” and “passenger” mutation paradigm, support a gradient impact as revealed by EA scoring from moderate to severe at a single gene level, and indicate reduced regulation as well as activity. The objective quantitative assessment of VUS scoring and gene overexpression in the context of functional interactions and pathways provides insights for biology, oncology, and precision medicine.
Collapse
Affiliation(s)
- Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Amer Bralić
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Samir M Hamdan
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - John A Tainer
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States.,Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Chi-Lin Tsai
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
9
|
Hambarde S, Tsai CL, Pandita RK, Bacolla A, Maitra A, Charaka V, Hunt CR, Kumar R, Limbo O, Le Meur R, Chazin WJ, Tsutakawa SE, Russell P, Schlacher K, Pandita TK, Tainer JA. EXO5-DNA structure and BLM interactions direct DNA resection critical for ATR-dependent replication restart. Mol Cell 2021; 81:2989-3006.e9. [PMID: 34197737 PMCID: PMC8720176 DOI: 10.1016/j.molcel.2021.05.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/09/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Stalled DNA replication fork restart after stress as orchestrated by ATR kinase, BLM helicase, and structure-specific nucleases enables replication, cell survival, and genome stability. Here we unveil human exonuclease V (EXO5) as an ATR-regulated DNA structure-specific nuclease and BLM partner for replication fork restart. We find that elevated EXO5 in tumors correlates with increased mutation loads and poor patient survival, suggesting that EXO5 upregulation has oncogenic potential. Structural, mechanistic, and mutational analyses of EXO5 and EXO5-DNA complexes reveal a single-stranded DNA binding channel with an adjacent ATR phosphorylation motif (T88Q89) that regulates EXO5 nuclease activity and BLM binding identified by mass spectrometric analysis. EXO5 phospho-mimetic mutant rescues the restart defect from EXO5 depletion that decreases fork progression, DNA damage repair, and cell survival. EXO5 depletion furthermore rescues survival of FANCA-deficient cells and indicates EXO5 functions epistatically with SMARCAL1 and BLM. Thus, an EXO5 axis connects ATR and BLM in directing replication fork restart.
Collapse
Affiliation(s)
- Shashank Hambarde
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Neurosurgery, The Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Chi-Lin Tsai
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Raj K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anirban Maitra
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vijay Charaka
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Clayton R Hunt
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vashino Devi University, Katra, Jammu and Kashmir, 182320, India
| | - Oliver Limbo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Remy Le Meur
- Departments of Biochemistry and Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Walter J Chazin
- Departments of Biochemistry and Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Paul Russell
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Katharina Schlacher
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tej K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Neurosurgery, The Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
10
|
Ahmad F, Patterson A, Deveryshetty J, Mattice JR, Pokhrel N, Bothner B, Antony E. Hydrogen-deuterium exchange reveals a dynamic DNA-binding map of replication protein A. Nucleic Acids Res 2021; 49:1455-1469. [PMID: 33444457 PMCID: PMC7897470 DOI: 10.1093/nar/gkaa1288] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 12/29/2022] Open
Abstract
Replication protein A (RPA) binds to single-stranded DNA (ssDNA) and interacts with over three dozen enzymes and serves as a recruitment hub to coordinate most DNA metabolic processes. RPA binds ssDNA utilizing multiple oligosaccharide/oligonucleotide binding domains and based on their individual DNA binding affinities are classified as high versus low-affinity DNA-binding domains (DBDs). However, recent evidence suggests that the DNA-binding dynamics of DBDs better define their roles. Utilizing hydrogen-deuterium exchange mass spectrometry (HDX-MS), we assessed the ssDNA-driven dynamics of the individual domains of human RPA. As expected, ssDNA binding shows HDX changes in DBDs A, B, C, D and E. However, DBD-A and DBD-B are dynamic and do not show robust DNA-dependent protection. DBD-C displays the most extensive changes in HDX, suggesting a major role in stabilizing RPA on ssDNA. Slower allosteric changes transpire in the protein-protein interaction domains and linker regions, and thus do not directly interact with ssDNA. Within a dynamics-based model for RPA, we propose that DBD-A and -B act as the dynamic half and DBD-C, -D and -E function as the less-dynamic half. Thus, segments of ssDNA buried under the dynamic half are likely more readily accessible to RPA-interacting proteins.
Collapse
Affiliation(s)
- Faiz Ahmad
- Department of Biochemistry, Saint Louis University, School of Medicine, St. Louis, MO 63104, USA
| | - Angela Patterson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Jaigeeth Deveryshetty
- Department of Biochemistry, Saint Louis University, School of Medicine, St. Louis, MO 63104, USA
| | - Jenna R Mattice
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Nilisha Pokhrel
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Edwin Antony
- Department of Biochemistry, Saint Louis University, School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
11
|
Brosey CA, Tainer JA. Evolving SAXS versatility: solution X-ray scattering for macromolecular architecture, functional landscapes, and integrative structural biology. Curr Opin Struct Biol 2019; 58:197-213. [PMID: 31204190 PMCID: PMC6778498 DOI: 10.1016/j.sbi.2019.04.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 11/27/2022]
Abstract
Small-angle X-ray scattering (SAXS) has emerged as an enabling integrative technique for comprehensive analyses of macromolecular structures and interactions in solution. Over the past two decades, SAXS has become a mainstay of the structural biologist's toolbox, supplying multiplexed measurements of molecular shape and dynamics that unveil biological function. Here, we discuss evolving SAXS theory, methods, and applications that extend the field of small-angle scattering beyond simple shape characterization. SAXS, coupled with size-exclusion chromatography (SEC-SAXS) and time-resolved (TR-SAXS) methods, is now providing high-resolution insight into macromolecular flexibility and ensembles, delineating biophysical landscapes, and facilitating high-throughput library screening to assess macromolecular properties and to create opportunities for drug discovery. Looking forward, we consider SAXS in the integrative era of hybrid structural biology methods, its potential for illuminating cellular supramolecular and mesoscale structures, and its capacity to complement high-throughput bioinformatics sequencing data. As advances in the field continue, we look forward to proliferating uses of SAXS based upon its abilities to robustly produce mechanistic insights for biology and medicine.
Collapse
Affiliation(s)
- Chris A Brosey
- Molecular and Cellular Oncology and Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
| | - John A Tainer
- Molecular and Cellular Oncology and Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
12
|
Wang QM, Yang YT, Wang YR, Gao B, Xi XG, Hou XM. Human replication protein A induces dynamic changes in single-stranded DNA and RNA structures. J Biol Chem 2019; 294:13915-13927. [PMID: 31350334 DOI: 10.1074/jbc.ra119.009737] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/25/2019] [Indexed: 01/05/2023] Open
Abstract
Replication protein A (RPA) is the major eukaryotic ssDNA-binding protein and has essential roles in genome maintenance. RPA binds to ssDNA through multiple modes, and recent studies have suggested that the RPA-ssDNA interaction is dynamic. However, how RPA alternates between different binding modes and modifies ssDNA structures in this dynamic interaction remains unknown. Here, we used single-molecule FRET to systematically investigate the interaction between human RPA and ssDNA. We show that RPA can adopt different types of binding complexes with ssDNAs of different lengths, leading to the straightening or bending of the ssDNAs, depending on both the length and structure of the ssDNA substrate and the RPA concentration. Importantly, we noted that some of the complexes are highly dynamic, whereas others appear relatively static. On the basis of the above observations, we propose a model explaining how RPA dynamically engages with ssDNA. Of note, fluorescence anisotropy indicated that RPA can also associate with RNA but with a lower binding affinity than with ssDNA. At the single-molecule level, we observed that RPA is undergoing rapid and repetitive associations with and dissociation from the RNA. This study may provide new insights into the rich dynamics of RPA binding to ssDNA and RNA.
Collapse
Affiliation(s)
- Qing-Man Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yan-Tao Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi-Ran Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bo Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xu-Guang Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.,Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, CNRS, 61 Avenue du Président Wilson, 94235 Cachan, France
| | - Xi-Miao Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
13
|
Pokhrel N, Caldwell CC, Corless EI, Tillison EA, Tibbs J, Jocic N, Tabei SMA, Wold MS, Spies M, Antony E. Dynamics and selective remodeling of the DNA-binding domains of RPA. Nat Struct Mol Biol 2019; 26:129-136. [PMID: 30723327 PMCID: PMC6368398 DOI: 10.1038/s41594-018-0181-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/19/2018] [Indexed: 12/16/2022]
Abstract
Replication protein A (RPA) coordinates important DNA metabolic events by stabilizing single-stranded DNA (ssDNA) intermediates, activating the DNA-damage response and handing off ssDNA to the appropriate downstream players. Six DNA-binding domains (DBDs) in RPA promote high-affinity binding to ssDNA yet also allow RPA displacement by lower affinity proteins. We generated fluorescent versions of Saccharomyces cerevisiae RPA and visualized the conformational dynamics of individual DBDs in the context of the full-length protein. We show that both DBD-A and DBD-D rapidly bind to and dissociate from ssDNA while RPA remains bound to ssDNA. The recombination mediator protein Rad52 selectively modulates the dynamics of DBD-D. These findings reveal how RPA-interacting proteins with lower ssDNA binding affinities can access the occluded ssDNA and remodel individual DBDs to replace RPA.
Collapse
Affiliation(s)
- Nilisha Pokhrel
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Colleen C Caldwell
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Elliot I Corless
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Emma A Tillison
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Joseph Tibbs
- Department of Physics, University of Northern Iowa, Cedar Falls, IA, USA
| | - Nina Jocic
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Department of Physics, University of Northern Iowa, Cedar Falls, IA, USA
| | - S M Ali Tabei
- Department of Physics, University of Northern Iowa, Cedar Falls, IA, USA
| | - Marc S Wold
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Maria Spies
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| | - Edwin Antony
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA.
| |
Collapse
|
14
|
Wang W, Sun L, Zhang S, Zhang H, Shi J, Xu T, Li K. Analysis and prediction of single-stranded and double-stranded DNA binding proteins based on protein sequences. BMC Bioinformatics 2017; 18:300. [PMID: 28606086 PMCID: PMC5469069 DOI: 10.1186/s12859-017-1715-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/06/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND DNA-binding proteins perform important functions in a great number of biological activities. DNA-binding proteins can interact with ssDNA (single-stranded DNA) or dsDNA (double-stranded DNA), and DNA-binding proteins can be categorized as single-stranded DNA-binding proteins (SSBs) and double-stranded DNA-binding proteins (DSBs). The identification of DNA-binding proteins from amino acid sequences can help to annotate protein functions and understand the binding specificity. In this study, we systematically consider a variety of schemes to represent protein sequences: OAAC (overall amino acid composition) features, dipeptide compositions, PSSM (position-specific scoring matrix profiles) and split amino acid composition (SAA), and then we adopt SVM (support vector machine) and RF (random forest) classification model to distinguish SSBs from DSBs. RESULTS Our results suggest that some sequence features can significantly differentiate DSBs and SSBs. Evaluated by 10 fold cross-validation on the benchmark datasets, our prediction method can achieve the accuracy of 88.7% and AUC (area under the curve) of 0.919. Moreover, our method has good performance in independent testing. CONCLUSIONS Using various sequence-derived features, a novel method is proposed to distinguish DSBs and SSBs accurately. The method also explores novel features, which could be helpful to discover the binding specificity of DNA-binding proteins.
Collapse
Affiliation(s)
- Wei Wang
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, Henan Province 453007 China
- Laboratory of Computation Intelligence and Information Processing, Engineering Technology Research Center for Computing Intelligence and Data Mining, Xinxiang, Henan Province 453007 China
| | - Lin Sun
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, Henan Province 453007 China
| | - Shiguang Zhang
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, Henan Province 453007 China
| | - Hongjun Zhang
- School of Aviation Engineering, Anyang University, Anyang, Henan Province 455000 China
| | - Jinling Shi
- School of International Education, Xuchang University, Xuchang, Henan Province 461000 China
| | - Tianhe Xu
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, Henan Province 453007 China
| | - Keliang Li
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, Henan Province 453007 China
| |
Collapse
|
15
|
Wang W, Liu J, Sun L. Surface shapes and surrounding environment analysis of single- and double-stranded DNA-binding proteins in protein-DNA interface. Proteins 2016; 84:979-89. [PMID: 27038080 DOI: 10.1002/prot.25045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/15/2016] [Accepted: 03/25/2016] [Indexed: 11/12/2022]
Abstract
Protein-DNA bindings are critical to many biological processes. However, the structural mechanisms underlying these interactions are not fully understood. Here, we analyzed the residues shape (peak, flat, or valley) and the surrounding environment of double-stranded DNA-binding proteins (DSBs) and single-stranded DNA-binding proteins (SSBs) in protein-DNA interfaces. In the results, we found that the interface shapes, hydrogen bonds, and the surrounding environment present significant differences between the two kinds of proteins. Built on the investigation results, we constructed a random forest (RF) classifier to distinguish DSBs and SSBs with satisfying performance. In conclusion, we present a novel methodology to characterize protein interfaces, which will deepen our understanding of the specificity of proteins binding to ssDNA (single-stranded DNA) or dsDNA (double-stranded DNA). Proteins 2016; 84:979-989. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wei Wang
- Department of Computer Science and Technology, College of Computer and Information Engineering, Henan Normal University, Xinxiang, 453007, China.,Laboratory of Computation Intelligence and Information Processing, Engineering Technology Research Center for Computing Intelligence and Data Mining, Henan Province, China
| | - Juan Liu
- Institute of Computer Software, School of Computer, Wuhan University, Wuhan, 430072, China
| | - Lin Sun
- Department of Computer Science and Technology, College of Computer and Information Engineering, Henan Normal University, Xinxiang, 453007, China.,Laboratory of Computation Intelligence and Information Processing, Engineering Technology Research Center for Computing Intelligence and Data Mining, Henan Province, China
| |
Collapse
|
16
|
Kikhney AG, Svergun DI. A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins. FEBS Lett 2015; 589:2570-7. [PMID: 26320411 DOI: 10.1016/j.febslet.2015.08.027] [Citation(s) in RCA: 392] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 08/14/2015] [Accepted: 08/15/2015] [Indexed: 12/17/2022]
Abstract
Small-angle X-ray scattering (SAXS) is a biophysical method to study the overall shape and structural transitions of biological macromolecules in solution. SAXS provides low resolution information on the shape, conformation and assembly state of proteins, nucleic acids and various macromolecular complexes. The technique also offers powerful means for the quantitative analysis of flexible systems, including intrinsically disordered proteins (IDPs). Here, the basic principles of SAXS are presented, and profits and pitfalls of the characterization of multidomain flexible proteins and IDPs using SAXS are discussed from the practical point of view. Examples of the synergistic use of SAXS with high resolution methods like X-ray crystallography and nuclear magnetic resonance (NMR), as well as other experimental and in silico techniques to characterize completely, or partially unstructured proteins, are presented.
Collapse
Affiliation(s)
- Alexey G Kikhney
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestr. 85, Geb. 25a, 22607 Hamburg, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestr. 85, Geb. 25a, 22607 Hamburg, Germany.
| |
Collapse
|
17
|
Brosey CA, Soss SE, Brooks S, Yan C, Ivanov I, Dorai K, Chazin WJ. Functional dynamics in replication protein A DNA binding and protein recruitment domains. Structure 2015; 23:1028-38. [PMID: 26004442 DOI: 10.1016/j.str.2015.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/30/2015] [Accepted: 04/03/2015] [Indexed: 11/29/2022]
Abstract
Replication Protein A (RPA) is an essential scaffold for many DNA processing machines; its function relies on its modular architecture. Here, we report (15)N-nuclear magnetic resonance heteronuclear relaxation analysis to characterize the movements of single-stranded (ss) DNA binding and protein interaction modules in the RPA70 subunit. Our results provide direct evidence for coordination of the motion of the tandem RPA70AB ssDNA binding domains. Moreover, binding of ssDNA substrate is found to cause dramatic reorientation and full coupling of inter-domain motion. In contrast, the RPA70N protein interaction domain remains structurally and dynamically independent of RPA70AB regardless of binding of ssDNA. This autonomy of motion between the 70N and 70AB modules supports a model in which the two binding functions of RPA are mediated fully independently, but remain differentially coordinated depending on the length of their flexible tethers. A critical role for linkers between the globular domains in determining the functional dynamics of RPA is proposed.
Collapse
Affiliation(s)
- Chris A Brosey
- Departments of Biochemistry and Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-8725, USA
| | - Sarah E Soss
- Departments of Biochemistry and Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-8725, USA
| | - Sonja Brooks
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Chunli Yan
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-4098, USA
| | - Ivaylo Ivanov
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-4098, USA
| | - Kavita Dorai
- Department of Physics, Indian Institute of Science Education and Research (IISER), Mohali, Sector 81 Manauli PO, SAS Nagar, Punjab 140306, India
| | - Walter J Chazin
- Departments of Biochemistry and Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-8725, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
18
|
Topolska-Woś AM, Shell SM, Kilańczyk E, Szczepanowski RH, Chazin WJ, Filipek A. Dimerization and phosphatase activity of calcyclin-binding protein/Siah-1 interacting protein: the influence of oxidative stress. FASEB J 2015; 29:1711-24. [PMID: 25609429 DOI: 10.1096/fj.14-264770] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/11/2014] [Indexed: 11/11/2022]
Abstract
CacyBP/SIP [calcyclin-binding protein/Siah-1 [seven in absentia homolog 1 (Siah E3 ubiquitin protein ligase 1)] interacting protein] is a multifunctional protein whose activity includes acting as an ERK1/2 phosphatase. We analyzed dimerization of mouse CacyBP/SIP in vitro and in mouse neuroblastoma cell line (NB2a) cells, as well as the structure of a full-length protein. Moreover, we searched for the CacyBP/SIP domain important for dimerization and dephosphorylation of ERK2, and we analyzed the role of dimerization in ERK1/2 signaling in NB2a cells. Cell-based assays showed that CacyBP/SIP forms a homodimer in NB2a cell lysate, and biophysical methods demonstrated that CacyBP/SIP forms a stable dimer in vitro. Data obtained using small-angle X-ray scattering supported a model in which CacyBP/SIP occupies an anti-parallel orientation mediated by the N-terminal dimerization domain. Site-directed mutagenesis established that the N-terminal domain is indispensable for full phosphatase activity of CacyBP/SIP. We also demonstrated that the oligomerization state of CacyBP/SIP as well as the level of post-translational modifications and subcellular distribution of CacyBP/SIP change after activation of the ERK1/2 pathway in NB2a cells due to oxidative stress. Together, our results suggest that dimerization is important for controlling phosphatase activity of CacyBP/SIP and for regulating the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Agnieszka M Topolska-Woś
- *Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; and International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Steven M Shell
- *Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; and International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Ewa Kilańczyk
- *Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; and International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Roman H Szczepanowski
- *Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; and International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Walter J Chazin
- *Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; and International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Anna Filipek
- *Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; and International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
19
|
Sugitani N, Chazin WJ. Characteristics and concepts of dynamic hub proteins in DNA processing machinery from studies of RPA. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 117:206-211. [PMID: 25542993 DOI: 10.1016/j.pbiomolbio.2014.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 11/26/2022]
Abstract
DNA replication, damage response and repair require the coordinated action of multi-domain proteins operating within dynamic multi-protein machines that act upon the DNA substrate. These modular proteins contain flexible linkers of various lengths, which enable changes in the spatial distribution of the globular domains (architecture) that harbor their essential biochemical functions. This mobile architecture is uniquely suited to follow the evolving substrate landscape present over the course of the specific process performed by the multi-protein machinery. A fundamental advance in understanding of protein machinery is the realization of the pervasive role of dynamics. Not only is the machine undergoing dynamic transformations, but the proteins themselves are flexible and constantly adapting to the progression through the steps of the overall process. Within this dynamic context the activity of the constituent proteins must be coordinated, a role typically played by hub proteins. A number of important characteristics of modular proteins and concepts about the operation of dynamic machinery have been discerned. These provide the underlying basis for the action of the machinery that reads DNA, and responds to and repairs DNA damage. Here, we introduce a number of key characteristics and concepts, including the modularity of the proteins, linkage of weak binding sites, direct competition between sites, and allostery, using the well recognized hub protein replication protein A (RPA).
Collapse
Affiliation(s)
- Norie Sugitani
- Center for Structural Biology and Departments of Biochemistry and Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Walter J Chazin
- Center for Structural Biology and Departments of Biochemistry and Chemistry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
20
|
Wang W, Liu J, Zhou X. Identification of single-stranded and double-stranded DNA binding proteins based on protein structure. BMC Bioinformatics 2014; 15 Suppl 12:S4. [PMID: 25474071 PMCID: PMC4243121 DOI: 10.1186/1471-2105-15-s12-s4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background Protein-DNA interactions are essential for many biological processes. However, the structural mechanisms underlying these interactions are not fully understood. DNA binding proteins can be classified into double-stranded DNA binding proteins (DSBs) and single-stranded DNA binding proteins (SSBs), and they take part in different biological functions. DSBs usually act as transcriptional factors to regulate the genes' expressions, while SSBs usually play roles in DNA replication, recombination, and repair, etc. Understanding the binding specificity of a DNA binding protein is helpful for the research of protein functions. Results In this paper, we investigated the differences between DSBs and SSBs on surface tunnels as well as the OB-fold domain information. We detected the largest clefts on the protein surfaces, to obtain several features to be used for distinguishing the potential interfaces between SSBs and DSBs, and compared its structure with each of the six OB-fold protein templates, and use the maximal alignment score TM-score as the OB-fold feature of the protein, based on which, we constructed the support vector machine (SVM) classification model to automatically distinguish these two kinds of proteins, with prediction accuracy of 87%,83% and 83% for HOLO-set, APO-set and Mixed-set respectively. Conclusions We found that they have different ranges of tunnel lengths and tunnel curvatures; moreover, the alignment results with OB-fold templates have also found to be the discriminative feature of SSBs and DSBs. Experimental results on 10-fold cross validation indicate that the new feature set are effective to describe DNA binding proteins. The evaluation results on both bound (DNA-bound) and non-bound (DNA-free) proteins have shown the satisfactory performance of our method.
Collapse
|
21
|
Witosch J, Wolf E, Mizuno N. Architecture and ssDNA interaction of the Timeless-Tipin-RPA complex. Nucleic Acids Res 2014; 42:12912-27. [PMID: 25348395 PMCID: PMC4227788 DOI: 10.1093/nar/gku960] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Timeless-Tipin (Tim-Tipin) complex, also referred to as the fork protection complex, is involved in coordination of DNA replication. Tim-Tipin is suggested to be recruited to replication forks via Replication Protein A (RPA) but details of the interaction are unknown. Here, using cryo-EM and biochemical methods, we characterized complex formation of Tim-Tipin, RPA and single-stranded DNA (ssDNA). Tim-Tipin and RPA form a 258 kDa complex with a 1:1:1 stoichiometry. The cryo-EM 3D reconstruction revealed a globular architecture of the Tim-Tipin-RPA complex with a ring-like and a U-shaped domain covered by a RPA lid. Interestingly, RPA in the complex adopts a horse shoe-like shape resembling its conformation in the presence of long ssDNA (>30 nucleotides). Furthermore, the recruitment of the Tim-Tipin-RPA complex to ssDNA is modulated by the RPA conformation and requires RPA to be in the more compact 30 nt ssDNA binding mode. The dynamic formation and disruption of the Tim-Tipin-RPA-ssDNA complex implicates the RPA-based recruitment of Tim-Tipin to the replication fork.
Collapse
Affiliation(s)
- Justine Witosch
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Eva Wolf
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany Department of Physiological Chemistry and Center For Integrated Protein Science Munich (CIPSM), Butenandt Institute, Ludwig Maximilians University of Munich, Butenandtstrasse 5, 81377 Munich, Germany Institut für allgemeine Botanik, Johannes Gutenberg-University, Johannes-von-Müller-Weg 6, 55128 Mainz, Germany and Institute of Molecular Biology (IMB), Mainz, Germany
| | - Naoko Mizuno
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
22
|
Round A, Brown E, Marcellin R, Kapp U, Westfall CS, Jez JM, Zubieta C. Determination of the GH3.12 protein conformation through HPLC-integrated SAXS measurements combined with X-ray crystallography. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2072-80. [PMID: 24100325 DOI: 10.1107/s0907444913019276] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/11/2013] [Indexed: 01/06/2023]
Abstract
The combination of protein crystallography and small-angle X-ray scattering (SAXS) provides a powerful method to investigate changes in protein conformation. These complementary structural techniques were used to probe the solution structure of the apo and the ligand-bound forms of the Arabidopsis thaliana acyl acid-amido synthetase GH3.12. This enzyme is part of the extensive GH3 family and plays a critical role in the regulation of plant hormones through the formation of amino-acid-conjugated hormone products via an ATP-dependent reaction mechanism. The enzyme adopts two distinct C-terminal domain orientations with `open' and `closed' active sites. Previous studies suggested that ATP only binds in the open orientation. Here, the X-ray crystal structure of GH3.12 is presented in the closed conformation in complex with the nonhydrolysable ATP analogue AMPCPP and the substrate salicylate. Using on-line HPLC purification combined with SAXS measurements, the most likely apo and ATP-bound protein conformations in solution were determined. These studies demonstrate that the C-terminal domain is flexible in the apo form and favours the closed conformation upon ATP binding. In addition, these data illustrate the efficacy of on-line HPLC purification integrated into the SAXS sample-handling environment to reliably monitor small changes in protein conformation through the collection of aggregate-free and highly redundant data.
Collapse
Affiliation(s)
- Adam Round
- European Molecular Biology Laboratory, Grenoble Outstation, 6 Rue Jules Horowitz, 38042 Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Classen S, Hura GL, Holton JM, Rambo RP, Rodic I, McGuire PJ, Dyer K, Hammel M, Meigs G, Frankel KA, Tainer JA. Implementation and performance of SIBYLS: a dual endstation small-angle X-ray scattering and macromolecular crystallography beamline at the Advanced Light Source. J Appl Crystallogr 2013; 46:1-13. [PMID: 23396808 PMCID: PMC3547225 DOI: 10.1107/s0021889812048698] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/27/2012] [Indexed: 12/02/2022] Open
Abstract
The SIBYLS beamline (12.3.1) of the Advanced Light Source at Lawrence Berkeley National Laboratory, supported by the US Department of Energy and the National Institutes of Health, is optimized for both small-angle X-ray scattering (SAXS) and macromolecular crystallography (MX), making it unique among the world's mostly SAXS or MX dedicated beamlines. Since SIBYLS was commissioned, assessments of the limitations and advantages of a combined SAXS and MX beamline have suggested new strategies for integration and optimal data collection methods and have led to additional hardware and software enhancements. Features described include a dual mode monochromator [containing both Si(111) crystals and Mo/B(4)C multilayer elements], rapid beamline optics conversion between SAXS and MX modes, active beam stabilization, sample-loading robotics, and mail-in and remote data collection. These features allow users to gain valuable insights from both dynamic solution scattering and high-resolution atomic diffraction experiments performed at a single synchrotron beamline. Key practical issues considered for data collection and analysis include radiation damage, structural ensembles, alternative conformers and flexibility. SIBYLS develops and applies efficient combined MX and SAXS methods that deliver high-impact results by providing robust cost-effective routes to connect structures to biology and by performing experiments that aid beamline designs for next generation light sources.
Collapse
Affiliation(s)
- Scott Classen
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Greg L. Hura
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - James M. Holton
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2330, USA
| | - Robert P. Rambo
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ivan Rodic
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Patrick J. McGuire
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kevin Dyer
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Michal Hammel
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - George Meigs
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kenneth A. Frankel
- Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - John A. Tainer
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
24
|
Brosey CA, Yan C, Tsutakawa SE, Heller WT, Rambo RP, Tainer JA, Ivanov I, Chazin WJ. A new structural framework for integrating replication protein A into DNA processing machinery. Nucleic Acids Res 2013; 41:2313-27. [PMID: 23303776 PMCID: PMC3575853 DOI: 10.1093/nar/gks1332] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
By coupling the protection and organization of single-stranded DNA (ssDNA) with recruitment and alignment of DNA processing factors, replication protein A (RPA) lies at the heart of dynamic multi-protein DNA processing machinery. Nevertheless, how RPA coordinates biochemical functions of its eight domains remains unknown. We examined the structural biochemistry of RPA’s DNA-binding activity, combining small-angle X-ray and neutron scattering with all-atom molecular dynamics simulations to investigate the architecture of RPA’s DNA-binding core. The scattering data reveal compaction promoted by DNA binding; DNA-free RPA exists in an ensemble of states with inter-domain mobility and becomes progressively more condensed and less dynamic on binding ssDNA. Our results contrast with previous models proposing RPA initially binds ssDNA in a condensed state and becomes more extended as it fully engages the substrate. Moreover, the consensus view that RPA engages ssDNA in initial, intermediate and final stages conflicts with our data revealing that RPA undergoes two (not three) transitions as it binds ssDNA with no evidence for a discrete intermediate state. These results form a framework for understanding how RPA integrates the ssDNA substrate into DNA processing machinery, provides substrate access to its binding partners and promotes the progression and selection of DNA processing pathways.
Collapse
Affiliation(s)
- Chris A Brosey
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Glanzer JG, Carnes KA, Soto P, Liu S, Parkhurst LJ, Oakley GG. A small molecule directly inhibits the p53 transactivation domain from binding to replication protein A. Nucleic Acids Res 2012; 41:2047-59. [PMID: 23267009 PMCID: PMC3561959 DOI: 10.1093/nar/gks1291] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Replication protein A (RPA), essential for DNA replication, repair and DNA damage signalling, possesses six ssDNA-binding domains (DBDs), including DBD-F on the N-terminus of the largest subunit, RPA70. This domain functions as a binding site for p53 and other DNA damage and repair proteins that contain amphipathic alpha helical domains. Here, we demonstrate direct binding of both ssDNA and the transactivation domain 2 of p53 (p53TAD2) to DBD-F, as well as DBD-F-directed dsDNA strand separation by RPA, all of which are inhibited by fumaropimaric acid (FPA). FPA binds directly to RPA, resulting in a conformational shift as determined through quenching of intrinsic tryptophan fluorescence in full length RPA. Structural analogues of FPA provide insight on chemical properties that are required for inhibition. Finally, we confirm the inability of RPA possessing R41E and R43E mutations to bind to p53, destabilize dsDNA and quench tryptophan fluorescence by FPA, suggesting that protein binding, DNA modulation and inhibitor binding all occur within the same site on DBD-F. The disruption of p53–RPA interactions by FPA may disturb the regulatory functions of p53 and RPA, thereby inhibiting cellular pathways that control the cell cycle and maintain the integrity of the human genome.
Collapse
Affiliation(s)
- Jason G Glanzer
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| | | | | | | | | | | |
Collapse
|
26
|
Rezaei-Ghaleh N, Blackledge M, Zweckstetter M. Intrinsically Disordered Proteins: From Sequence and Conformational Properties toward Drug Discovery. Chembiochem 2012; 13:930-50. [DOI: 10.1002/cbic.201200093] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Indexed: 01/31/2023]
|
27
|
Loakes D. Nucleotides and nucleic acids; oligo- and polynucleotides. ORGANOPHOSPHORUS CHEMISTRY 2012. [DOI: 10.1039/9781849734875-00169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- David Loakes
- Medical Research Council Laboratory of Molecular Biology, Hills Road Cambridge CB2 2QH UK
| |
Collapse
|
28
|
Tsutakawa SE, Tainer JA. Double strand binding-single strand incision mechanism for human flap endonuclease: implications for the superfamily. Mech Ageing Dev 2012; 133:195-202. [PMID: 22244820 DOI: 10.1016/j.mad.2011.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 10/31/2011] [Accepted: 11/29/2011] [Indexed: 11/17/2022]
Abstract
Detailed structural, mutational, and biochemical analyses of human FEN1/DNA complexes have revealed the mechanism for recognition of 5' flaps formed during lagging strand replication and DNA repair. FEN1 processes 5' flaps through a previously unknown, but structurally elegant double-stranded (ds) recognition/single stranded (ss) incision mechanism that both selects for 5' flaps and selects against ss DNA or RNA, intact dsDNA, and 3' flaps. Two major DNA binding interfaces, including a K(+) bridge between the DNA and the H2TH motif, are spaced one helical turn apart and together select for substrates with dsDNA. A conserved helical gateway and a helical cap protects the two-metal active site and selects for ss flaps with free termini. Structures of substrate and product reveal an unusual step between binding substrate and incision that involves a double base unpairing with incision occurring in the resulting unpaired DNA or RNA. Ordering of the active site requires a disorder-to-order transition induced by binding of an unpaired 3' flap, which ensures that the product is ligatable. Comparison with FEN superfamily members, including XPG, EXO1, and GEN1, identifies superfamily motifs such as the helical gateway that select for ss-dsDNA junctions and provides key biological insights into nuclease specificity and regulation.
Collapse
Affiliation(s)
- Susan E Tsutakawa
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | |
Collapse
|
29
|
Prakash A, Borgstahl GEO. The structure and function of replication protein A in DNA replication. Subcell Biochem 2012; 62:171-96. [PMID: 22918586 DOI: 10.1007/978-94-007-4572-8_10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In all organisms from bacteria and archaea to eukarya, single-stranded DNA binding proteins play an essential role in most, if not all, nuclear metabolism involving single-stranded DNA (ssDNA). Replication protein A (RPA), the major eukaryotic ssDNA binding protein, has two important roles in DNA metabolism: (1) in binding ssDNA to protect it and to keep it unfolded, and (2) in coordinating the assembly and disassembly of numerous proteins and protein complexes during processes such as DNA replication. Since its discovery as a vital player in the process of replication, RPAs roles in recombination and DNA repair quickly became evident. This chapter summarizes the current understanding of RPA's roles in replication by reviewing the available structural data, DNA-binding properties, interactions with various replication proteins, and interactions with DNA repair proteins when DNA replication is stalled.
Collapse
Affiliation(s)
- Aishwarya Prakash
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Given Medical Building, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | | |
Collapse
|
30
|
Brosey CA, Tsutakawa SE, Chazin WJ. Sample preparation methods to analyze DNA-induced structural changes in replication protein A. Methods Mol Biol 2012; 922:101-22. [PMID: 22976179 DOI: 10.1007/978-1-62703-032-8_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Propagation and maintenance of the cellular genome are among the most fundamental cellular processes, encompassing pathways associated with DNA replication, damage response, and repair. Replication Protein A (RPA), the primary single-stranded DNA-binding protein (SSB) in eukaryotes, serves to protect ssDNA generated during these events and to recruit and organize other DNA-processing factors requiring access to ssDNA substrates. RPA engages ssDNA in distinct, progressive binding modes, which are thought to correspond to different functional states of the protein during the course of DNA processing. Structural characterization of these unique complexes has remained challenging, however, as RPA is a multi-domain protein characterized by a flexible, modular organization. Biophysical approaches that are well suited to probing time-varying architectures, such as NMR and small-angle X-ray and neutron scattering (SAXS/SANS), when integrated with computational methods, can provide critical insights into the architectural changes associated with RPA's different DNA-binding modes. The success of these methods, however, is highly contingent upon the purity, homogeneity, and stability of the sample under study. Here we describe a basic protocol for characterizing and optimizing sample conditions for RPA/ssDNA complexes prior to study by SAXS and/or SANS.
Collapse
Affiliation(s)
- Chris A Brosey
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | | | | |
Collapse
|
31
|
Carra C, Saha J, Cucinotta FA. Theoretical prediction of the binding free energy for mutants of replication protein A. J Mol Model 2011; 18:3035-49. [PMID: 22160652 DOI: 10.1007/s00894-011-1313-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 11/16/2011] [Indexed: 01/29/2023]
Abstract
The replication protein A (RPA) is a heterotrimeric (70, 32, and 14 kDa subunits), single stranded DNA (ssDNA) binding protein required for pivotal functions in the cell metabolism, such as chromosomal replication, prevention of hairpin formation, DNA repair and recombination, and signaling after DNA damage. Studies based on deletions and mutations have identified the high affinity ssDNA binding domains in the 70 kDa subunit of RPA, regions A and B. Individually, the domain A and B have a low affinity for ssDNA, while tandems composed of AA, AB, BB, and BA sequences bind the ssDNA with moderate to high affinity. Single and double point mutations on polar residues in the binding domains leads to a reduction in affinity of RPA for ssDNA, in particular when two hydrophilic residues are involved. In view of these results, we performed a study based on molecular dynamics simulation aimed to reproduce the experimental change in binding free energy, ΔΔG, of RPA70 mutants to further elucidate the nature of the protein-ssDNA interaction. The MM-PB(GB)SA methods implemented in Amber10 and the code FoldX were used to estimate the binding free energy. The theoretical and experimental ΔΔG values correlate better when the results are obtained by MM-PBSA calculated on individual trajectories for each mutant. In these conditions, the correlation coefficient between experimental and theoretical ΔΔG reaches a value of 0.95 despite the overestimation of the energy change by one order of magnitude. The decomposition of the MM-GBSA energy per residue allows us to correlate the change of the affinity with the residue polarity and energy contribution to the binding. The method revealed reliable predictions of the change in the affinity in function of mutations, and can be used to identify new mutants with distinct binding properties.
Collapse
Affiliation(s)
- Claudio Carra
- Universities Space Research Association, Columbia, MD, USA.
| | | | | |
Collapse
|
32
|
Carra C, Cucinotta FA. Accurate prediction of the binding free energy and analysis of the mechanism of the interaction of replication protein A (RPA) with ssDNA. J Mol Model 2011; 18:2761-83. [PMID: 22116609 DOI: 10.1007/s00894-011-1288-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 10/19/2011] [Indexed: 10/15/2022]
Abstract
The eukaryotic replication protein A (RPA) has several pivotal functions in the cell metabolism, such as chromosomal replication, prevention of hairpin formation, DNA repair and recombination, and signaling after DNA damage. Moreover, RPA seems to have a crucial role in organizing the sequential assembly of DNA processing proteins along single stranded DNA (ssDNA). The strong RPA affinity for ssDNA, K(A) between 10(-9)-10(-10) M, is characterized by a low cooperativity with minor variation for changes on the nucleotide sequence. Recently, new data on RPA interactions was reported, including the binding free energy of the complex RPA70AB with dC(8) and dC(5), which has been estimated to be -10 ± 0.4 kcal mol(-1) and -7 ± 1 kcal mol(-1), respectively. In view of these results we performed a study based on molecular dynamics aimed to reproduce the absolute binding free energy of RPA70AB with the dC(5) and dC(8) oligonucleotides. We used several tools to analyze the binding free energy, rigidity, and time evolution of the complex. The results obtained by MM-PBSA method, with the use of ligand free geometry as a reference for the receptor in the separate trajectory approach, are in excellent agreement with the experimental data, with ±4 kcal mol(-1) error. This result shows that the MM-PB(GB)SA methods can provide accurate quantitative estimates of the binding free energy for interacting complexes when appropriate geometries are used for the receptor, ligand and complex. The decomposition of the MM-GBSA energy for each residue in the receptor allowed us to correlate the change of the affinity of the mutated protein with the ΔG(gas+sol) contribution of the residue considered in the mutation. The agreement with experiment is optimal and a strong change in the binding free energy can be considered as the dominant factor in the loss for the binding affinity resulting from mutation.
Collapse
Affiliation(s)
- Claudio Carra
- Universities Space Research Association, Houston, TX 77058, USA.
| | | |
Collapse
|
33
|
Structural Characterization of Intramolecular Hg2+ Transfer between Flexibly Linked Domains of Mercuric Ion Reductase. J Mol Biol 2011; 413:639-56. [DOI: 10.1016/j.jmb.2011.08.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/20/2011] [Accepted: 08/22/2011] [Indexed: 11/20/2022]
|
34
|
Bernadó P, Svergun DI. Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering. MOLECULAR BIOSYSTEMS 2011; 8:151-67. [PMID: 21947276 DOI: 10.1039/c1mb05275f] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Small-angle scattering of X-rays (SAXS) is an established method to study the overall structure and structural transitions of biological macromolecules in solution. For folded proteins, the technique provides three-dimensional low resolution structures ab initio or it can be used to drive rigid-body modeling. SAXS is also a powerful tool for the quantitative analysis of flexible systems, including intrinsically disordered proteins (IDPs), and is highly complementary to the high resolution methods of X-ray crystallography and NMR. Here we present the basic principles of SAXS and review the main approaches to the characterization of IDPs and flexible multidomain proteins using SAXS. Together with the standard approaches based on the analysis of overall parameters, a recently developed Ensemble Optimization Method (EOM) is now available. The latter method allows for the co-existence of multiple protein conformations in solution compatible with the scattering data. Analysis of the selected ensembles provides quantitative information about flexibility and also offers insights into structural features. Examples of the use of SAXS and combined approaches with NMR, X-ray crystallography, and computational methods to characterize completely or partially disordered proteins are presented.
Collapse
Affiliation(s)
- Pau Bernadó
- Institute for Research in Biomedicine, Parc Científic de Barcelona, Barcelona, Spain.
| | | |
Collapse
|
35
|
BID binds to replication protein A and stimulates ATR function following replicative stress. Mol Cell Biol 2011; 31:4298-309. [PMID: 21859891 DOI: 10.1128/mcb.05737-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Proapoptotic BH3-interacting death domain agonist (BID) regulates apoptosis and the DNA damage response. Following replicative stress, BID associates with proteins of the DNA damage sensor complex, including replication protein A (RPA), ataxia telangiectasia and Rad3 related (ATR), and ATR-interacting protein (ATRIP), and facilitates an efficient DNA damage response. We have found that BID stimulates the association of RPA with components of the DNA damage sensor complex through interaction with the basic cleft of the N-terminal domain of the RPA70 subunit. Disruption of the BID-RPA interaction impairs the association of ATR-ATRIP with chromatin as well as ATR function, as measured by CHK1 activation and recovery of DNA replication following hydroxyurea (HU). We further demonstrate that the association of BID with RPA stimulates the association of ATR-ATRIP to the DNA damage sensor complex. We propose a model in which BID associates with RPA and stimulates the recruitment and/or stabilization of ATR-ATRIP to the DNA damage sensor complex.
Collapse
|
36
|
Rambo RP, Tainer JA. Characterizing flexible and intrinsically unstructured biological macromolecules by SAS using the Porod-Debye law. Biopolymers 2011; 95:559-71. [PMID: 21509745 PMCID: PMC3103662 DOI: 10.1002/bip.21638] [Citation(s) in RCA: 398] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/05/2011] [Accepted: 04/10/2011] [Indexed: 01/06/2023]
Abstract
Unstructured proteins, RNA or DNA components provide functionally important flexibility that is key to many macromolecular assemblies throughout cell biology. As objective, quantitative experimental measures of flexibility and disorder in solution are limited, small angle scattering (SAS), and in particular small angle X-ray scattering (SAXS), provides a critical technology to assess macromolecular flexibility as well as shape and assembly. Here, we consider the Porod-Debye law as a powerful tool for detecting biopolymer flexibility in SAS experiments. We show that the Porod-Debye region fundamentally describes the nature of the scattering intensity decay by capturing the information needed for distinguishing between folded and flexible particles. Particularly for comparative SAS experiments, application of the law, as described here, can distinguish between discrete conformational changes and localized flexibility relevant to molecular recognition and interaction networks. This approach aids insightful analyses of fully and partly flexible macromolecules that is more robust and conclusive than traditional Kratky analyses. Furthermore, we demonstrate for prototypic SAXS data that the ability to calculate particle density by the Porod-Debye criteria, as shown here, provides an objective quality assurance parameter that may prove of general use for SAXS modeling and validation.
Collapse
Affiliation(s)
- Robert P. Rambo
- Life Sciences Division, Advanced LIght Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - John A. Tainer
- Life Sciences Division, Advanced LIght Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Department of Molecular Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
37
|
Glanzer JG, Liu S, Oakley GG. Small molecule inhibitor of the RPA70 N-terminal protein interaction domain discovered using in silico and in vitro methods. Bioorg Med Chem 2011; 19:2589-95. [PMID: 21459001 DOI: 10.1016/j.bmc.2011.03.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 02/25/2011] [Accepted: 03/06/2011] [Indexed: 01/26/2023]
Abstract
The pharmacological suppression of the DNA damage response and DNA repair can increase the therapeutic indices of conventional chemotherapeutics. Replication Protein A (RPA), the major single-stranded DNA binding protein in eukaryotes, is required for DNA replication, DNA repair, DNA recombination, and DNA damage response signaling. Through the use of high-throughput screening of 1500 compounds, we have identified a small molecule inhibitor, 15-carboxy-13-isopropylatis-13-ene-17,18-dioic acid (NSC15520), that inhibited both the binding of Rad9-GST and p53-GST fusion proteins to the RPA N-terminal DNA binding domain (DBD), interactions that are essential for robust DNA damage signaling. NSC15520 competitively inhibited the binding of p53-GST peptide with an IC(50) of 10 μM. NSC15520 also inhibited helix destabilization of a duplex DNA (dsDNA) oligonucleotide, an activity dependent on the N-terminal domain of RPA70. NSC15520 did not inhibit RPA from binding single-stranded oligonucleotides, suggesting that the action of this inhibitor is specific for the N-terminal DBD of RPA, and does not bind to DBDs essential for single-strand DNA binding. Computer modeling implicates direct competition between NSC15520 and Rad9 for the same binding surface on RPA. Inhibitors of protein-protein interactions within the N-terminus of RPA are predicted to act synergistically with DNA damaging agents and inhibitors of DNA repair. Novel compounds such as NSC15520 have the potential to serve as chemosensitizing agents.
Collapse
Affiliation(s)
- Jason G Glanzer
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, United States.
| | | | | |
Collapse
|
38
|
Campagne S, Gervais V, Milon A. Nuclear magnetic resonance analysis of protein-DNA interactions. J R Soc Interface 2011; 8:1065-78. [PMID: 21389020 DOI: 10.1098/rsif.2010.0543] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent methodological and instrumental advances in solution-state nuclear magnetic resonance have opened up the way to investigating challenging problems in structural biology such as large macromolecular complexes. This review focuses on the experimental strategies currently employed to solve structures of protein-DNA complexes and to analyse their dynamics. It highlights how these approaches can help in understanding detailed molecular mechanisms of target recognition.
Collapse
Affiliation(s)
- S Campagne
- Université de Toulouse, UPS, Department of Structural Biology and Biophysics, F-31077 Toulouse, France
| | | | | |
Collapse
|
39
|
Structural organization of the functional domains of Clostridium difficile toxins A and B. Proc Natl Acad Sci U S A 2010; 107:13467-72. [PMID: 20624955 DOI: 10.1073/pnas.1002199107] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Clostridium difficile toxins A and B are members of an important class of virulence factors known as large clostridial toxins (LCTs). Toxin action involves four major steps: receptor-mediated endocytosis, translocation of a catalytic glucosyltransferase domain across the membrane, release of the enzymatic moiety by autoproteolytic processing, and a glucosyltransferase-dependent inactivation of Rho family proteins. We have imaged toxin A (TcdA) and toxin B (TcdB) holotoxins by negative stain electron microscopy to show that these molecules are similar in structure. We then determined a 3D structure for TcdA and mapped the organization of its functional domains. The molecule has a "pincher-like" head corresponding to the delivery domain and two tails, long and short, corresponding to the receptor-binding and glucosyltransferase domains, respectively. A second structure, obtained at the acidic pH of an endosome, reveals a significant structural change in the delivery and glucosyltransferase domains, and thus provides a framework for understanding the molecular mechanism of LCT cellular intoxication.
Collapse
|