1
|
Schilke BA, Ziegelhoffer T, Domanski P, Marszalek J, Tomiczek B, Craig EA. Functional similarities and differences among subunits of the nascent polypeptide-associated complex (NAC) of Saccharomyces cerevisiae. Cell Stress Chaperones 2024; 29:721-734. [PMID: 39426497 PMCID: PMC11565464 DOI: 10.1016/j.cstres.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024] Open
Abstract
Protein factors bind ribosomes near the tunnel exit, facilitating protein trafficking and folding. In eukaryotes, the heterodimeric nascent polypeptide-associated complex (NAC) is the most abundant-equimolar to ribosomes. Saccharomyces cerevisiae has a minor β-type subunit (Nacβ2) in addition to abundant Nacβ1, and therefore two NAC heterodimers, α/β1 and α/β12. The additional beta NAC gene arose at the time of the whole genome duplication that occurred in the S. cerevisiae lineage. Nacβ2 has been implicated in regulating the fate of messenger RNA encoding ribosomal protein Rpl4 during translation via its interaction with the Caf130 subunit of the regulatory CCR4-Not complex. We found that Nacβ2 residues just C-terminal to the globular domain are required for its interaction with Caf130 and its negative effect on the growth of cells lacking Acl4, the specialized chaperone for Rpl4. Substitution of these Nacβ2 residues at homologous positions in Nacβ1 results in a chimeric protein that interacts with Caf130 and slows the growth of ∆acl4 cells lacking Nacβ2. Furthermore, alteration of residues in the N-terminus of Nacβ2 or chimeric Nacβ1 previously shown to affect ribosome binding overcomes the growth defect of ∆acl4. Our results are consistent with a model in which Nacβ2's ribosome association per se or its precise positioning is necessary for productive recruitment of CCR4-Not via its interaction with the Caf130 subunit to drive Rpl4 messenger RNA degradation.
Collapse
Affiliation(s)
- Brenda A Schilke
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53726, United States
| | - Thomas Ziegelhoffer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53726, United States
| | - Przemyslaw Domanski
- Intercollegiate Faculty of Biotechnology, University of Gdansk, Gdansk, Poland; Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Jaroslaw Marszalek
- Intercollegiate Faculty of Biotechnology, University of Gdansk, Gdansk, Poland
| | - Bartlomiej Tomiczek
- Intercollegiate Faculty of Biotechnology, University of Gdansk, Gdansk, Poland
| | - Elizabeth A Craig
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53726, United States.
| |
Collapse
|
2
|
Mishra D, Shekhar S, Subba P, Prasad TSK, Chakraborty S, Chakraborty N. Wheat TaNACα18 functions as a positive regulator of high-temperature adaptive responses and improves cell defense machinery. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2217-2235. [PMID: 38961633 DOI: 10.1111/tpj.16913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
Global wheat production amounted to >780 MMT during 2022-2023 whose market size are valued at >$128 billion. Wheat is highly susceptible to high-temperature stress (HTS) throughout the life cycle and its yield declines 5-7% with the rise in each degree of temperature. Previously, we reported an array of HTS-response markers from a resilient wheat cv. Unnat Halna and described their putative role in heat acclimation. To complement our previous results and identify the key determinants of thermotolerance, here we examined the cytoplasmic proteome of a sensitive cv. PBW343. The HTS-triggered metabolite reprograming highlighted how proteostasis defects influence the formation of an integrated stress-adaptive response. The proteomic analysis identified several promising HTS-responsive proteins, including a NACα18 protein, designated TaNACα18, whose role in thermotolerance remains unknown. Dual localization of TaNACα18 suggests its crucial functions in the cytoplasm and nucleus. The homodimerization of TaNACα18 anticipated its function as a transcriptional coactivator. The complementation of TaNACα18 in yeast and overexpression in wheat demonstrated its role in thermotolerance across the kingdom. Altogether, our results suggest that TaNACα18 imparts tolerance through tight regulation of gene expression, cell wall remodeling and activation of cell defense responses.
Collapse
Affiliation(s)
- Divya Mishra
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shubhendu Shekhar
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pratigya Subba
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya, Mangalore, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya, Mangalore, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
3
|
Ziegelhoffer T, Verma AK, Delewski W, Schilke BA, Hill PM, Pitek M, Marszalek J, Craig EA. NAC and Zuotin/Hsp70 chaperone systems coexist at the ribosome tunnel exit in vivo. Nucleic Acids Res 2024; 52:3346-3357. [PMID: 38224454 PMCID: PMC11014269 DOI: 10.1093/nar/gkae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024] Open
Abstract
The area surrounding the tunnel exit of the 60S ribosomal subunit is a hub for proteins involved in maturation and folding of emerging nascent polypeptide chains. How different factors vie for positioning at the tunnel exit in the complex cellular environment is not well understood. We used in vivo site-specific cross-linking to approach this question, focusing on two abundant factors-the nascent chain-associated complex (NAC) and the Hsp70 chaperone system that includes the J-domain protein co-chaperone Zuotin. We found that NAC and Zuotin can cross-link to each other at the ribosome, even when translation initiation is inhibited. Positions yielding NAC-Zuotin cross-links indicate that when both are present the central globular domain of NAC is modestly shifted from the mutually exclusive position observed in cryogenic electron microscopy analysis. Cross-linking results also suggest that, even in NAC's presence, Hsp70 can situate in a manner conducive for productive nascent chain interaction-with the peptide binding site at the tunnel exit and the J-domain of Zuotin appropriately positioned to drive stabilization of nascent chain binding. Overall, our results are consistent with the idea that, in vivo, the NAC and Hsp70 systems can productively position on the ribosome simultaneously.
Collapse
Affiliation(s)
- Thomas Ziegelhoffer
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI 53726, USA
| | - Amit K Verma
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI 53726, USA
| | - Wojciech Delewski
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI 53726, USA
| | - Brenda A Schilke
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI 53726, USA
| | - Paige M Hill
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI 53726, USA
| | - Marcin Pitek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk 80-307, Poland
| | - Jaroslaw Marszalek
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI 53726, USA
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk 80-307, Poland
| | - Elizabeth A Craig
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI 53726, USA
| |
Collapse
|
4
|
Minoia M, Quintana-Cordero J, Jetzinger K, Kotan IE, Turnbull KJ, Ciccarelli M, Masser AE, Liebers D, Gouarin E, Czech M, Hauryliuk V, Bukau B, Kramer G, Andréasson C. Chp1 is a dedicated chaperone at the ribosome that safeguards eEF1A biogenesis. Nat Commun 2024; 15:1382. [PMID: 38360885 PMCID: PMC10869706 DOI: 10.1038/s41467-024-45645-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024] Open
Abstract
Cotranslational protein folding depends on general chaperones that engage highly diverse nascent chains at the ribosomes. Here we discover a dedicated ribosome-associated chaperone, Chp1, that rewires the cotranslational folding machinery to assist in the challenging biogenesis of abundantly expressed eukaryotic translation elongation factor 1A (eEF1A). Our results indicate that during eEF1A synthesis, Chp1 is recruited to the ribosome with the help of the nascent polypeptide-associated complex (NAC), where it safeguards eEF1A biogenesis. Aberrant eEF1A production in the absence of Chp1 triggers instant proteolysis, widespread protein aggregation, activation of Hsf1 stress transcription and compromises cellular fitness. The expression of pathogenic eEF1A2 variants linked to epileptic-dyskinetic encephalopathy is protected by Chp1. Thus, eEF1A is a difficult-to-fold protein that necessitates a biogenesis pathway starting with dedicated folding factor Chp1 at the ribosome to protect the eukaryotic cell from proteostasis collapse.
Collapse
Affiliation(s)
- Melania Minoia
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jany Quintana-Cordero
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Katharina Jetzinger
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Ilgin Eser Kotan
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Kathryn Jane Turnbull
- Department of Clinical Microbiology, Rigshospitalet, 2200, Copenhagen, Denmark
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Science for Life Laboratory, Umeå University, Umeå, Sweden
| | - Michela Ciccarelli
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Anna E Masser
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Dorina Liebers
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Eloïse Gouarin
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Marius Czech
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Vasili Hauryliuk
- Science for Life Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
- University of Tartu, Institute of Technology, 50411, Tartu, Estonia
| | - Bernd Bukau
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Günter Kramer
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
5
|
Gamerdinger M, Jia M, Schloemer R, Rabl L, Jaskolowski M, Khakzar KM, Ulusoy Z, Wallisch A, Jomaa A, Hunaeus G, Scaiola A, Diederichs K, Ban N, Deuerling E. NAC controls cotranslational N-terminal methionine excision in eukaryotes. Science 2023; 380:1238-1243. [PMID: 37347872 DOI: 10.1126/science.adg3297] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/18/2023] [Indexed: 06/24/2023]
Abstract
N-terminal methionine excision from newly synthesized proteins, catalyzed cotranslationally by methionine aminopeptidases (METAPs), is an essential and universally conserved process that plays a key role in cell homeostasis and protein biogenesis. However, how METAPs interact with ribosomes and how their cleavage specificity is ensured is unknown. We discovered that in eukaryotes the nascent polypeptide-associated complex (NAC) controls ribosome binding of METAP1. NAC recruits METAP1 using a long, flexible tail and provides a platform for the formation of an active methionine excision complex at the ribosomal tunnel exit. This mode of interaction ensures the efficient excision of methionine from cytosolic proteins, whereas proteins targeted to the endoplasmic reticulum are spared. Our results suggest a broader mechanism for how access of protein biogenesis factors to translating ribosomes is controlled.
Collapse
Affiliation(s)
- Martin Gamerdinger
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany
| | - Min Jia
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Renate Schloemer
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany
| | - Laurenz Rabl
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany
| | - Mateusz Jaskolowski
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Katrin M Khakzar
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany
| | - Zeynel Ulusoy
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany
| | - Annalena Wallisch
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany
| | - Ahmad Jomaa
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Gundula Hunaeus
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany
| | - Alain Scaiola
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Kay Diederichs
- Department of Biology, Molecular Bioinformatics, University of Konstanz, 78457 Konstanz, Germany
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Elke Deuerling
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
6
|
Song D, Peng K, Palmer BE, Lee FS. The ribosomal chaperone NACA recruits PHD2 to cotranslationally modify HIF-α. EMBO J 2022; 41:e112059. [PMID: 36219563 PMCID: PMC9670199 DOI: 10.15252/embj.2022112059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/23/2022] [Accepted: 09/23/2022] [Indexed: 01/13/2023] Open
Abstract
Prolyl hydroxylase domain protein 2 (PHD2)-catalyzed modification of hypoxia-inducible factor (HIF)-α is a key event in oxygen sensing. We previously showed that the zinc finger of PHD2 binds to a Pro-Xaa-Leu-Glu (PXLE) motif. Here, we show that the zinc finger binds to this motif in the ribosomal chaperone nascent polypeptide complex-α (NACA). This recruits PHD2 to the translation machinery to cotranslationally modify HIF-α. Importantly, this cotranslational modification is enhanced by a translational pause sequence in HIF-α. Mice with a knock-in Naca gene mutation that abolishes the PXLE motif display erythrocytosis, a reflection of HIF pathway dysregulation. In addition, human erythrocytosis-associated mutations in the zinc finger of PHD2 ablate interaction with NACA. Tibetans, who have adapted to the hypoxia of high altitude, harbor a PHD2 variant that we previously showed displays a defect in zinc finger binding to p23, a PXLE-containing HSP90 cochaperone. We show here that Tibetan PHD2 maintains interaction with NACA, thereby showing differential interactions with PXLE-containing proteins and providing an explanation for why Tibetans are not predisposed to erythrocytosis.
Collapse
Affiliation(s)
- Daisheng Song
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Kai Peng
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Present address:
Chime BiologicsWuhanChina
| | - Bradleigh E Palmer
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Present address:
Department of BiologyJohns Hopkins UniversityBaltimoreMDUSA
| | - Frank S Lee
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
7
|
Zheng AJL, Thermou A, Daskalogianni C, Malbert-Colas L, Karakostis K, Le Sénéchal R, Trang Dinh V, Tovar Fernandez MC, Apcher S, Chen S, Blondel M, Fahraeus R. The nascent polypeptide-associated complex (NAC) controls translation initiation in cis by recruiting nucleolin to the encoding mRNA. Nucleic Acids Res 2022; 50:10110-10122. [PMID: 36107769 PMCID: PMC9508830 DOI: 10.1093/nar/gkac751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/10/2022] [Indexed: 11/20/2022] Open
Abstract
Protein aggregates and abnormal proteins are toxic and associated with neurodegenerative diseases. There are several mechanisms to help cells get rid of aggregates but little is known on how cells prevent aggregate-prone proteins from being synthesised. The EBNA1 of the Epstein-Barr virus (EBV) evades the immune system by suppressing its own mRNA translation initiation in order to minimize the production of antigenic peptides for the major histocompatibility (MHC) class I pathway. Here we show that the emerging peptide of the disordered glycine–alanine repeat (GAr) within EBNA1 dislodges the nascent polypeptide-associated complex (NAC) from the ribosome. This results in the recruitment of nucleolin to the GAr-encoding mRNA and suppression of mRNA translation initiation in cis. Suppressing NAC alpha (NACA) expression prevents nucleolin from binding to the GAr mRNA and overcomes GAr-mediated translation inhibition. Taken together, these observations suggest that EBNA1 exploits a nascent protein quality control pathway to regulate its own rate of synthesis that is based on sensing the nascent GAr peptide by NAC followed by the recruitment of nucleolin to the GAr-encoding RNA sequence.
Collapse
Affiliation(s)
- Alice J L Zheng
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris, Hôpital St. Louis , F-75010 Paris , France
| | - Aikaterini Thermou
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris, Hôpital St. Louis , F-75010 Paris , France
- ICCVS, University of Gdańsk , Science, ul. Wita Stwosza 63 , 80-308 Gdańsk , Poland
| | - Chrysoula Daskalogianni
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris, Hôpital St. Louis , F-75010 Paris , France
- ICCVS, University of Gdańsk , Science, ul. Wita Stwosza 63 , 80-308 Gdańsk , Poland
| | - Laurence Malbert-Colas
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris, Hôpital St. Louis , F-75010 Paris , France
| | - Konstantinos Karakostis
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris, Hôpital St. Louis , F-75010 Paris , France
| | - Ronan Le Sénéchal
- Inserm UMR 1078, Université de Bretagne Occidentale (UBO), Etablissement Français du Sang (EFS) Bretagne, CHRU Brest , 29200 , Brest , France
| | - Van Trang Dinh
- Inserm UMR 1078, Université de Bretagne Occidentale (UBO), Etablissement Français du Sang (EFS) Bretagne, CHRU Brest , 29200 , Brest , France
| | - Maria C Tovar Fernandez
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris, Hôpital St. Louis , F-75010 Paris , France
- ICCVS, University of Gdańsk , Science, ul. Wita Stwosza 63 , 80-308 Gdańsk , Poland
| | - Sébastien Apcher
- Institut Gustave Roussy, Université Paris Sud, Unité 1015 département d’immunologie , 114, rue Edouard Vaillant , 94805 Villejuif , France
| | - Sa Chen
- Department of Medical Biosciences, Building 6M, Umeå University , 901 85 Umeå , Sweden
| | - Marc Blondel
- Inserm UMR 1078, Université de Bretagne Occidentale (UBO), Etablissement Français du Sang (EFS) Bretagne, CHRU Brest , 29200 , Brest , France
| | - Robin Fahraeus
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris, Hôpital St. Louis , F-75010 Paris , France
- Department of Medical Biosciences, Building 6M, Umeå University , 901 85 Umeå , Sweden
- RECAMO, Masaryk Memorial Cancer Institute , Zluty kopec 7 , 65653 Brno , Czech Republic
| |
Collapse
|
8
|
Pillet B, Méndez-Godoy A, Murat G, Favre S, Stumpe M, Falquet L, Kressler D. Dedicated chaperones coordinate co-translational regulation of ribosomal protein production with ribosome assembly to preserve proteostasis. eLife 2022; 11:74255. [PMID: 35357307 PMCID: PMC8970588 DOI: 10.7554/elife.74255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/22/2022] [Indexed: 12/17/2022] Open
Abstract
The biogenesis of eukaryotic ribosomes involves the ordered assembly of around 80 ribosomal proteins. Supplying equimolar amounts of assembly-competent ribosomal proteins is complicated by their aggregation propensity and the spatial separation of their location of synthesis and pre-ribosome incorporation. Recent evidence has highlighted that dedicated chaperones protect individual, unassembled ribosomal proteins on their path to the pre-ribosomal assembly site. Here, we show that the co-translational recognition of Rpl3 and Rpl4 by their respective dedicated chaperone, Rrb1 or Acl4, reduces the degradation of the encoding RPL3 and RPL4 mRNAs in the yeast Saccharomyces cerevisiae. In both cases, negative regulation of mRNA levels occurs when the availability of the dedicated chaperone is limited and the nascent ribosomal protein is instead accessible to a regulatory machinery consisting of the nascent-polypeptide-associated complex and the Caf130-associated Ccr4-Not complex. Notably, deregulated expression of Rpl3 and Rpl4 leads to their massive aggregation and a perturbation of overall proteostasis in cells lacking the E3 ubiquitin ligase Tom1. Taken together, we have uncovered an unprecedented regulatory mechanism that adjusts the de novo synthesis of Rpl3 and Rpl4 to their actual consumption during ribosome assembly and, thereby, protects cells from the potentially detrimental effects of their surplus production. Living cells are packed full of molecules known as proteins, which perform many vital tasks the cells need to survive and grow. Machines called ribosomes inside the cells use template molecules called messenger RNAs (or mRNAs for short) to produce proteins. The newly-made proteins then have to travel to a specific location in the cell to perform their tasks. Some newly-made proteins are prone to forming clumps, so cells have other proteins known as chaperones that ensure these clumps do not form. The ribosomes themselves are made up of several proteins, some of which are also prone to clumping as they are being produced. To prevent this from happening, cells control how many ribosomal proteins they make, so there are just enough to form the ribosomes the cell needs at any given time. Previous studies found that, in yeast, two ribosomal proteins called Rpl3 and Rpl4 each have their own dedicated chaperone to prevent them from clumping. However, it remained unclear whether these chaperones are also involved in regulating the levels of Rpl3 and Rpl4. To address this question, Pillet et al. studied both of these dedicated chaperones in yeast cells. The experiments showed that the chaperones bound to their target proteins (either units of Rpl3 or Rpl4) as they were being produced on the ribosomes. This protected the template mRNAs the ribosomes were using to produce these proteins from being destroyed, thus allowing further units of Rpl3 and Rpl4 to be produced. When enough Rpl3 and Rpl4 units were made, there were not enough of the chaperones to bind them all, leaving the mRNA templates unprotected. This led to the destruction of the mRNA templates, which decreased the numbers of Rpl3 and Rpl4 units being produced. The work of Pillet et al. reveals a feedback mechanism that allows yeast to tightly control the levels of Rpl3 and Rpl4. In the future, these findings may help us understand diseases caused by defects in ribosomal proteins, such as Diamond-Blackfan anemia, and possibly also neurodegenerative diseases caused by clumps of proteins forming in cells. The next step will be to find out whether the mechanism uncovered by Pillet et al. also exists in human and other mammalian cells.
Collapse
Affiliation(s)
- Benjamin Pillet
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Guillaume Murat
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Sébastien Favre
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, Fribourg, Switzerland.,Metabolomics and Proteomics Platform, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Laurent Falquet
- Department of Biology, University of Fribourg, Fribourg, Switzerland.,Swiss Institute of Bioinformatics, University of Fribourg, Fribourg, Switzerland
| | - Dieter Kressler
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
9
|
Jomaa A, Gamerdinger M, Hsieh HH, Wallisch A, Chandrasekaran V, Ulusoy Z, Scaiola A, Hegde RS, Shan SO, Ban N, Deuerling E. Mechanism of signal sequence handover from NAC to SRP on ribosomes during ER-protein targeting. Science 2022; 375:839-844. [PMID: 35201867 PMCID: PMC7612438 DOI: 10.1126/science.abl6459] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The nascent polypeptide-associated complex (NAC) interacts with newly synthesized proteins at the ribosomal tunnel exit and competes with the signal recognition particle (SRP) to prevent mistargeting of cytosolic and mitochondrial polypeptides to the endoplasmic reticulum (ER). How NAC antagonizes SRP and how this is overcome by ER targeting signals are unknown. Here, we found that NAC uses two domains with opposing effects to control SRP access. The core globular domain prevented SRP from binding to signal-less ribosomes, whereas a flexibly attached domain transiently captured SRP to permit scanning of nascent chains. The emergence of an ER-targeting signal destabilized NAC's globular domain and facilitated SRP access to the nascent chain. These findings elucidate how NAC hands over the signal sequence to SRP and imparts specificity of protein localization.
Collapse
Affiliation(s)
- Ahmad Jomaa
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Martin Gamerdinger
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany
| | - Hao-Hsuan Hsieh
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Annalena Wallisch
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany
| | | | - Zeynel Ulusoy
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany
| | - Alain Scaiola
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Shu-ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Elke Deuerling
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
10
|
A ribosome-associated chaperone enables substrate triage in a cotranslational protein targeting complex. Nat Commun 2020; 11:5840. [PMID: 33203865 PMCID: PMC7673040 DOI: 10.1038/s41467-020-19548-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/20/2020] [Indexed: 12/22/2022] Open
Abstract
Protein biogenesis is essential in all cells and initiates when a nascent polypeptide emerges from the ribosome exit tunnel, where multiple ribosome-associated protein biogenesis factors (RPBs) direct nascent proteins to distinct fates. How distinct RPBs spatiotemporally coordinate with one another to affect accurate protein biogenesis is an emerging question. Here, we address this question by studying the role of a cotranslational chaperone, nascent polypeptide-associated complex (NAC), in regulating substrate selection by signal recognition particle (SRP), a universally conserved protein targeting machine. We show that mammalian SRP and SRP receptors (SR) are insufficient to generate the biologically required specificity for protein targeting to the endoplasmic reticulum. NAC co-binds with and remodels the conformational landscape of SRP on the ribosome to regulate its interaction kinetics with SR, thereby reducing the nonspecific targeting of signalless ribosomes and pre-emptive targeting of ribosomes with short nascent chains. Mathematical modeling demonstrates that the NAC-induced regulations of SRP activity are essential for the fidelity of cotranslational protein targeting. Our work establishes a molecular model for how NAC acts as a triage factor to prevent protein mislocalization, and demonstrates how the macromolecular crowding of RPBs at the ribosome exit site enhances the fidelity of substrate selection into individual protein biogenesis pathways.
Collapse
|
11
|
Caulfield TR, Hayes KE, Qiu Y, Coban M, Seok Oh J, Lane AL, Yoshimitsu T, Hazlehurst L, Copland JA, Tun HW. A Virtual Screening Platform Identifies Chloroethylagelastatin A as a Potential Ribosomal Inhibitor. Biomolecules 2020; 10:E1407. [PMID: 33027969 PMCID: PMC7599554 DOI: 10.3390/biom10101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 12/03/2022] Open
Abstract
Chloroethylagelastatin A (CEAA) is an analogue of agelastatin A (AA), a natural alkaloid derived from a marine sponge. It is under development for therapeutic use against brain tumors as it has excellent central nervous system (CNS) penetration and pre-clinical therapeutic activity against brain tumors. Recently, AA was shown to inhibit protein synthesis by binding to the ribosomal A-site. In this study, we developed a novel virtual screening platform to perform a comprehensive screening of various AA analogues showing that AA analogues with proven therapeutic activity including CEAA have significant ribosomal binding capacity whereas therapeutically inactive analogues show poor ribosomal binding and revealing structural fingerprint features essential for drug-ribosome interactions. In particular, CEAA was found to have greater ribosomal binding capacity than AA. Biological tests showed that CEAA binds the ribosome and contributes to protein synthesis inhibition. Our findings suggest that CEAA may possess ribosomal inhibitor activity and that our virtual screening platform may be a useful tool in discovery and development of novel ribosomal inhibitors.
Collapse
Affiliation(s)
- Thomas R. Caulfield
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (Y.Q.); (M.C.); (A.L.L.); (J.A.C.)
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Karen E. Hayes
- Modulation Therapeutics, Inc., Morgantown, WV 26506, USA;
| | - Yushi Qiu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (Y.Q.); (M.C.); (A.L.L.); (J.A.C.)
| | - Mathew Coban
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (Y.Q.); (M.C.); (A.L.L.); (J.A.C.)
| | - Joon Seok Oh
- Department of Chemistry, University of North Florida, Jacksonville, FL 32224, USA;
| | - Amy L. Lane
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (Y.Q.); (M.C.); (A.L.L.); (J.A.C.)
- Department of Chemistry, University of North Florida, Jacksonville, FL 32224, USA;
| | - Takehiko Yoshimitsu
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan;
| | - Lori Hazlehurst
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506, USA;
| | - John A. Copland
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (Y.Q.); (M.C.); (A.L.L.); (J.A.C.)
| | - Han W. Tun
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (Y.Q.); (M.C.); (A.L.L.); (J.A.C.)
- Department of Hematology/Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
12
|
Fíla J, Klodová B, Potěšil D, Juříček M, Šesták P, Zdráhal Z, Honys D. The beta Subunit of Nascent Polypeptide Associated Complex Plays A Role in Flowers and Siliques Development of Arabidopsis thaliana. Int J Mol Sci 2020; 21:E2065. [PMID: 32192231 PMCID: PMC7139743 DOI: 10.3390/ijms21062065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/11/2020] [Accepted: 03/14/2020] [Indexed: 01/06/2023] Open
Abstract
The nascent polypeptide-associated (NAC) complex was described in yeast as a heterodimer composed of two subunits, α and β, and was shown to bind to the nascent polypeptides newly emerging from the ribosomes. NAC function was widely described in yeast and several information are also available about its role in plants. The knock down of individual NAC subunit(s) led usually to a higher sensitivity to stress. In Arabidopsis thaliana genome, there are five genes encoding NACα subunit, and two genes encoding NACβ. Double homozygous mutant in both genes coding for NACβ was acquired, which showed a delayed development compared to the wild type, had abnormal number of flower organs, shorter siliques and greatly reduced seed set. Both NACβ genes were characterized in more detail-the phenotype of the double homozygous mutant was complemented by a functional NACβ copy. Then, both NACβ genes were localized to nuclei and cytoplasm and their promoters were active in many organs (leaves, cauline leaves, flowers, pollen grains, and siliques together with seeds). Since flowers were the most affected organs by nacβ mutation, the flower buds' transcriptome was identified by RNA sequencing, and their proteome by gel-free approach. The differential expression analyses of transcriptomic and proteomic datasets suggest the involvement of NACβ subunits in stress responses, male gametophyte development, and photosynthesis.
Collapse
Affiliation(s)
- Jan Fíla
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Praha 6, Czech Republic; (B.K.); (D.H.)
| | - Božena Klodová
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Praha 6, Czech Republic; (B.K.); (D.H.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12800 Praha 2, Czech Republic
| | - David Potěšil
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (D.P.); (Z.Z.)
| | - Miloslav Juříček
- Station of Apple Breeding for Disease Resistance, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Praha 6, Czech Republic;
| | - Petr Šesták
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Praha 6, Czech Republic; (B.K.); (D.H.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12800 Praha 2, Czech Republic
| | - Zbyněk Zdráhal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (D.P.); (Z.Z.)
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Praha 6, Czech Republic; (B.K.); (D.H.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12800 Praha 2, Czech Republic
| |
Collapse
|
13
|
Deuerling E, Gamerdinger M, Kreft SG. Chaperone Interactions at the Ribosome. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a033977. [PMID: 30833456 DOI: 10.1101/cshperspect.a033977] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The continuous refreshment of the proteome is critical to maintain protein homeostasis and to adapt cells to changing conditions. Thus, de novo protein biogenesis by ribosomes is vitally important to every cellular system. This process is delicate and error-prone and requires, besides cytosolic chaperones, the guidance by a specialized set of molecular chaperones that bind transiently to the translation machinery and the nascent protein to support early folding events and to regulate cotranslational protein transport. These chaperones include the bacterial trigger factor (TF), the archaeal and eukaryotic nascent polypeptide-associated complex (NAC), and the eukaryotic ribosome-associated complex (RAC). This review focuses on the structures, functions, and substrates of these ribosome-associated chaperones and highlights the most recent findings about their potential mechanisms of action.
Collapse
Affiliation(s)
- Elke Deuerling
- Molecular Microbiology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Martin Gamerdinger
- Molecular Microbiology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Stefan G Kreft
- Molecular Microbiology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
14
|
Early Scanning of Nascent Polypeptides inside the Ribosomal Tunnel by NAC. Mol Cell 2019; 75:996-1006.e8. [PMID: 31377116 DOI: 10.1016/j.molcel.2019.06.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/08/2019] [Accepted: 06/19/2019] [Indexed: 11/24/2022]
Abstract
Cotranslational processing of newly synthesized proteins is fundamental for correct protein maturation. Protein biogenesis factors are thought to bind nascent polypeptides not before they exit the ribosomal tunnel. Here, we identify a nascent chain recognition mechanism deep inside the ribosomal tunnel by an essential eukaryotic cytosolic chaperone. The nascent polypeptide-associated complex (NAC) inserts the N-terminal tail of its β subunit (N-βNAC) into the ribosomal tunnel to sense substrates directly upon synthesis close to the peptidyl-transferase center. N-βNAC escorts the growing polypeptide to the cytosol and relocates to an alternate binding site on the ribosomal surface. Using C. elegans as an in vivo model, we demonstrate that the tunnel-probing activity of NAC is essential for organismal viability and critical to regulate endoplasmic reticulum (ER) protein transport by controlling ribosome-Sec61 translocon interactions. Thus, eukaryotic protein maturation relies on the early sampling of nascent chains inside the ribosomal tunnel.
Collapse
|
15
|
Shen K, Gamerdinger M, Chan R, Gense K, Martin EM, Sachs N, Knight PD, Schlömer R, Calabrese AN, Stewart KL, Leiendecker L, Baghel A, Radford SE, Frydman J, Deuerling E. Dual Role of Ribosome-Binding Domain of NAC as a Potent Suppressor of Protein Aggregation and Aging-Related Proteinopathies. Mol Cell 2019; 74:729-741.e7. [PMID: 30982745 PMCID: PMC6527867 DOI: 10.1016/j.molcel.2019.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/22/2019] [Accepted: 03/08/2019] [Indexed: 01/11/2023]
Abstract
The nascent polypeptide-associated complex (NAC) is a conserved ribosome-associated protein biogenesis factor. Whether NAC exerts chaperone activity and whether this function is restricted to de novo protein synthesis is unknown. Here, we demonstrate that NAC directly exerts chaperone activity toward structurally diverse model substrates including polyglutamine (PolyQ) proteins, firefly luciferase, and Aβ40. Strikingly, we identified the positively charged ribosome-binding domain in the N terminus of the βNAC subunit (N-βNAC) as a major chaperone entity of NAC. N-βNAC by itself suppressed aggregation of PolyQ-expanded proteins in vitro, and the positive charge of this domain was critical for this activity. Moreover, we found that NAC also exerts a ribosome-independent chaperone function in vivo. Consistently, we found that a substantial fraction of NAC is non-ribosomal bound in higher eukaryotes. In sum, NAC is a potent suppressor of aggregation and proteotoxicity of mutant PolyQ-expanded proteins associated with human diseases like Huntington's disease and spinocerebellar ataxias.
Collapse
Affiliation(s)
- Koning Shen
- Department of Biology, Stanford University, Stanford, CA 94305-5430, USA
| | | | - Rebecca Chan
- Department of Biology, Stanford University, Stanford, CA 94305-5430, USA
| | - Karina Gense
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Esther M Martin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Nadine Sachs
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Patrick D Knight
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Renate Schlömer
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Katie L Stewart
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Lukas Leiendecker
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Ankit Baghel
- Department of Biology, Stanford University, Stanford, CA 94305-5430, USA
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA 94305-5430, USA.
| | - Elke Deuerling
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
16
|
Addison WN, Pellicelli M, St-Arnaud R. Dephosphorylation of the transcriptional cofactor NACA by the PP1A phosphatase enhances cJUN transcriptional activity and osteoblast differentiation. J Biol Chem 2019; 294:8184-8196. [PMID: 30948508 DOI: 10.1074/jbc.ra118.006920] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/01/2019] [Indexed: 12/19/2022] Open
Abstract
The transcriptional cofactor nascent polypeptide-associated complex and co-regulator α (NACA) regulates osteoblast maturation and activity. NACA functions, at least in part, by binding to Jun proto-oncogene, AP-1 transcription factor subunit (cJUN) and potentiating the transactivation of AP-1 targets such as osteocalcin (Bglap) and matrix metallopeptidase 9 (Mmp9). NACA activity is modulated by phosphorylation carried out by several kinases, but a phosphatase regulating NACA's activity remains to be identified. Here, we used affinity purification with MS in HEK293T cells to isolate NACA complexes and identified protein phosphatase 1 catalytic subunit α (PP1A) as a NACA-associated Ser/Thr phosphatase. NACA interacted with multiple components of the PP1A holoenzyme complex: the PPP1CA catalytic subunit and the regulatory subunits PPP1R9B, PPP1R12A and PPP1R18. MS analysis revealed that NACA co-expression with PPP1CA causes dephosphorylation of NACA at Thr-89, Ser-151, and Thr-174. NACA Ser/Thr-to-alanine variants displayed increased nuclear localization, and NACA dephosphorylation was associated with specific recruitment of novel NACA interactants, such as basic transcription factor 3 (BTF3) and its homolog BTF3L4. NACA and PP1A cooperatively potentiated cJUN transcriptional activity of the AP-1-responsive MMP9-luciferase reporter, which was abolished when Thr-89, Ser-151, or Thr-174 were substituted with phosphomimetic aspartate residues. We confirmed the NACA-PP1A interaction in MC3T3-E1 osteoblastic cells and observed that NACA phosphorylation status at PP1A-sensitive sites is important for the regulation of AP-1 pathway genes and for osteogenic differentiation and matrix mineralization. These results suggest that PP1A dephosphorylates NACA at specific residues, impacting cJUN transcriptional activity and osteoblast differentiation and function.
Collapse
Affiliation(s)
| | | | - René St-Arnaud
- Shriners Hospitals for Children-Canada, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Department of Surgery, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
17
|
Martin EM, Jackson MP, Gamerdinger M, Gense K, Karamonos TK, Humes JR, Deuerling E, Ashcroft AE, Radford SE. Conformational flexibility within the nascent polypeptide-associated complex enables its interactions with structurally diverse client proteins. J Biol Chem 2018; 293:8554-8568. [PMID: 29650757 PMCID: PMC5986199 DOI: 10.1074/jbc.ra117.001568] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/07/2018] [Indexed: 12/12/2022] Open
Abstract
As newly synthesized polypeptides emerge from the ribosome, it is crucial that they fold correctly. To prevent premature aggregation, nascent chains interact with chaperones that facilitate folding or prevent misfolding until protein synthesis is complete. Nascent polypeptide-associated complex (NAC) is a ribosome-associated chaperone that is important for protein homeostasis. However, how NAC binds its substrates remains unclear. Using native electrospray ionization MS (ESI-MS), limited proteolysis, NMR, and cross-linking, we analyzed the conformational properties of NAC from Caenorhabditis elegans and studied its ability to bind proteins in different conformational states. Our results revealed that NAC adopts an array of compact and expanded conformations and binds weakly to client proteins that are unfolded, folded, or intrinsically disordered, suggestive of broad substrate compatibility. Of note, we found that this weak binding retards aggregation of the intrinsically disordered protein α-synuclein both in vitro and in vivo These findings provide critical insights into the structure and function of NAC. Specifically, they reveal the ability of NAC to exploit its conformational plasticity to bind a repertoire of substrates with unrelated sequences and structures, independently of actively translating ribosomes.
Collapse
Affiliation(s)
- Esther M Martin
- From the Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Matthew P Jackson
- From the Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Martin Gamerdinger
- the Department of Biology, Institute of Molecular Microbiology, University of Konstanz, 78454 Konstanz, Germany
| | - Karina Gense
- the Department of Biology, Institute of Molecular Microbiology, University of Konstanz, 78454 Konstanz, Germany
| | - Theodoros K Karamonos
- From the Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Julia R Humes
- From the Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Elke Deuerling
- the Department of Biology, Institute of Molecular Microbiology, University of Konstanz, 78454 Konstanz, Germany
| | - Alison E Ashcroft
- From the Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Sheena E Radford
- From the Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| |
Collapse
|
18
|
Gottlieb L, Marmorstein R. Structure of Human NatA and Its Regulation by the Huntingtin Interacting Protein HYPK. Structure 2018; 26:925-935.e8. [PMID: 29754825 DOI: 10.1016/j.str.2018.04.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/22/2018] [Accepted: 04/05/2018] [Indexed: 12/31/2022]
Abstract
Co-translational N-terminal protein acetylation regulates many protein functions including degradation, folding, interprotein interactions, and targeting. Human NatA (hNatA), one of six conserved metazoan N-terminal acetyltransferases, contains Naa10 catalytic and Naa15 auxiliary subunits, and associates with the intrinsically disordered Huntingtin yeast two-hybrid protein K (HYPK). We report on the crystal structures of hNatA and hNatA/HYPK, and associated biochemical and enzymatic analyses. We demonstrate that hNatA contains unique features: a stabilizing inositol hexaphosphate (IP6) molecule and a metazoan-specific Naa15 domain that mediates high-affinity HYPK binding. We find that HYPK harbors intrinsic hNatA-specific inhibitory activity through a bipartite structure: a ubiquitin-associated domain that binds a hNaa15 metazoan-specific region and an N-terminal loop-helix region that distorts the hNaa10 active site. We show that HYPK binding blocks hNaa50 targeting to hNatA, likely limiting Naa50 ribosome localization in vivo. These studies provide a model for metazoan NAT activity and HYPK regulation of N-terminal acetylation.
Collapse
Affiliation(s)
- Leah Gottlieb
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Ronen Marmorstein
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Ott AK, Locher L, Koch M, Deuerling E. Functional Dissection of the Nascent Polypeptide-Associated Complex in Saccharomyces cerevisiae. PLoS One 2015; 10:e0143457. [PMID: 26618777 PMCID: PMC4664479 DOI: 10.1371/journal.pone.0143457] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/04/2015] [Indexed: 12/20/2022] Open
Abstract
Both the yeast nascent polypeptide-associated complex (NAC) and the Hsp40/70-based chaperone system RAC-Ssb are systems tethered to the ribosome to assist cotranslational processes such as folding of nascent polypeptides. While loss of NAC does not cause phenotypic changes in yeast, the simultaneous deletion of genes coding for NAC and the chaperone Ssb (nacΔssbΔ) leads to strongly aggravated defects compared to cells lacking only Ssb, including impaired growth on plates containing L-canavanine or hygromycin B, aggregation of newly synthesized proteins and a reduced translational activity due to ribosome biogenesis defects. In this study, we dissected the functional properties of the individual NAC-subunits (α-NAC, β-NAC and β’-NAC) and of different NAC heterodimers found in yeast (αβ-NAC and αβ’-NAC) by analyzing their capability to complement the pleiotropic phenotype of nacΔssbΔ cells. We show that the abundant heterodimer αβ-NAC but not its paralogue αβ’-NAC is able to suppress all phenotypic defects of nacΔssbΔ cells including global protein aggregation as well as translation and growth deficiencies. This suggests that αβ-NAC and αβ’-NAC are functionally distinct from each other. The function of αβ-NAC strictly depends on its ribosome association and on its high level of expression. Expression of individual β-NAC, β’-NAC or α-NAC subunits as well as αβ’-NAC ameliorated protein aggregation in nacΔssbΔ cells to different extents while only β-NAC was able to restore growth defects suggesting chaperoning activities for β-NAC sufficient to decrease the sensitivity of nacΔssbΔ cells against L-canavanine or hygromycin B. Interestingly, deletion of the ubiquitin-associated (UBA)-domain of the α-NAC subunit strongly enhanced the aggregation preventing activity of αβ-NAC pointing to a negative regulatory role of this domain for the NAC chaperone activity in vivo.
Collapse
Affiliation(s)
- Ann-Kathrin Ott
- Molecular Microbiology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
- Konstanz Research School of Chemical Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Lisa Locher
- Molecular Microbiology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
- Konstanz Research School of Chemical Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Miriam Koch
- Molecular Microbiology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
- Konstanz Research School of Chemical Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Elke Deuerling
- Molecular Microbiology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| |
Collapse
|
20
|
Breiman A, Fieulaine S, Meinnel T, Giglione C. The intriguing realm of protein biogenesis: Facing the green co-translational protein maturation networks. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:531-50. [PMID: 26555180 DOI: 10.1016/j.bbapap.2015.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/05/2015] [Indexed: 01/13/2023]
Abstract
The ribosome is the cell's protein-making factory, a huge protein-RNA complex, that is essential to life. Determining the high-resolution structures of the stable "core" of this factory was among the major breakthroughs of the past decades, and was awarded the Nobel Prize in 2009. Now that the mysteries of the ribosome appear to be more traceable, detailed understanding of the mechanisms that regulate protein synthesis includes not only the well-known steps of initiation, elongation, and termination but also the less comprehended features of the co-translational events associated with the maturation of the nascent chains. The ribosome is a platform for co-translational events affecting the nascent polypeptide, including protein modifications, folding, targeting to various cellular compartments for integration into membrane or translocation, and proteolysis. These events are orchestrated by ribosome-associated protein biogenesis factors (RPBs), a group of a dozen or more factors that act as the "welcoming committee" for the nascent chain as it emerges from the ribosome. In plants these factors have evolved to fit the specificity of different cellular compartments: cytoplasm, mitochondria and chloroplast. This review focuses on the current state of knowledge of these factors and their interaction around the exit tunnel of dedicated ribosomes. Particular attention has been accorded to the plant system, highlighting the similarities and differences with other organisms.
Collapse
Affiliation(s)
- Adina Breiman
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France; Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sonia Fieulaine
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France
| | - Thierry Meinnel
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France
| | - Carmela Giglione
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France.
| |
Collapse
|
21
|
Li S, Chen X, Geng X, Zhan W, Sun J. Identification and expression analysis of nascent polypeptide-associated complex alpha gene in response to immune challenges in Japanese flounder Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2015; 46:261-267. [PMID: 26142144 DOI: 10.1016/j.fsi.2015.06.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 06/04/2023]
Abstract
Nascent polypeptide-associated complex (NAC) is a conserved heterodimeric protein consisting of alpha and beta subunits. In addition to acting as a protein translation chaperone by forming a heterodimer with the beta subunit, NAC alpha (NACA) also shows important immune significance independent of NAC beta in mammalian cells. In lower vertebrates, however, the immunological relevance of NACA has not been revealed yet. In the present study, we identified and characterized a NACA gene (termed poNACA) involved in innate immune response in Japanese flounder Paralichthys olivaceus. poNACA encodes a 215-amino-acid protein, with an apparent molecular weight of 23.5 kDa and an isoelectric point of 4.51. Tissue distribution analysis revealed that poNACA gene was constitutively expressed in all examined tissues and showed dominant expression in hepatopancreas and gonad tissues. In enriched Japanese flounder head kidney macrophages and peripheral blood leucocytes, the expression of poNACA mRNA transcript was significantly induced by LPS, Poly(I:C) and zymosan stimulations. In vivo experiments further revealed that poNACA gene expression was up-regulated in head kidney, gill and spleen tissues in response to Edwardsiella tarda challenges. Furthermore, overexpression of poNACA in Japanese flounder FG-9307 cells resulted in increased gene expression of IL-1beta, IL-11 and TNF-alpha, and myxovirus resistance (Mx). Taken together, our findings indicate that an immune response gene, poNACA, involved in innate immune regulation in P. olivaceus has been identified.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| | - Xiaoli Chen
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Xuyun Geng
- Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, 442 South Jiefang Road, Hexi District, Tianjin 300221, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, LMMEC, Ocean University of China, Qingdao 266003, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| |
Collapse
|
22
|
Jamil M, Wang W, Xu M, Tu J. Exploring the roles of basal transcription factor 3 in eukaryotic growth and development. Biotechnol Genet Eng Rev 2015; 31:21-45. [PMID: 26428578 DOI: 10.1080/02648725.2015.1080064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Basal transcription factor 3 (BTF3) has been reported to play a significant part in the transcriptional regulation linking with eukaryotes growth and development. Alteration in the BTF3 gene expression patterns or variation in their activities adds to the explanation of different signaling pathways and regulatory networks. Moreover, BTF3s often respond to numerous stresses, and subsequently they are involved in regulation of various mechanisms. BTF3 proteins also function through protein-protein contact, which can assist us to identify the multifaceted processes of signaling and transcriptional regulation controlled by BTF3 proteins. In this review, we discuss current advances made in starting to explore the roles of BTF3 transcription factors in eukaryotes especially in plant growth and development.
Collapse
Affiliation(s)
- Muhammad Jamil
- a College of Agriculture and Biotechnology, Institute of Crop Science , Zhejiang University , Yu-Hang-Tang Rd. 866, Hangzhou 310058 , China.,b Department of Biotechnology and Genetic Engineering , Kohat University of Science and Technology , Kohat 26000 , Pakistan
| | - Wenyi Wang
- a College of Agriculture and Biotechnology, Institute of Crop Science , Zhejiang University , Yu-Hang-Tang Rd. 866, Hangzhou 310058 , China
| | - Mengyun Xu
- a College of Agriculture and Biotechnology, Institute of Crop Science , Zhejiang University , Yu-Hang-Tang Rd. 866, Hangzhou 310058 , China
| | - Jumin Tu
- a College of Agriculture and Biotechnology, Institute of Crop Science , Zhejiang University , Yu-Hang-Tang Rd. 866, Hangzhou 310058 , China
| |
Collapse
|
23
|
|
24
|
The PTH-Gαs-protein kinase A cascade controls αNAC localization to regulate bone mass. Mol Cell Biol 2014; 34:1622-33. [PMID: 24550008 DOI: 10.1128/mcb.01434-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The binding of PTH to its receptor induces Gα(s)-dependent cyclic AMP (cAMP) accumulation to turn on effector kinases, including protein kinase A (PKA). The phenotype of mice with osteoblasts specifically deficient for Gα(s) is mimicked by a mutation leading to cytoplasmic retention of the transcriptional coregulator αNAC, suggesting that Gαs and αNAC form part of a common genetic pathway. We show that treatment of osteoblasts with PTH(1-34) or the PKA-selective activator N(6)-benzoyladenosine cAMP (6Bnz-cAMP) leads to translocation of αNAC to the nucleus. αNAC was phosphorylated by PKA at serine 99 in vitro. Phospho-S99-αNAC accumulated in osteoblasts exposed to PTH(1-34) or 6Bnz-cAMP but not in treated cells expressing dominant-negative PKA. Nuclear accumulation was abrogated by an S99A mutation but enhanced by a phosphomimetic residue (S99D). Chromatin immunoprecipitation (ChIP) analysis showed that PTH(1-34) or 6Bnz-cAMP treatment leads to accumulation of αNAC at the Osteocalcin (Ocn) promoter. Altered gene dosages for Gα(s) and αNAC in compound heterozygous mice result in reduced bone mass, increased numbers of osteocytes, and enhanced expression of Sost. Our results show that αNAC is a substrate of PKA following PTH signaling. This enhances αNAC translocation to the nucleus and leads to its accumulation at target promoters to regulate transcription and affect bone mass.
Collapse
|
25
|
Zhang Y, Berndt U, Gölz H, Tais A, Oellerer S, Wölfle T, Fitzke E, Rospert S. NAC functions as a modulator of SRP during the early steps of protein targeting to the endoplasmic reticulum. Mol Biol Cell 2012; 23:3027-40. [PMID: 22740632 PMCID: PMC3418300 DOI: 10.1091/mbc.e12-02-0112] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
NAC acts as a modulator of SRP function. It can bind to signal sequences directly. SRP initially displaces NAC from RNCs; however, when the signal sequence emerges, trimeric NAC·RNC·SRP complexes form. Upon docking NAC·RNC·SRP complexes to the ER, NAC remains bound, allowing NAC to shield cytosolically exposed nascent chain domains. Nascent polypeptide-associated complex (NAC) was initially found to bind to any segment of the nascent chain except signal sequences. In this way, NAC is believed to prevent mistargeting due to binding of signal recognition particle (SRP) to signalless ribosome nascent chain complexes (RNCs). Here we revisit the interplay between NAC and SRP. NAC does not affect SRP function with respect to signalless RNCs; however, NAC does affect SRP function with respect to RNCs targeted to the endoplasmic reticulum (ER). First, early recruitment of SRP to RNCs containing a signal sequence within the ribosomal tunnel is NAC dependent. Second, NAC is able to directly and tightly bind to nascent signal sequences. Third, SRP initially displaces NAC from RNCs; however, when the signal sequence emerges further, trimeric NAC·RNC·SRP complexes form. Fourth, upon docking to the ER membrane NAC remains bound to RNCs, allowing NAC to shield cytosolically exposed nascent chain domains not only before but also during cotranslational translocation. The combined data indicate a functional interplay between NAC and SRP on ER-targeted RNCs, which is based on the ability of the two complexes to bind simultaneously to distinct segments of a single nascent chain.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Preissler S, Deuerling E. Ribosome-associated chaperones as key players in proteostasis. Trends Biochem Sci 2012; 37:274-83. [PMID: 22503700 DOI: 10.1016/j.tibs.2012.03.002] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/17/2012] [Accepted: 03/06/2012] [Indexed: 01/14/2023]
Abstract
De novo protein folding is delicate and error-prone and requires the guidance of molecular chaperones. Besides cytosolic and organelle-specific chaperones, cells have evolved ribosome-associated chaperones that support early folding events and prevent misfolding and aggregation. This class of chaperones includes the bacterial trigger factor (TF), the archaeal and eukaryotic nascent polypeptide-associated complex (NAC) and specialized eukaryotic heat shock protein (Hsp) 70/40 chaperones. This review focuses on the cellular activities of ribosome-associated chaperones and highlights new findings indicating additional functions beyond de novo folding. These activities include the assembly of oligomeric complexes, such as ribosomes, modulation of translation and targeting of proteins.
Collapse
Affiliation(s)
- Steffen Preissler
- Molecular Microbiology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | | |
Collapse
|
27
|
Ramot Y, Tiede S, Bíró T, Abu Bakar MH, Sugawara K, Philpott MP, Harrison W, Pietilä M, Paus R. Spermidine promotes human hair growth and is a novel modulator of human epithelial stem cell functions. PLoS One 2011; 6:e22564. [PMID: 21818338 PMCID: PMC3144892 DOI: 10.1371/journal.pone.0022564] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/24/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Rapidly regenerating tissues need sufficient polyamine synthesis. Since the hair follicle (HF) is a highly proliferative mini-organ, polyamines may also be important for normal hair growth. However, the role of polyamines in human HF biology and their effect on HF epithelial stem cells in situ remains largely unknown. METHODS AND FINDINGS We have studied the effects of the prototypic polyamine, spermidine (0.1-1 µM), on human scalp HFs and human HF epithelial stem cells in serum-free organ culture. Under these conditions, spermidine promoted hair shaft elongation and prolonged hair growth (anagen). Spermidine also upregulated expression of the epithelial stem cell-associated keratins K15 and K19, and dose-dependently modulated K15 promoter activity in situ and the colony forming efficiency, proliferation and K15 expression of isolated human K15-GFP+ cells in vitro. Inhibiting the rate-limiting enzyme of polyamine synthesis, ornithine decarboyxlase (ODC), downregulated intrafollicular K15 expression. In primary human epidermal keratinocytes, spermidine slightly promoted entry into the S/G2-M phases of the cell cycle. By microarray analysis of human HF mRNA extracts, spermidine upregulated several key target genes implicated e.g. in the control of cell adherence and migration (POP3), or endoplasmic reticulum and mitochondrial functions (SYVN1, NACA and SLC25A3). Excess spermidine may restrict further intrafollicular polyamine synthesis by inhibiting ODC gene and protein expression in the HF's companion layer in situ. CONCLUSIONS These physiologically and clinically relevant data provide the first direct evidence that spermidine is a potent stimulator of human hair growth and a previously unknown modulator of human epithelial stem cell biology.
Collapse
Affiliation(s)
- Yuval Ramot
- Department of Dermatology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|