1
|
Basu A, Weiss RJ. Glycosaminoglycan Analysis: Purification, Structural Profiling, and GAG-Protein Interactions. Methods Mol Biol 2023; 2597:159-176. [PMID: 36374421 DOI: 10.1007/978-1-0716-2835-5_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Glycosaminoglycans (GAGs) are long, linear polysaccharides that are ubiquitously expressed on the cell surface and in the extracellular matrix of all animal cells. These complex carbohydrates are composed of alternating glucosamine and uronic acids that can be heterogeneously N- and O-sulfated. The arrangement and orientation of the sulfated sugar residues specify the location of distinct ligand binding sites on the cell surface, and their capacity to bind ligands impacts cell growth and development, the ability to form tissues and organs, and normal physiology. The heterogeneous nature of GAGs and their inherent structural diversity across different tissues, cell types, and disease states creates challenges to characterizing their structure and function. Here, we describe detailed methods to investigate GAG-protein interactions in vitro and evaluate the structural composition of two classes of sulfated GAGs, heparan sulfate and chondroitin/dermatan sulfate, using liquid chromatography, mass spectrometry, and radiolabeling techniques. Overall, these methods facilitate the evaluation of GAG structure and function to uncover the unique roles these molecules play in cell biology and human disease.
Collapse
Affiliation(s)
- Amrita Basu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Ryan J Weiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
2
|
Guo XY, Gao XD, Fujita M. Sulfation of a FLAG tag mediated by SLC35B2 and TPST2 affects antibody recognition. PLoS One 2021; 16:e0250805. [PMID: 33951064 PMCID: PMC8099120 DOI: 10.1371/journal.pone.0250805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/14/2021] [Indexed: 11/30/2022] Open
Abstract
A FLAG tag consisting of DYKDDDDK is an epitope tag that is frequently and widely used to detect recombinant proteins of interest. In this study, we performed a CRISPR-based genetic screening to identify factors involved in the detection of a FLAG-tagged misfolded model protein at the cell surface. In the screening, SLC35B2, which encodes 3’-phosphoadenosine-5’-phosphosulfate transporter 1, was identified as the candidate gene. The detection of FLAG-tagged misfolded proteins at the cell surface was significantly increased in SLC35B2-knockout cells. Furthermore, protein tyrosine sulfation mediated by tyrosyl-protein sulfotransferase 2 (TPST2) suppressed FLAG-tagged protein detection. Localization analysis of the FLAG-tagged misfolded proteins confirmed that defects in tyrosine sulfation are only responsible for enhancing anti-FLAG staining on the plasma membrane but not inducing the localization change of misfolded proteins on the plasma membrane. These results suggest that a FLAG tag on the misfolded protein would be sulfated, causing a reduced detection by the M2 anti-FLAG antibody. Attention should be required when quantifying the FLAG-tagged proteins in the secretory pathway.
Collapse
Affiliation(s)
- Xin-Yu Guo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- * E-mail:
| |
Collapse
|
3
|
Leung AWY, Backstrom I, Bally MB. Sulfonation, an underexploited area: from skeletal development to infectious diseases and cancer. Oncotarget 2018; 7:55811-55827. [PMID: 27322429 PMCID: PMC5342455 DOI: 10.18632/oncotarget.10046] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/06/2016] [Indexed: 12/12/2022] Open
Abstract
Sulfonation is one of the most abundant cellular reactions modifying a wide range of xenobiotics as well as endogenous molecules which regulate important biological processes including blood clotting, formation of connective tissues, and functionality of secreted proteins, hormones, and signaling molecules. Sulfonation is ubiquitous in all tissues and widespread in nature (plants, animals, and microorganisms). Although sulfoconjugates were discovered over a century ago when, in 1875, Baumann isolated phenyl sulfate in the urine of a patient given phenol as an antiseptic, the significance of sulfonation and its roles in human diseases have been underappreciated until recent years. Here, we provide a current overview of the significance of sulfonation reactions in a variety of biological functions and medical conditions (with emphasis on cancer). We also discuss research areas that warrant further attention if we are to fully understand how deficiencies in sulfonation could impact human health which, in turn, could help define treatments to effect improvements in health.
Collapse
Affiliation(s)
- Ada W. Y. Leung
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ian Backstrom
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Marcel B Bally
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.,Centre for Drug Research and Development, Vancouver, BC, Canada
| |
Collapse
|
4
|
Soares da Costa D, Reis RL, Pashkuleva I. Sulfation of Glycosaminoglycans and Its Implications in Human Health and Disorders. Annu Rev Biomed Eng 2017; 19:1-26. [PMID: 28226217 DOI: 10.1146/annurev-bioeng-071516-044610] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sulfation is a dynamic and complex posttranslational modification process. It can occur at various positions within the glycosaminoglycan (GAG) backbone and modulates extracellular signals such as cell-cell and cell-matrix interactions; different sulfation patterns have been identified for the same organs and cells during their development. Because of their high specificity in relation to function, GAG sulfation patterns are referred to as the sulfation code. This review explores the role of GAG sulfation in different biological processes at the cell, tissue, and organism levels. We address the connection between the sulfation patterns of GAGs and several physiological processes and discuss the misregulation of GAG sulfation and its involvement in several genetic and metabolic disorders. Finally, we present the therapeutic potential of GAGs and their synthetic mimics in the biomedical field.
Collapse
Affiliation(s)
- Diana Soares da Costa
- 3B's Research Group: Biomaterials, Biodegradables and Biomimetics, University of Minho and Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal; , , .,Life and Health Sciences Research Institute/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group: Biomaterials, Biodegradables and Biomimetics, University of Minho and Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal; , , .,Life and Health Sciences Research Institute/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Iva Pashkuleva
- 3B's Research Group: Biomaterials, Biodegradables and Biomimetics, University of Minho and Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal; , , .,Life and Health Sciences Research Institute/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
5
|
Tibbs ZE, Rohn-Glowacki KJ, Crittenden F, Guidry AL, Falany CN. Structural plasticity in the human cytosolic sulfotransferase dimer and its role in substrate selectivity and catalysis. Drug Metab Pharmacokinet 2015; 30:3-20. [DOI: 10.1016/j.dmpk.2014.10.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/02/2014] [Accepted: 10/08/2014] [Indexed: 10/24/2022]
|
6
|
Dick G, Akslen-Hoel LK, Grøndahl F, Kjos I, Maccarana M, Prydz K. PAPST1 regulates sulfation of heparan sulfate proteoglycans in epithelial MDCK II cells. Glycobiology 2014; 25:30-41. [PMID: 25138304 DOI: 10.1093/glycob/cwu084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Proteoglycan (PG) sulfation depends on activated nucleotide sulfate, 3'-phosphoadenosine-5'-phosphosulfate (PAPS). Transporters in the Golgi membrane translocate PAPS from the cytoplasm into the organelle lumen where PG sulfation occurs. Silencing of PAPS transporter (PAPST) 1 in epithelial MDCK cells reduced PAPS uptake into Golgi vesicles. Surprisingly, at the same time sulfation of heparan sulfate (HS) was stimulated. The effect was pathway specific in polarized epithelial cells. Basolaterally secreted proteoglycans (PGs) displayed an altered HS sulfation pattern and increased growth factor binding capacity. In contrast, the sulfation pattern of apically secreted PGs was unchanged while the secretion was reduced. Regulation of PAPST1 allows epithelial cells to prioritize between PG sulfation in the apical and basolateral secretory routes at the level of the Golgi apparatus. This provides sulfation patterns that ensure PG functions at the extracellular level, such as growth factor binding.
Collapse
Affiliation(s)
- Gunnar Dick
- Department of Biosciences, University of Oslo, PO Box 1066, 0316 Oslo, Norway
| | | | - Frøy Grøndahl
- Department of Biosciences, University of Oslo, PO Box 1066, 0316 Oslo, Norway
| | - Ingrid Kjos
- Department of Biosciences, University of Oslo, PO Box 1066, 0316 Oslo, Norway
| | - Marco Maccarana
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Kristian Prydz
- Department of Biosciences, University of Oslo, PO Box 1066, 0316 Oslo, Norway
| |
Collapse
|
7
|
Dejima K, Murata D, Mizuguchi S, Nomura KH, Izumikawa T, Kitagawa H, Gengyo-Ando K, Yoshina S, Ichimiya T, Nishihara S, Mitani S, Nomura K. Two Golgi-resident 3'-Phosphoadenosine 5'-phosphosulfate transporters play distinct roles in heparan sulfate modifications and embryonic and larval development in Caenorhabditis elegans. J Biol Chem 2010; 285:24717-28. [PMID: 20529843 PMCID: PMC2915708 DOI: 10.1074/jbc.m109.088229] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 04/23/2010] [Indexed: 11/06/2022] Open
Abstract
Synthesis of extracellular sulfated molecules requires active 3'-phosphoadenosine 5'-phosphosulfate (PAPS). For sulfation to occur, PAPS must pass through the Golgi membrane, which is facilitated by Golgi-resident PAPS transporters. Caenorhabditis elegans PAPS transporters are encoded by two genes, pst-1 and pst-2. Using the yeast heterologous expression system, we characterized PST-1 and PST-2 as PAPS transporters. We created deletion mutants to study the importance of PAPS transporter activity. The pst-1 deletion mutant exhibited defects in cuticle formation, post-embryonic seam cell development, vulval morphogenesis, cell migration, and embryogenesis. The pst-2 mutant exhibited a wild-type phenotype. The defects observed in the pst-1 mutant could be rescued by transgenic expression of pst-1 and hPAPST1 but not pst-2 or hPAPST2. Moreover, the phenotype of a pst-1;pst-2 double mutant were similar to those of the pst-1 single mutant, except that larval cuticle formation was more severely defected. Disaccharide analysis revealed that heparan sulfate from these mutants was undersulfated. Gene expression reporter analysis revealed that these PAPS transporters exhibited different tissue distributions and subcellular localizations. These data suggest that pst-1 and pst-2 play different physiological roles in heparan sulfate modification and development.
Collapse
Affiliation(s)
- Katsufumi Dejima
- From the Department of Biology, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Daisuke Murata
- From the Department of Biology, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Souhei Mizuguchi
- From the Department of Biology, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Kazuko H. Nomura
- From the Department of Biology, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Tomomi Izumikawa
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
- the Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Hiroshi Kitagawa
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
- the Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Keiko Gengyo-Ando
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
- the Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan, and
| | - Sawako Yoshina
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
- the Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan, and
| | - Tomomi Ichimiya
- the Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Shoko Nishihara
- the Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Shohei Mitani
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
- the Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan, and
| | - Kazuya Nomura
- From the Department of Biology, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
8
|
Dick G, Grøndahl F, Prydz K. Overexpression of the 3'-phosphoadenosine 5'-phosphosulfate (PAPS) transporter 1 increases sulfation of chondroitin sulfate in the apical pathway of MDCK II cells. Glycobiology 2007; 18:53-65. [PMID: 17965432 DOI: 10.1093/glycob/cwm121] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The canine 3'-phosphoadenosine 5'-phosphosulfate (PAPS) transporter 1 fused to GFP was stably expressed with a typical Golgi localization in MDCK II cells (MDCK II-PAPST1). The capacity for PAPS uptake into Golgi vesicles was enhanced to almost three times that of Golgi vesicles isolated from untransfected cells. We have previously shown that chondroitin sulfate proteoglycans (CSPGs) are several times more intensely sulfated in the basolateral than the apical secretory pathway in MDCK II cells (Tveit H, Dick G, Skibeli V, Prydz K. 2005. A proteoglycan undergoes different modifications en route to the apical and basolateral surfaces of Madin-Darby canine kidney cells. J Biol Chem. 280:29596-29603). Here we demonstrate that increased availability of PAPS in the Golgi lumen enhances the sulfation of CSPG in the apical pathway several times, while sulfation of CSPGs in the basolateral pathway shows minor changes. Sulfation of heparan sulfate proteoglycans is essentially unchanged. Our data indicate that CSPG sulfation in the apical pathway of MDCK II cells occurs at suboptimal conditions, either because the sulfotransferases involved have high K(m) values, or there is a lower PAPS concentration in the lumen of the apical secretory route than in the basolateral counterpart.
Collapse
Affiliation(s)
- Gunnar Dick
- Department of Molecular Biosciences, University of Oslo, Box 1041 Blindern, 0316 Oslo, Norway
| | | | | |
Collapse
|
9
|
Pavão MSG, Vilela-Silva AC, Mourão PAS. Biosynthesis of Chondroitin Sulfate: From the Early, Precursor Discoveries to Nowadays, Genetics Approaches. CHONDROITIN SULFATE: STRUCTURE, ROLE AND PHARMACOLOGICAL ACTIVITY 2006; 53:117-40. [PMID: 17239764 DOI: 10.1016/s1054-3589(05)53006-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mauro S G Pavão
- Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho, Instituto de Bioquímica Médica and Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, RJ 21941-590, Brazil
| | | | | |
Collapse
|
10
|
Lüders F, Segawa H, Stein D, Selva EM, Perrimon N, Turco SJ, Häcker U. Slalom encodes an adenosine 3'-phosphate 5'-phosphosulfate transporter essential for development in Drosophila. EMBO J 2003; 22:3635-44. [PMID: 12853478 PMCID: PMC165615 DOI: 10.1093/emboj/cdg345] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2003] [Revised: 05/14/2003] [Accepted: 05/20/2003] [Indexed: 11/14/2022] Open
Abstract
Sulfation of all macromolecules entering the secretory pathway in higher organisms occurs in the Golgi and requires the high-energy sulfate donor adenosine 3'-phosphate 5'-phosphosulfate. Here we report the first molecular identification of a gene that encodes a transmembrane protein required to transport adenosine 3'-phosphate 5'-phosphosulfate from the cytosol into the Golgi lumen. Mutations in this gene, which we call slalom, display defects in Wg and Hh signaling, which are likely due to the lack of sulfation of glycosaminoglycans by the sulfotransferase sulfateless. Analysis of mosaic mutant ovaries shows that sll function is also essential for dorsal-ventral axis determination, suggesting that sll transports the sulfate donor required for sulfotransferase activity of the dorsal-ventral determinant pipe.
Collapse
Affiliation(s)
- Florian Lüders
- Department of Cell and Molecular Biology, BMC B13, Lund University, 22184 Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
11
|
Kamiyama S, Suda T, Ueda R, Suzuki M, Okubo R, Kikuchi N, Chiba Y, Goto S, Toyoda H, Saigo K, Watanabe M, Narimatsu H, Jigami Y, Nishihara S. Molecular cloning and identification of 3'-phosphoadenosine 5'-phosphosulfate transporter. J Biol Chem 2003; 278:25958-63. [PMID: 12716889 DOI: 10.1074/jbc.m302439200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nucleotide sulfate, namely 3'-phosphoadenosine 5'-phosphosulfate (PAPS), is a universal sulfuryl donor for sulfation. Although a specific PAPS transporter is present in Golgi membrane, no study has reported the corresponding gene. We have identified a novel human gene encoding a PAPS transporter, which we have named PAPST1, and the Drosophila melanogaster ortholog, slalom (sll). The amino acid sequence of PAPST1 (432 amino acids) exhibited 48.1% identity with SLL (465 amino acids), and hydropathy analysis predicted the two to be type III transmembrane proteins. The transient expression of PAPST1 in SW480 cells showed a subcellular localization in Golgi membrane. The expression of PAPST1 and SLL in yeast Saccharomyces cerevisiae significantly increased the transport of PAPS into the Golgi membrane fraction. In human tissues, PAPST1 is highly expressed in the placenta and pancreas and present at lower levels in the colon and heart. An RNA interference fly of sll produced with a GAL4-UAS system revealed that the PAPS transporter is essential for viability. It is well known that mutations of some genes related to PAPS synthesis are responsible for human inherited disorders. Our findings provide insights into the significance of PAPS transport and post-translational sulfation.
Collapse
Affiliation(s)
- Shin Kamiyama
- Division of Cell Biology, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Kevin L Moore
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, the Department of Medicine, University of Oklahoma Health Sciences Center, USA.
| |
Collapse
|
13
|
Affiliation(s)
- Alan C Rapraeger
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
14
|
Fjeldstad K, Pedersen ME, Vuong TT, Kolset SO, Nordstrand LM, Prydz K. Sulfation in the Golgi lumen of Madin-Darby canine kidney cells is inhibited by brefeldin A and depends on a factor present in the cytoplasm and on Golgi membranes. J Biol Chem 2002; 277:36272-9. [PMID: 12138122 DOI: 10.1074/jbc.m206365200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Madin-Darby canine kidney cells are more resistant than most other cell types to the classical effects of brefeldin A (BFA) treatment, the induction of retrograde transport of Golgi cisternae components to the endoplasmic reticulum. Here we show that sulfation of heparan sulfate proteoglycans (HSPGs), chondroitin sulfate proteoglycans (CSPGs), and proteins in the Golgi apparatus is dramatically reduced by low concentrations of BFA in which Golgi morphology is unaffected and secretion still takes place. BFA treatment seems to reduce sulfation by inhibition of the uptake of adenosine 3'-phosphate 5'-phosphosulfate (PAPS) into the Golgi lumen, and the inhibitory effect of BFA was similar for HSPGs, CSPGs, and proteins. This was different from the effect of chlorate, a well known inhibitor of PAPS synthesis in the cytoplasm. Low concentrations of chlorate (2-5 mm) inhibited sulfation of CSPGs and proteins only, whereas higher concentrations (15-30 mm) were required to inhibit sulfation of HSPGs. Golgi fractions pretreated with BFA had a reduced capacity for the synthesis of glycosaminoglycans (GAGs), but control level capacity could be restored by the addition of cytosol from various sources. This indicates that the PAPS pathway to the Golgi lumen depends on a BFA-sensitive factor that is present both on Golgi membranes and in the cytoplasm.
Collapse
Affiliation(s)
- Katja Fjeldstad
- Department of Biochemistry and Institute for Nutrition Research, University of Oslo, Oslo 0316, Norway
| | | | | | | | | | | |
Collapse
|
15
|
Patel S, Yenush L, Rodríguez PL, Serrano R, Blundell TL. Crystal structure of an enzyme displaying both inositol-polyphosphate-1-phosphatase and 3'-phosphoadenosine-5'-phosphate phosphatase activities: a novel target of lithium therapy. J Mol Biol 2002; 315:677-85. [PMID: 11812139 DOI: 10.1006/jmbi.2001.5271] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lithium cations exert profound and selective psychopharmacological effects on ameliorate manic-depressive psychosis. Although lithium is an effective drug for both treatment and prophylaxis of bipolar disorder, the precise mechanism of action is not well understood. Lithium acts as both an uncompetitive and non-competitive inhibitor of several lithium- sensitive phosphatases with regard to substrate and magnesium cofactor, respectively. In this work, we report the crystal structure and reaction mechanism of Rattus norvegicus 3'-phosphoadenosine 5'-phosphate and inositol 1,4-bisphosphate phosphatase (RnPIP), a recently identified target of lithium therapy. This Li(+)-sensitive enzyme plays a crucial role in several cellular processes, such as RNA processing, sulphation reactions and probably inositol recycling. RnPIP specifically removes the 3'-phosphate group of 3'-phosphoadenosine 5'-phosphate (PAP) and the 1'-phosphate group of inositol 1,4-bisphosphate (I(1),(4)P(2)) producing AMP and inositol 4'-phosphate, respectively. The crystal structure of RnPIP complexed with AMP, Pi and magnesium ions at 1.69 A resolution provides insight into the reaction mechanism of the hydrolysis of PAP. The core fold of the enzyme is equivalent to that found in other Li(+)-sensitive phosphatases, such as inositol monophosphatase, but molecular modelling of I(1),(4)P(2) in the RnPIP active site reveals important structural determinants that accommodate this additional substrate. RnPIP is potently inhibited by lithium and, as the accumulation of PAP inhibits a variety of proteins, including sulphotransferases and RNA processing enzymes, this dual specificity enzyme represents a potential target of lithium action, in addition to inositol monophosphatases.
Collapse
Affiliation(s)
- S Patel
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | | | | | | | | |
Collapse
|
16
|
Campbell BJ, Rowe GE, Leiper K, Rhodes JM. Increasing the intra-Golgi pH of cultured LS174T goblet-differentiated cells mimics the decreased mucin sulfation and increased Thomsen-Friedenreich antigen (Gal beta1-3GalNac alpha-) expression seen in colon cancer. Glycobiology 2001; 11:385-93. [PMID: 11425799 DOI: 10.1093/glycob/11.5.385] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mucins in ulcerative colitis and colon cancer share common properties of reduced sulfation and increased oncofetal carbohydrate antigen expression. It has previously been shown that there is no simple correlation between these changes and the activity of the relevant glycosyl-, sialyl-, and sulfo-transferases. We examined mucin sulfation and expression of oncofetal Thomsen-Friedenreich (TF) antigen (galactosyl beta1-3N-acetylgalactosamine alpha-) in the goblet cell-differentiated human colon cancer cell line LS174T following treatment with bafilomycin A(1, )which raises intra-Golgi pH, or monensin, which disrupts medial-trans Golgi transport. Cells were dual-labeled with sodium [(35)S]-sulfate and D-[6-(3)H(N)]-glucosamine hydrochloride, or labeled with L-[U-(14)C]-threonine alone. Mucin was purified using Sepharose CL-4B gel filtration. Mucin sulfo-Lewis(a) and TF antigen expression were assessed using the F2 anti-sulfo-Lewis(a) monoclonal antibody and peanut agglutinin binding respectively. Bafilomycin (0.01 microM; 48 h) reduced total mucin sulfation, expressed relative to incorporation of glucosamine, to 0.50 +/- 0.04 d.p.m. [(35)S]-sulfate per d.p.m. [(3)H]-glucosamine compared to control, 0.84 +/- 0.05 (p < 0.001, n = 16). This was accompanied by 50.3 +/- 8.0% increased expression of TF antigen (p < 0.01) and 50.1 +/- 5.5% decreased expression of sulfo-Lewis(a) (p < 0.01). The reduced sulfate:glucosamine ratio was largely due to increased incorporation of glucosamine into newly synthesized mucin rather than reduction in total sulfate incorporation. In contrast, monensin only reduced total mucin glycosylation at concentrations > 0.1 microM and had no significant effect on mucin sulfation or TF expression. Intra-Golgi alkalinization affects mucin glycosylation, resulting in decreased mucin sulfation and increased expression of TF antigen, changes that mimic those seen in cancerous and premalignant human colonic epithelium.
Collapse
Affiliation(s)
- B J Campbell
- Glycobiology Group, Gastroenterology Research Unit, Department of Medicine, University of Liverpool, Daulby Street, Liverpool, L69 3GA, UK
| | | | | | | |
Collapse
|
17
|
Tiralongo J, Abo S, Danylec B, Gerardy-Schahn R, von Itzstein M. A high-throughput assay for rat liver golgi and Saccharomyces cerevisiae-expressed murine CMP-N-acetylneuraminic acid transport proteins. Anal Biochem 2000; 285:21-32. [PMID: 10998260 DOI: 10.1006/abio.2000.4705] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rat liver Golgi and Saccharomyces cerevisiae-expressed CMP-Neu5Ac transport protein were reconstituted in phosphatidylcholine liposomes and transport of CMP-Neu5Ac into these proteoliposomes was determined. The separation of transported substrate from free substrate was performed using Multiscreen minicolumns loaded with Sephadex G-50 resin (fine). The CMP-Neu5Ac transport characteristics of the rat liver Golgi and S. cerevisiae-expressed transporters, determined using this separation system, were very similar to those previously reported. Inhibition studies, utilizing the above procedure, revealed that the main structural features required for recognition of glycosyl nucleosides by the rat liver Golgi CMP-Neu5Ac transport protein were the nature of the nucleoside base and the anomeric configuration of the associated carbohydrate. In general, pyrimidine-based glycosyl nucleosides were found to inhibit transport to a far greater extent than purine-based glycosyl nucleosides, an observation that is in good agreement with previous reports. These results indicate that the reconstitution procedure, in conjunction with Multiscreen minicolumns, is an effective high-throughput method for the determination of CMP-Neu5Ac transport.
Collapse
Affiliation(s)
- J Tiralongo
- Centre for Biomolecular Science and Drug Discovery, Griffith University (Gold Coast Campus), PMB 50 Gold Coast Mail Centre, Queensland, 9726, Australia
| | | | | | | | | |
Collapse
|
18
|
Kehoe JW, Bertozzi CR. Tyrosine sulfation: a modulator of extracellular protein-protein interactions. CHEMISTRY & BIOLOGY 2000; 7:R57-61. [PMID: 10712936 DOI: 10.1016/s1074-5521(00)00093-4] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Tyrosine sulfation is a post-translational modification of many secreted and membrane-bound proteins. Its biological roles have been unclear. Recent work has implicated tyrosine sulfate as a determinant of protein-protein interactions involved in leukocyte adhesion, hemostasis and chemokine signaling.
Collapse
Affiliation(s)
- J W Kehoe
- Departments of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
19
|
Besset S, Vincourt JB, Amalric F, Girard JP. Nuclear localization of PAPS synthetase 1: a sulfate activation pathway in the nucleus of eukaryotic cells. FASEB J 2000; 14:345-54. [PMID: 10657990 DOI: 10.1096/fasebj.14.2.345] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sulfation is a major modification of many molecules in eukaryotes that is dependent on the enzymatic synthesis of an activated sulfate donor, 3'-phosphoadenosine 5'-phosphosulfate (PAPS). While sulfate activation has long been assumed to occur in the cytosol, we show in this study that human PAPS synthetase 1 (PAPSS1), a bifunctional ATP sulfurylase/adenosine 5'-phosphosulfate (APS) kinase enzyme sufficient for PAPS synthesis, accumulates in the nucleus of mammalian cells. Nuclear targeting of the enzyme is mediated by its APS kinase domain and requires a catalytically dispensable 21 amino acid sequence at the amino terminus. Human PAPSS1 and Drosophila melanogaster PAPSS localize to the nucleus in yeast and relieve the methionine auxotrophy of ATP sulfurylase- or APS kinase-deficient strains, suggesting that PAPSS1 is fully functional in vivo when targeted to the nucleus. A second PAPS synthetase gene, designated PAPSS2, has recently been described, mutations of which are responsible for abnormal skeletal development in human spondyloepimetaphyseal dysplasia and murine brachymorphism. We found that PAPSS2, which localizes to the cytoplasm when ectopically expressed in mammalian cells, is relocated to the nucleus when coexpressed with PAPSS1. Taken together, these results indicate that a sulfation pathway might exist in the nucleus of eukaryotic cells. -Besset, S., Vincourt, J.-B., Amalric, F., Girard, J.-P. Nuclear localization of PAPS synthetase 1: a sulfate activation pathway in the nucleus of eukaryotic cells.
Collapse
Affiliation(s)
- S Besset
- Laboratoire de Biologie Vasculaire, Institut de Pharmacologie et de Biologie Structurale du CNRS, 31077 Toulouse Cedex 4, France
| | | | | | | |
Collapse
|
20
|
Spiegelberg BD, Xiong JP, Smith JJ, Gu RF, York JD. Cloning and characterization of a mammalian lithium-sensitive bisphosphate 3'-nucleotidase inhibited by inositol 1,4-bisphosphate. J Biol Chem 1999; 274:13619-28. [PMID: 10224133 DOI: 10.1074/jbc.274.19.13619] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Discovery of a structurally conserved metal-dependent lithium-inhibited phosphomonoesterase protein family has identified several potential cellular targets of lithium as used to treat manic depression. Here we describe identification of a novel family member using a "computer cloning" strategy. Human and murine cDNA clones encoded proteins sharing 92% identity and were highly expressed in kidney. Native and recombinant protein harbored intrinsic magnesium-dependent bisphosphate nucleotidase activity (BPntase), which removed the 3'-phosphate from 3'-5' bisphosphate nucleosides and 3'-phosphoadenosine 5'-phosphosulfate with Km and Vmax values of 0.5 microM and 40 micromol/min/mg. Lithium uncompetitively inhibited activity with a Ki of 157 microM. Interestingly, BPntase was competitively inhibited by inositol 1,4-bisphosphate with a Ki of 15 microM. Expression of mammalian BPntase complemented defects in hal2/met22 mutant yeast. These data suggest that BPntase's physiologic role in nucleotide metabolism may be regulated by inositol signaling pathways. The presence of high levels of BPntase in the kidney are provocative in light of the roles of bisphosphorylated nucleotides in regulating salt tolerance, sulfur assimilation, detoxification, and lithium toxicity. We propose that inhibition of human BPntase may account for lithium-induced nephrotoxicity, which may be overcome by supplementation of current therapeutic regimes with inhibitors of nucleotide biosynthesis, such as methionine.
Collapse
Affiliation(s)
- B D Spiegelberg
- Departments of Pharmacology & Cancer Biology and Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
21
|
Bowman KG, Bertozzi CR. Carbohydrate sulfotransferases: mediators of extracellular communication. CHEMISTRY & BIOLOGY 1999; 6:R9-R22. [PMID: 9889154 DOI: 10.1016/s1074-5521(99)80014-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sulfated carbohydrates mediate diverse extracellular recognition events in both normal and pathological processes. The sulfotransferases that generate specific carbohydrate 'sulfoforms' have recently been recognized as key modulators of these processes and therefore represent potential therapeutic targets.
Collapse
Affiliation(s)
- K G Bowman
- Department of Chemistry, University of California, Berkeley 94720, USA
| | | |
Collapse
|
22
|
Girard JP, Baekkevold ES, Amalric F. Sulfation in high endothelial venules: cloning and expression of the human PAPS synthetase. FASEB J 1998; 12:603-12. [PMID: 9576487 DOI: 10.1096/fasebj.12.7.603] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
High endothelial venules (HEVs) are specialized postcapillary venules found in lymphoid organs and chronically inflamed tissues that support high levels of lymphocyte extravasation from the blood. Studies with chlorate, a metabolic inhibitor of sulfation, had previously revealed that production of PAPS (3'-phosphoadenosine-5'-phosphosulfate), the high-energy donor of sulfate, is required for sulfation and high-affinity recognition of HEV sialomucins GlyCAM-1 and CD34 by the lymphocyte homing receptor L-selectin. Here, we report the molecular characterization of a novel 2.5 kb human cDNA from MECA-79+ HEV-derived endothelial cells that encodes the target of chlorate, PAPS synthetase, a multifunctional enzyme containing domains for both ATP sulfurylase and adenosine-5'-phosphosulfate kinase. Functional expression of the isolated cDNA in Chinese hamster ovary cells results in high levels of PAPS synthesis, which is abolished by treatment of the transfected cells with chlorate. Northern blot analysis reveals a wide tissue distribution of PAPS synthetase mRNA in the human body, suggesting that human PAPS synthetase may be important for sulfation not only of HEV sialomucins, but also of many other molecules, including mucins such as the P-selectin ligand PSGL-1, proteoglycans, hormones, neurotransmitters, drugs, and xenobiotics.
Collapse
Affiliation(s)
- J P Girard
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Toulouse, France.
| | | | | |
Collapse
|
23
|
Coughtrie MW, Sharp S, Maxwell K, Innes NP. Biology and function of the reversible sulfation pathway catalysed by human sulfotransferases and sulfatases. Chem Biol Interact 1998; 109:3-27. [PMID: 9566730 DOI: 10.1016/s0009-2797(97)00117-8] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sulfation and sulfate conjugate hydrolysis play an important role in metabolism, and are catalysed by members of the sulfotransferase and sulfatase enzyme super-families. In general, sulfation is a deactivating, detoxication pathway, but for some chemicals the sulfate conjugates are much more reactive than the parent compound. The range of compounds which are sulfated is enormous, yet we still understand relatively little of the function of this pathway. This review summarises current knowledge of the sulfation system and the enzymes involved, and illustrates how heterologous expression of sulfotransferases (SULTs) and sulfatases is aiding our appreciation of the properties of these important proteins. The role of sulfation in the bioactivation of procarcinogens and promutagens is discussed, and new data on the inhibition of the sulfotransferase(s) involved by common dietary components such as tea and coffee are presented. The genetic and environmental factors which are known to influence the activity and expression of human SULTs and sulfatases are also reviewed.
Collapse
Affiliation(s)
- M W Coughtrie
- Department of Molecular and Cellular Pathology, University of Dundee, Ninewells Hospital and Medical School, UK.
| | | | | | | |
Collapse
|
24
|
Schwartz NB, Lyle S, Ozeran JD, Li H, Deyrup A, Ng K, Westley J. Sulfate activation and transport in mammals: system components and mechanisms. Chem Biol Interact 1998; 109:143-51. [PMID: 9566742 DOI: 10.1016/s0009-2797(97)00129-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Extensive studies on the mammalian sulfate-activating enzymes and PAPS translocase have enhanced our understanding of the overall pathway of sulfate activation and utilization. Isolation of the PAPS-synthesizing activities from rat chondrosarcoma and preparation of stable non-hydrolyzable analogs of APS and PAPS have facilitated the kinetic characterization of mammalian ATP sulfurylase and APS kinase. These studies provided the basis for further experimental work showing that APS, the labile intermediate product, is channeled directly between the sulfurylase and kinase active sites. The defect in the brachymorphic mutant mouse lies in this channeling mechanism, thus interfering with efficient PAPS production. The rat chondrosarcoma ATP sulfurylase and APS kinase activities, in fact, reside in a single bifunctional cytoplasmic protein, which has now been cloned and expressed. The mechanism by which PAPS reaches its sites of utilization in the Golgi lumen has also been elucidated: The PAPS translocase is a 230-kDa integral Golgi membrane protein which functions as an antiport.
Collapse
Affiliation(s)
- N B Schwartz
- Department of Pediatrics, University of Chicago Hospitals, IL 60637, USA.
| | | | | | | | | | | | | |
Collapse
|