1
|
Schaefer KG, Grau B, Moore N, Mingarro I, King GM, Barrera FN. Controllable membrane remodeling by a modified fragment of the apoptotic protein Bax. Faraday Discuss 2021; 232:114-130. [PMID: 34549736 PMCID: PMC8712456 DOI: 10.1039/d0fd00070a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intrinsic apoptosis is orchestrated by a group of proteins that mediate the coordinated disruption of mitochondrial membranes. Bax is a multi-domain protein that, upon activation, disrupts the integrity of the mitochondrial outer membrane by forming pores. We strategically introduced glutamic acids into a short sequence of the Bax protein that constitutively creates membrane pores. The resulting BaxE5 peptide efficiently permeabilizes membranes at acidic pH, showing low permeabilization at neutral pH. Atomic force microscopy (AFM) imaging showed that at acidic pH BaxE5 established several membrane remodeling modalities that progressively disturbed the integrity of the lipid bilayer. The AFM data offers vistas on the membrane disruption process, which starts with pore formation and progresses through localized exposure of membrane monolayers leading to stable and small (height ∼ 16 Å) lipid-peptide complexes. The different types of membrane morphology observed in the presence of BaxE5 suggest that the peptide can establish different types of membrane interactions. BaxE5 adopts a rare unstructured conformation when bound to membranes, which might facilitate the dynamic transition between those different states, and then promote membrane digestion.
Collapse
Affiliation(s)
- Katherine G Schaefer
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA.
| | - Brayan Grau
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, 37996, USA.
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Universitat de València, E-46100 Burjassot, Spain
| | - Nicolas Moore
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, 37996, USA.
| | - Ismael Mingarro
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Universitat de València, E-46100 Burjassot, Spain
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA.
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, 37996, USA.
| |
Collapse
|
2
|
Zuttion F, Colom A, Matile S, Farago D, Pompeo F, Kokavecz J, Galinier A, Sturgis J, Casuso I. High-speed atomic force microscopy highlights new molecular mechanism of daptomycin action. Nat Commun 2020; 11:6312. [PMID: 33298927 PMCID: PMC7725780 DOI: 10.1038/s41467-020-19710-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023] Open
Abstract
The increase in speed of the high-speed atomic force microscopy (HS-AFM) compared to that of the conventional AFM made possible the first-ever visualisation at the molecular-level of the activity of an antimicrobial peptide on a membrane. We investigated the medically prescribed but poorly understood lipopeptide Daptomycin under infection-like conditions (37 °C, bacterial lipid composition and antibiotic concentrations). We confirmed so far hypothetical models: Dap oligomerization and the existence of half pores. Moreover, we detected unknown molecular mechanisms: new mechanisms to form toroidal pores or to resist Dap action, and to unprecedently quantify the energy profile of interacting oligomers. Finally, the biological and medical relevance of the findings was ensured by a multi-scale multi-nativeness-from the molecule to the cell-correlation of molecular-level information from living bacteria (Bacillus subtilis strains) to liquid-suspended vesicles and supported-membranes using electron and optical microscopies and the lipid tension probe FliptR, where we found that the cells with a healthier state of their cell wall show smaller membrane deformations.
Collapse
Affiliation(s)
| | - Adai Colom
- Biochemistry Department, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- Organic Chemistry Department, University of Geneva, Geneva, Switzerland
| | - Denes Farago
- Department of Technical Informatics University of Szeged, Szeged, Hungary
| | - Frédérique Pompeo
- Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie de la Méditerranée (IMM), CNRS, UMR 7283, Aix Marseille Université, Marseille, France
| | - Janos Kokavecz
- Institute of Environmental Science and Engineering, University of Szeged, Szeged, Hungary
| | - Anne Galinier
- Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie de la Méditerranée (IMM), CNRS, UMR 7283, Aix Marseille Université, Marseille, France
| | - James Sturgis
- LISM, UMR 7255, CNRS, Aix Marseille Université, Marseille, France
| | - Ignacio Casuso
- U1067 INSERM, Aix-Marseille Université, Marseille, France.
| |
Collapse
|
3
|
Abstract
Membrane permeabilizing peptides (MPPs) are as ubiquitous as the lipid bilayer membranes they act upon. Produced by all forms of life, most membrane permeabilizing peptides are used offensively or defensively against the membranes of other organisms. Just as nature has found many uses for them, translational scientists have worked for decades to design or optimize membrane permeabilizing peptides for applications in the laboratory and in the clinic ranging from antibacterial and antiviral therapy and prophylaxis to anticancer therapeutics and drug delivery. Here, we review the field of membrane permeabilizing peptides. We discuss the diversity of their sources and structures, the systems and methods used to measure their activities, and the behaviors that are observed. We discuss the fact that "mechanism" is not a discrete or a static entity for an MPP but rather the result of a heterogeneous and dynamic ensemble of structural states that vary in response to many different experimental conditions. This has led to an almost complete lack of discrete three-dimensional active structures among the thousands of known MPPs and a lack of useful or predictive sequence-structure-function relationship rules. Ultimately, we discuss how it may be more useful to think of membrane permeabilizing peptides mechanisms as broad regions of a mechanistic landscape rather than discrete molecular processes.
Collapse
Affiliation(s)
- Shantanu Guha
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - Jenisha Ghimire
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - Eric Wu
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - William C Wimley
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| |
Collapse
|
4
|
González-Henríquez C, Pizarro-Guerra G, Córdova-Alarcón E, Sarabia-Vallejos M, Terraza-Inostroza C. Artificial biomembranes stabilized over spin coated hydrogel scaffolds. Crosslinking agent nature induces wrinkled or flat surfaces on the hydrogel. Chem Phys Lipids 2016; 196:13-23. [DOI: 10.1016/j.chemphyslip.2016.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/13/2016] [Accepted: 02/02/2016] [Indexed: 12/19/2022]
|
5
|
Yi X, Zhang Y, Gong M, Yu X, Darabedian N, Zheng J, Zhou F. Ca2+ Interacts with Glu-22 of Aβ(1–42) and Phospholipid Bilayers to Accelerate the Aβ(1–42) Aggregation Below the Critical Micelle Concentration. Biochemistry 2015; 54:6323-32. [DOI: 10.1021/acs.biochem.5b00719] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xinyao Yi
- Department
of Chemistry and Biochemistry, California State University, Los Angeles, California 90032, United States
- College
of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Yi Zhang
- College
of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Ming Gong
- Department
of Chemistry and Biochemistry, California State University, Los Angeles, California 90032, United States
| | - Xiang Yu
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Narek Darabedian
- Department
of Chemistry and Biochemistry, California State University, Los Angeles, California 90032, United States
| | - Jie Zheng
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Feimeng Zhou
- Department
of Chemistry and Biochemistry, California State University, Los Angeles, California 90032, United States
| |
Collapse
|
6
|
Yue T, Feng D, Zhang X. The interplay between the clustering of transmembrane proteins and coupling of anchored membrane proteins. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2013.824575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Han WB, Kim Y, An HH, Kim HS, Yoon CS. Stabilization of solid-supported phospholipid multilayer against water by gramicidin addition. J Phys Chem B 2014; 118:3035-40. [PMID: 24552259 DOI: 10.1021/jp408649b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It was demonstrated that hydrophobicity of solid supported planar dipalmitoyl phosphatidylcholine (DPPC) phospholipid multilayer can be greatly increased by incorporating a transmembrane protein, gramicidin, into the DPPC membrane. The contact angle of deionized water droplet on the gramicidin-modified DPPC membrane increased from 0° (complete wetting) without gramicidin to 55° after adding 15 mol % gramicidin. The increased hydrophobicity of the gramicidin-modified DPPC membrane allowed the membrane to remain stable at the air/water interface as well as underwater. The Au nanoparticles deposited on the gramicidin-modified DPPC membrane reproduced the characteristic surface plasmon resonance peak after being kept underwater or in phosphate-buffered saline solution for 5 days, attesting to the membrane stability in an aqueous environment. The enhanced underwater stability of the lipid multilayer substantially broadens the potential application of the lipid multilayer which includes biosensing, enzymatic fuel cell, surface enhanced Raman spectroscopy substrate.
Collapse
Affiliation(s)
- Won Bae Han
- Department of Materials Science and Engineering, Hanyang University , Seoul, 133-791, Korea
| | | | | | | | | |
Collapse
|
8
|
Han WB, Kim Y, An HH, Kim HS, Yoon CS. Deposition of metal nanoparticles on phospholipid multilayer membranes modified by gramicidin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:13251-13257. [PMID: 24079973 DOI: 10.1021/la402460x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A planar dipalmitoyl phosphatidylcholine (DPPC) multilayer phospholipid membrane was structurally modified by introducing a transmembrane protein, gramicidin (up to 25 mol %), to study its effect on the metal nanoparticles deposited on the membrane. Without gramicidin, when 3-nm-thick Ag, Sn, Al, and Au were deposited, the nanoparticles hardly nucleated on the DPPC membrane in rigid gel state (except for Au); however, the gramicidin addition dramatically enhanced the DPPC membrane surface's affinity for metal atoms so that a dense array of metal (Ag, Sn, and Au) or metal-oxide (Al-oxide) nanoparticles was produced on the membrane surface. The particle sizes ranged from 3 to 15 nm depending on the metal and gramicidin concentration, whereas the particle density was strongly dictated by the gramicidin concentration. The proposed method provides a convenient, generally applicable synthesis route for preparing different metal or metal-oxide nanoparticles on a relatively robust biocompatible membrane.
Collapse
Affiliation(s)
- Won Bae Han
- Department of Materials Science and Engineering, Hanyang University , Seoul, 133-791 Korea
| | | | | | | | | |
Collapse
|
9
|
Yoo J, Cui Q. Membrane-mediated protein-protein interactions and connection to elastic models: a coarse-grained simulation analysis of gramicidin A association. Biophys J 2013; 104:128-38. [PMID: 23332065 DOI: 10.1016/j.bpj.2012.11.3813] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 11/21/2012] [Accepted: 11/27/2012] [Indexed: 11/26/2022] Open
Abstract
To further foster the connection between particle based and continuum mechanics models for membrane mediated biological processes, we carried out coarse-grained (CG) simulations of gramicidin A (gA) dimer association and analyzed the results based on the combination of potential of mean force (PMF) and stress field calculations. Similar to previous studies, we observe that the association of gA dimers depends critically on the degree of hydrophobic mismatch, with the estimated binding free energy of >10 kcal/mol in a distearoylphosphatidylcholine bilayer. Qualitative trends in the computed PMF can be understood based on the stress field distributions near a single gA dimer and between a pair of gA dimers. For example, the small PMF barrier, which is ∼1 kcal/mol independent of lipid type, can be captured nearly quantitatively by considering membrane deformation energy associated with the region confined by two gA dimers. However, the PMF well depth is reproduced poorly by a simple continuum model that only considers membrane deformation energy beyond the annular lipids. Analysis of lipid orientation, configuration entropy, and stress distribution suggests that the annular lipids make a significant contribution to the association of two gA dimers. These results highlight the importance of explicitly considering contributions from annular lipids when constructing approximate models to study processes that involve a significant reorganization of lipids near proteins, such as protein-protein association and protein insertion into biomembranes. Finally, large-scale CG simulations indicate that multiple gA dimers also form clusters, although the preferred topology depends on the protein concentration. Even at high protein concentrations, every gA dimer requires contact to lipid hydrocarbons to some degree, and at most three to four proteins are in contact with each gA dimer; this observation highlights another aspect of the importance of interactions between proteins and annular lipids.
Collapse
Affiliation(s)
- Jejoong Yoo
- Graduate Program in Biophysics, University of Wisconsin, Madison, Wisconsin, USA
| | | |
Collapse
|
10
|
Substrate Effects on the Formation Process, Structure and Physicochemical Properties of Supported Lipid Bilayers. MATERIALS 2012. [PMCID: PMC5449048 DOI: 10.3390/ma5122658] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Supported lipid bilayers are artificial lipid bilayer membranes existing at the interface between solid substrates and aqueous solution. Surface structures and properties of the solid substrates affect the formation process, fluidity, two-dimensional structure and chemical activity of supported lipid bilayers, through the 1–2 nm thick water layer between the substrate and bilayer membrane. Even on SiO2/Si and mica surfaces, which are flat and biologically inert, and most widely used as the substrates for the supported lipid bilayers, cause differences in the structure and properties of the supported membranes. In this review, I summarize several examples of the effects of substrate structures and properties on an atomic and nanometer scales on the solid-supported lipid bilayers, including our recent reports.
Collapse
|
11
|
Morandat S, Azouzi S, Beauvais E, Mastouri A, El Kirat K. Atomic force microscopy of model lipid membranes. Anal Bioanal Chem 2012; 405:1445-61. [DOI: 10.1007/s00216-012-6383-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 08/02/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022]
|
12
|
Unraveling lipid/protein interaction in model lipid bilayers by Atomic Force Microscopy. J Mol Recognit 2011; 24:387-96. [DOI: 10.1002/jmr.1083] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Dzikovski BG, Borbat PP, Freed JH. Channel and nonchannel forms of spin-labeled gramicidin in membranes and their equilibria. J Phys Chem B 2011; 115:176-85. [PMID: 21142163 PMCID: PMC3076037 DOI: 10.1021/jp108105k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Channel and nonchannel forms of gramicidin A (GA) were studied by ESR in various lipid environments using new mono- and double-spin-labeled compounds. For GA channels, we demonstrate here how pulse dipolar ESR can be used to determine the orientation of the membrane-traversing molecule relative to the membrane normal and to study subtle effects of lipid environment on the interspin distance in the spin-labeled gramicidin channel. To study nonchannel forms of gramicidin, pulse dipolar ESR was used first to determine interspin distances corresponding to monomers and double-helical dimers of spin-labeled GA molecules in the organic solvents trifluoroethanol and octanol. The same distances were then observed in membranes. Since detection of nonchannel forms in the membrane is complicated by aggregation, we suppressed any dipolar spectra from intermolecular interspin distances arising from the aggregates by using double-labeled GA in a mixture with excess unlabeled GA. In hydrophobic mismatching lipids (L(β) phase of DPPC), gramicidin channels dissociate into free monomers. The backbone structure of the monomeric form is similar to a monomeric unit of the channel dimer. In addition to channels and monomers, the double-helical conformation of gramicidin is present in some membrane environments. In the gel phase of saturated phosphatidylcholines, the fraction of double helices increases in the following order: DLPC < DMPC < DSPC < DPPC. The equilibrium DHD/monomer ratio in DPPC was determined. In membranes, the double-helical form is present only in aggregates. In addition, we studied the effect of N-terminal substitution in the GA molecule upon channel formation. This work demonstrates how pulsed dipolar ESR may be utilized to study complex equilibria of peptides in membranes.
Collapse
Affiliation(s)
- Boris G Dzikovski
- National Biomedical Center for Advanced ESR Technology, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
14
|
Yarrow F, Kuipers BWM. AFM study of the thermotropic behaviour of supported DPPC bilayers with and without the model peptide WALP23. Chem Phys Lipids 2010; 164:9-15. [PMID: 20932964 DOI: 10.1016/j.chemphyslip.2010.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 09/02/2010] [Accepted: 09/27/2010] [Indexed: 10/19/2022]
Abstract
Temperature-controlled Atomic Force Microscopy (TC-AFM) in Contact Mode is used here to directly image the mechanisms by which melting and crystallization of supported, hydrated DPPC bilayers proceed in the presence and absence of the model peptide WALP23. Melting from the gel L(β)' to the liquid-crystalline L(α) phase starts at pre-existing line-type packing defects (grain boundaries) in absence of the peptide. The exact transition temperature is shown to be influenced by the magnitude of the force exerted by the AFM probe on the bilayer, but is higher than the main transition temperature of non-supported DPPC vesicles in all cases due to bilayer-substrate interactions. Cooling of the fluid L(α) bilayer shows the formation of the line-type defects at the borders between different gel-phase regions that originate from different nuclei. The number of these defects depends directly on the rate of cooling through the transition, as predicted by classical nucleation theory. The presence of the transmembrane, synthetic model peptide WALP23 is known to give rise to heterogeneity in the bilayer as microdomains with a striped appearance are formed in the DPPC bilayer. This striated phase consists of alternating lines of lipids and peptide. It is shown here that melting starts with the peptide-associated lipids in the domains, whose melting temperature is lowered by 0.8-2.0°C compared to the remaining, peptide-free parts of the bilayer. The stabilization of the fluid phase is ascribed to adaptations of the lipids to the shorter peptide. The lipids not associated with the peptide melt at the same temperature as those in the pure DPPC supported bilayer.
Collapse
Affiliation(s)
- F Yarrow
- Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Science Faculty, Utrecht University, P.O. Box 80000, 3508 TA, Utrecht, The Netherlands.
| | | |
Collapse
|
15
|
Giocondi MC, Yamamoto D, Lesniewska E, Milhiet PE, Ando T, Le Grimellec C. Surface topography of membrane domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:703-18. [DOI: 10.1016/j.bbamem.2009.09.015] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/11/2009] [Accepted: 09/20/2009] [Indexed: 12/24/2022]
|
16
|
El Kirat K, Morandat S, Dufrêne YF. Nanoscale analysis of supported lipid bilayers using atomic force microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:750-65. [DOI: 10.1016/j.bbamem.2009.07.026] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/17/2009] [Accepted: 07/23/2009] [Indexed: 12/11/2022]
|
17
|
Yiannourakou M, Marsella L, de Meyer F, Smit B. Towards an understanding of membrane-mediated protein-protein interactions. Faraday Discuss 2010; 144:359-67; discussion 445-81. [PMID: 20158038 DOI: 10.1039/b902190f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We propose a computational framework to study the lipid-mediated clustering of integral membrane proteins. Our method employs a hierarchical approach. The potential of mean force (PMF) of two interacting proteins is computed under a coarse-grained 3-D model that successfully describes the structural properties of reconstituted lipid bilayers of dymiristoylphophatidylcholine (DMPC) molecules. Subsequently, a 2-D model is adopted, where proteins represented as self-avoiding disks interact through the previously computed PMF, which is modified to take into account three body corrections. The aggregation of the proteins is extensively studied under the condition of negative hydrophobic mismatch: the formation of clusters with increasing size agrees with previous computational and experimental findings.
Collapse
Affiliation(s)
- Marianna Yiannourakou
- Centre Européen de Calcul Atomique et Moléculaire, 46 Allée d'Italie, 69364 Lyon, France.
| | | | | | | |
Collapse
|
18
|
Abstract
Membrane-active peptides or protein segments play an important role in many biological processes at the cellular interface to the environment. They are involved, e.g., in cellular fusion or host defense, where they can cause not only merging but also the destabilization of cell membranes. Many factors determine how these typically amphipathic peptides interact with the lipid bilayer. For example, the peptide orientation in the membrane determines which parts of the peptide are exposed to the hydrophobic bilayer interior or to the polar lipid/water interface. As another example, oligomerization is required for many activities such as pore formation. Peptides have been often classified according to a single characteristic mode of interaction with the bilayer, but over the years a more versatile picture has emerged. It appears that any single peptide can adopt several different alignments and/or oligomeric states in response to changes in the environment. For instance, many antimicrobial peptides adopt a surface-parallel alignment at low concentration, but they tilt obliquely into or even fully insert transmembrane into the bilayer above a critical peptide-to-lipid ratio, often in the form of oligomeric pores. Similar changes in peptide orientation or oligomeric state have been observed as a function of, e.g., temperature, lipid composition, pH, or induced by a synergistic partner peptide. Such transitions between peptide states can be regarded as the result of a re-adjustment in the balance between peptide-peptide and peptide-lipid interactions, as the environment conditions are changed. Though often studied in model membrane systems, such rich variety of peptide states is even more likely to occur in native biomembranes with their diverse compositions and physicochemical properties. The ability to undergo transitions between different states thus plays a fundamental role for the biological activities of membrane-active peptides.
Collapse
Affiliation(s)
- Stephan L Grage
- Karlsruhe Institute of Technology, Institute for Biological Interfaces (IBG-2), Institute of Organic Chemistry, Karlsruhe, Germany
| | | | | |
Collapse
|
19
|
Briand E, Zäch M, Svedhem S, Kasemo B, Petronis S. Combined QCM-D and EIS study of supported lipid bilayer formation and interaction with pore-forming peptides. Analyst 2010; 135:343-50. [DOI: 10.1039/b918288h] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Sek S, Laredo T, Dutcher JR, Lipkowski J. Molecular resolution imaging of an antibiotic peptide in a lipid matrix. J Am Chem Soc 2009; 131:6439-44. [PMID: 19368392 DOI: 10.1021/ja808180m] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, we show molecular resolution scanning tunneling microscopy (STM) images of gramicidin, a model antibacterial peptide, inserted into a phospholipid matrix. The resolution of the images is superior to that obtained in previous attempts to image gramicidin in a lipid environment using atomic force microscopy (AFM). This breakthrough has allowed visualization of individual peptide molecules surrounded by lipid molecules. We have observed several important features: the peptide molecules do not aggregate, the peptide molecules adopt a single conformation corresponding to a specific ion channel form, and the lipid molecules adjacent to the peptide molecules are systematically longer than those in the lipid matrix. These results constitute a new approach to obtain structural characteristics of antibiotic peptides in lipid assemblies that is necessary for the understanding of their biological activity.
Collapse
Affiliation(s)
- Slawomir Sek
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | |
Collapse
|
21
|
Past, present and future of atomic force microscopy in life sciences and medicine. J Mol Recognit 2008; 20:418-31. [PMID: 18080995 DOI: 10.1002/jmr.857] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To introduce this special issue of the Journal of Molecular Recognition dedicated to the applications of atomic force microscopy (AFM) in life sciences, this paper presents a short summary of the history of AFM in biology. Based on contributions from the first international conference of AFM in biological sciences and medicine (AFM BioMed Barcelona, 19-21 April 2007), we present and discuss recent progress made using AFM for studying cells and cellular interactions, probing single molecules, imaging biosurfaces at high resolution and investigating model membranes and their interactions. Future prospects in these different fields are also highlighted.
Collapse
|
22
|
Blistering of supported lipid membranes induced by Phospholipase D, as observed by real-time atomic force microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:276-82. [DOI: 10.1016/j.bbamem.2007.09.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 09/11/2007] [Accepted: 09/28/2007] [Indexed: 11/21/2022]
|
23
|
Brasseur R, Deleu M, Mingeot-Leclercq MP, Francius G, Dufrêne YF. Probing peptide–membrane interactions using AFM. SURF INTERFACE ANAL 2008. [DOI: 10.1002/sia.2682] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Brasseur R, Braun N, El Kirat K, Deleu M, Mingeot-Leclercq MP, Dufrêne YF. The biologically important surfactin lipopeptide induces nanoripples in supported lipid bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:9769-72. [PMID: 17696376 DOI: 10.1021/la7014868] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Under specific conditions, lipid membranes form ripple phases with intriguing nanoscale undulations. Here, we show using in situ atomic force microscopy (AFM) that the biologically important surfactin lipopeptide induces nanoripples of 30 nm periodicity in dipalmitoyl phosphatidylcholine (DPPC) bilayers at 25 degrees (i.e. well below the pretransition temperature of DPPC). Whereas most undulations formed the classical straight orientation with characteristic angle changes of 120 degrees , some of them also displayed unusual circular orientations. Strikingly, ripple structures were formed at 15% surfactin but were rarely or never observed at 5 and 30% surfactin, emphasizing the important role played by the surfactin concentration. Theoretical simulations corroborated the AFM data by revealing the formation of stable surfactin/lipid assemblies with positive curvature.
Collapse
Affiliation(s)
- Robert Brasseur
- Centre de Biophysique Moléculaire Numérique, Faculté Universitaire des Sciences Agronomiques de Gembloux, Passage des Déportés 2, B-5030 Gembloux, Belgium
| | | | | | | | | | | |
Collapse
|
25
|
Oliynyk V, Kaatze U, Heimburg T. Defect formation of lytic peptides in lipid membranes and their influence on the thermodynamic properties of the pore environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:236-45. [PMID: 17141732 DOI: 10.1016/j.bbamem.2006.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 10/10/2006] [Accepted: 10/11/2006] [Indexed: 10/24/2022]
Abstract
We present an experimental study of the pore formation processes of small amphipathic peptides in model phosphocholine lipid membranes. We used atomic force microscopy to characterize the spatial organization and structure of alamethicin- and melittin-induced defects in lipid bilayer membranes and the influence of the peptide on local membrane properties. Alamethicin induced holes in gel DPPC membranes were directly visualized at different peptide concentrations. We found that the thermodynamic state of lipids in gel membranes can be influenced by the presence of alamethicin such that nanoscopic domains of fluid lipids form close to the peptide pores, and that the elastic constants of the membrane are altered in their vicinity. Melittin-induced holes were visualized in DPPC and DLPC membranes at room temperature in order to study the influence of the membrane state on the peptide induced hole formation. Also differential scanning calorimetry was used to investigate the effect of alamethicin on the lipid membrane phase behaviour.
Collapse
Affiliation(s)
- Vitaliy Oliynyk
- Complex Fluids Group, Drittes Physikalisches Institut, Georg-August Universität, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | | | | |
Collapse
|
26
|
Kelkar DA, Chattopadhyay A. Modulation of gramicidin channel conformation and organization by hydrophobic mismatch in saturated phosphatidylcholine bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1103-13. [PMID: 17321493 DOI: 10.1016/j.bbamem.2007.01.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 01/18/2007] [Accepted: 01/22/2007] [Indexed: 11/25/2022]
Abstract
The matching of hydrophobic lengths of integral membrane proteins and the surrounding lipid bilayer is an important factor that influences both structure and function of integral membrane proteins. The ion channel gramicidin is known to be uniquely sensitive to membrane properties such as bilayer thickness and membrane mechanical properties. The functionally important carboxy terminal tryptophan residues of gramicidin display conformation-dependent fluorescence which can be used to monitor gramicidin conformations in membranes [S.S. Rawat, D.A. Kelkar, A. Chattopadhyay, Monitoring gramicidin conformations in membranes: a fluorescence approach, Biophys. J. 87 (2004) 831-843]. We have examined the effect of hydrophobic mismatch on the conformation and organization of gramicidin in saturated phosphatidylcholine bilayers of varying thickness utilizing the intrinsic conformation-dependent tryptophan fluorescence. Our results utilizing steady state and time-resolved fluorescence spectroscopic approaches, in combination with circular dichroism spectroscopy, show that gramicidin remains predominantly in the channel conformation and gramicidin tryptophans are at the membrane interfacial region over a range of mismatch conditions. Interestingly, gramicidin conformation shifts toward non-channel conformations in extremely thick gel phase membranes although it is not excluded from the membrane. In addition, experiments utilizing self quenching of tryptophan fluorescence indicate peptide aggregation in thicker gel phase membranes.
Collapse
Affiliation(s)
- Devaki A Kelkar
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
27
|
Anglin TC, Liu J, Conboy JC. Facile lipid flip-flop in a phospholipid bilayer induced by gramicidin A measured by sum-frequency vibrational spectroscopy. Biophys J 2006; 92:L01-3. [PMID: 17071658 PMCID: PMC1697857 DOI: 10.1529/biophysj.106.096057] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The first direct experimental evidence that gramicidin A (gA), a transmembrane peptide, facilitates the translocation of unlabeled lipids in a phospholipid bilayer was obtained with sum-frequency vibrational spectroscopy (SFVS). SFVS was used to investigate the effect of gA on lipid flip-flop in a planar 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) lipid bilayer. The kinetics of lipid translocation were determined by an analysis of the SFVS intensity versus time at different temperatures in the presence of 2 mol % gA. The rate constants of DSPC flip-flop increase from 2 to 10 times relative to the pure DSPC system. The results indicate that facial lipid exchange can be induced by a hydrophobic transmembrane helix. The increase in lipid flip-flop rates is correlated to an increase in the gauche content of the lipid tails. The results suggest that membrane defects induced by the presence of integral membrane proteins may play a large role in modulating the rate of lipid flip-flop.
Collapse
|
28
|
Canale C, Torrassa S, Rispoli P, Relini A, Rolandi R, Bucciantini M, Stefani M, Gliozzi A. Natively folded HypF-N and its early amyloid aggregates interact with phospholipid monolayers and destabilize supported phospholipid bilayers. Biophys J 2006; 91:4575-88. [PMID: 16997875 PMCID: PMC1779933 DOI: 10.1529/biophysj.106.089482] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent data depict membranes as the main sites where proteins/peptides are recruited and concentrated, misfold, and nucleate amyloids; at the same time, membranes are considered key triggers of amyloid toxicity. The N-terminal domain of the prokaryotic hydrogenase maturation factor HypF (HypF-N) in 30% trifluoroethanol undergoes a complex path of fibrillation starting with initial 2-3-nm oligomers and culminating with the appearance of mature fibrils. Oligomers are highly cytotoxic and permeabilize lipid membranes, both biological and synthetic. In this article, we report an in-depth study aimed at providing information on the surface activity of HypF-N and its interaction with synthetic membranes of different lipid composition, either in the native conformation or as amyloid oligomers or fibrils. Like other amyloidogenic peptides, the natively folded HypF-N forms stable films at the air/water interface and inserts into synthetic phospholipid bilayers with efficiencies depending on the type of phospholipid. In addition, HypF-N prefibrillar aggregates interact with, insert into, and disassemble supported phospholipid bilayers similarly to other amyloidogenic peptides. These results support the idea that, at least in most cases, early amyloid aggregates of different peptides and proteins produce similar effects on the integrity of membrane assembly and hence on cell viability.
Collapse
Affiliation(s)
- Claudio Canale
- Department of Physics, University of Genoa, Genoa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Lei S, Tero R, Misawa N, Yamamura S, Wan L, Urisu T. AFM characterization of gramicidin-A in tethered lipid membrane on silicon surface. Chem Phys Lett 2006. [DOI: 10.1016/j.cplett.2006.07.091] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Abstract
Gap junctional hemichannels mediate cell-extracellular communication. A hemichannel is made of six connexin (Cx) subunits; each connexin has four transmembrane domains, two extracellular loops, and cytoplasmic amino- and carboxyl-terminals (CTs). The extracellular domains are arranged differently at non-junctional and junctional (gap junction) regions, although very little is known about their flexibility and conformational energetics. The cytoplasmic tail differs considerably in the size and amino acid sequence for different connexins and is predicted to be involved in the channel open and closed conformations. For large connexins, such as Cx43, the CT makes large cytoplasmic fuzz visible under electron microscopy. If this CT domain controls channel permeability by physical occlusion of the pore mouth, movement of this portion could open or close the channel. We used atomic force microscopy-based single molecule spectroscopy with antibody-modified atomic force microscopy tips and connexin mimetic peptide modified tips to examine the flexibility of extracellular loop and CT domains and to estimate the energetics of their movements. Antibody to the CT portion closer to the membrane stretches the tail to a shorter length, and the antibody to CT tail stretches the tail to a longer length. The stretch length and the energy required for stretching the various portions of the carboxyl tail support the ball and chain model for hemichannel conformational changes.
Collapse
Affiliation(s)
- Fei Liu
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106, USA
| | | | | | | |
Collapse
|
31
|
Vitovic P, Weis M, Tomcík P, Cirák J, Hianik T. Maxwell displacement current allows to study structural changes of gramicidin A in monolayers at the air-water interface. Bioelectrochemistry 2006; 70:469-80. [PMID: 16938494 DOI: 10.1016/j.bioelechem.2006.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 05/29/2006] [Accepted: 07/15/2006] [Indexed: 11/22/2022]
Abstract
We applied methods of measurement Maxwell displacement current (MDC) pressure-area isotherms and dipole potential for analysis of the properties of gramicidin A (gA) and mixed gA/DMPC monolayers at an air-water interface. The MDC method allowed us to observe the kinetics of formation of secondary structure of gA in monolayers at an air-water interface. We showed, that secondary structure starts to form at rather low area per molecule at which gA monolayers are in gaseous state. Changes of the MDC during compression can be attributed to the reorientation of dipole moments in a gA double helix at area 7 nm(2)/molecule, followed by the formation of intertwined double helix of gA. The properties of gA in mixed monolayers depend on the molar fraction of gA/DMPC. At higher molar fractions of gA (around 0.5) the shape of the changes of dipole moment of mixed monolayer was similar to that for pure gA. The analysis of excess free energy in a gel (18( ) degrees C) and in a liquid-crystalline phase (28( ) degrees C) allowed us to show influence of the monolayer structural state on the interaction between gA and the phospholipids. In a gel state and at the gA/DMPC molar ratio below 0.17 the aggregates of gA were formed, while above this molar ratio gA interacts favorably with DMPC. In contrast, for DMPC in a liquid-crystalline state aggregation of gA was observed for all molar fractions studied. The effect of formation ordered structures between gA and DMPC is more pronounced at low temperatures.
Collapse
Affiliation(s)
- Pavol Vitovic
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Computer Sciences, Comenius University, 842 48 Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
32
|
Sharp JM, Duran RS, Dickinson RB. Direct measurement of forces between a colloidal particle and a phospholipid bilayer. J Colloid Interface Sci 2006; 299:182-90. [PMID: 16500670 DOI: 10.1016/j.jcis.2006.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 02/01/2006] [Accepted: 02/01/2006] [Indexed: 10/25/2022]
Abstract
Colloidal interaction forces between a silica particle and a solid-supported Langmuir-Schaefer phospholipid bilayer were directly measured using a gradient optical trap and evanescent wave light scattering. A small custom-built Langmuir trough was integrated with an optical trapping microscope to allow force measurements on a single particle within the subphase of the trough after the dip of the substrate was completed. The novel method allows the force measurements to be conducted without transferring the substratum across an air/water interface. The fluctuating particle position near the bilayer was tracked by evanescent wave light scattering to determine the deflection due to surface forces, and the relaxation time of particle fluctuations was measured to simultaneously determine the viscous forces. Measured equilibrium and viscous force-distance profiles of silica microspheres with diameters of 1 and 5 microm on bilayers of dipalmitoyl phosphatidyl choline (DPPC) were markedly different than force-distance on bare mica and DPPC monolayers under the same electrolyte conditions.
Collapse
Affiliation(s)
- Jeffrey M Sharp
- Department of Chemical Engineering, University of Florida, P.O. Box 116005, Gainesville, FL 32611-6005, USA
| | | | | |
Collapse
|
33
|
Chapter 4 Visualization and Characterization of Domains in Supported Model Membranes. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1554-4516(05)03004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
34
|
de Kruijff B, Killian JA, Ganchev DN, Rinia HA, Sparr E. Striated domains: self-organizing ordered assemblies of transmembrane α-helical peptides and lipids in bilayers. Biol Chem 2006; 387:235-41. [PMID: 16542143 DOI: 10.1515/bc.2006.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This review summarizes the knowledge on striated domains, which are ordered assemblies of transmembrane peptides and lipids under gel-state conditions. The structure, mechanism of function and utility of this system as a model for domain formation is described, resulting in a molecular description of the domains and a discussion on the relevance of these insights for the function/formation and structure of similar domains in biological membranes.
Collapse
Affiliation(s)
- Ben de Kruijff
- Department of Biochemistry of Membranes, Institute of Biomembranes, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, NL-3584 CH Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
35
|
Janovjak H, Kedrov A, Cisneros DA, Sapra KT, Struckmeier J, Muller DJ. Imaging and detecting molecular interactions of single transmembrane proteins. Neurobiol Aging 2005; 27:546-61. [PMID: 16253393 DOI: 10.1016/j.neurobiolaging.2005.03.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2004] [Revised: 03/15/2005] [Accepted: 03/19/2005] [Indexed: 10/25/2022]
Abstract
Single-molecule atomic force microscopy (AFM) provides novel ways to characterize structure-function relationships of native membrane proteins. High-resolution AFM-topographs allow observing substructures of single membrane proteins at sub-nanometer resolution as well as their conformational changes, oligomeric state, molecular dynamics and assembly. Complementary to AFM imaging, single-molecule force spectroscopy experiments allow detecting molecular interactions established within and between membrane proteins. The sensitivity of this method makes it possible to detect the interactions that stabilize secondary structures such as transmembrane alpha-helices, polypeptide loops and segments within. Changes in temperature or protein-protein assembly do not change the position of stable structural segments, but influence their stability established by collective molecular interactions. Such changes alter the probability of proteins to choose a certain unfolding pathway. Recent examples have elucidated unfolding and refolding pathways of membrane proteins as well as their energy landscapes. We review current and future potential of these approaches to reveal insights into membrane protein structure, function, and unfolding as we recognize that they could help answering key questions in the molecular basis of certain neuro-pathological dysfunctions.
Collapse
Affiliation(s)
- Harald Janovjak
- Center of Biotechnology, University of Technology and Max-Planck-Institute of Molecular Cell Biology and Genetics, Tatzberg 49, D-01307 Dresden, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Pedersen TB, Kaasgaard T, Jensen MØ, Frokjaer S, Mouritsen OG, Jørgensen K. Phase behavior and nanoscale structure of phospholipid membranes incorporated with acylated C14-peptides. Biophys J 2005; 89:2494-503. [PMID: 16100273 PMCID: PMC1366748 DOI: 10.1529/biophysj.105.060756] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2005] [Accepted: 07/05/2005] [Indexed: 11/18/2022] Open
Abstract
The thermotropic phase behavior and lateral structure of dipalmitoylphosphatidylcholine (DPPC) lipid bilayers containing an acylated peptide has been characterized by differential scanning calorimetry (DSC) on vesicles and atomic force microscopy (AFM) on mica-supported bilayers. The acylated peptide, which is a synthetic decapeptide N-terminally linked to a C14 acyl chain (C14-peptide), is incorporated into DPPC bilayers in amounts ranging from 0-20 mol %. The calorimetric scans of the two-component system demonstrate a distinct influence of the C14-peptide on the lipid bilayer thermodynamics. This is manifested as a concentration-dependent downshift of both the main phase transition and the pretransition. In addition, the main phase transition peak is significantly broadened, indicating phase coexistence. In the AFM imaging scans we found that the C14-peptide, when added to supported gel phase DPPC bilayers, inserts preferentially into preexisting defect regions and has a noticeable influence on the organization of the surrounding lipids. The presence of the C14-peptide gives rise to a laterally heterogeneous bilayer structure with coexisting lipid domains characterized by a 10 A height difference. The AFM images also show that the appearance of the ripple phase of the DPPC lipid bilayers is unaffected by the C14-peptide. The experimental results are supported by molecular dynamics simulations, which show that the C14-peptide has a disordering effect on the lipid acyl chains and causes a lateral expansion of the lipid bilayer. These effects are most pronounced for gel-like bilayer structures and support the observed downshift in the phase-transition temperature. Moreover, the molecular dynamics data indicate a tendency of a tryptophan residue in the peptide sequence to position itself in the bilayer headgroup region.
Collapse
Affiliation(s)
- Tina B Pedersen
- Department of Pharmaceutics, The Danish University of Pharmaceutical Sciences, DK-2100 Copenhagen Ø, Denmark
| | | | | | | | | | | |
Collapse
|
37
|
Plénat T, Boichot S, Dosset P, Milhiet PE, Le Grimellec C. Coexistence of a two-states organization for a cell-penetrating peptide in lipid bilayer. Biophys J 2005; 89:4300-9. [PMID: 16199494 PMCID: PMC1366994 DOI: 10.1529/biophysj.105.061697] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Primary amphipathic cell-penetrating peptides transport cargoes across cell membranes with high efficiency and low lytic activity. These primary amphipathic peptides were previously shown to form aggregates or supramolecular structures in mixed lipid-peptide monolayers, but their behavior in lipid bilayers remains to be characterized. Using atomic force microscopy, we have examined the interactions of P(alpha), a primary amphipathic cell-penetrating peptide which remains alpha-helical whatever the environment, with dipalmitoylphosphatidylcholine (DPPC) bilayers. Addition of P(alpha) at concentrations up to 5 mol % markedly modified the supported bilayers topography. Long and thin filaments lying flat at the membrane surface coexisted with deeply embedded peptides which induced a local thinning of the bilayer. On the other hand, addition of P(alpha) only exerted very limited effects on the corresponding liposome's bilayer physical state, as estimated from differential scanning calorimetry and diphenylhexatriene fluorescence anisotropy experiments. The use of a gel-fluid phase separated supported bilayers made of a dioleoylphosphatidylcholine/dipalmitoylphosphatidylcholine mixture confirmed both the existence of long filaments, which at low peptide concentration were preferentially localized in the fluid phase domains and the membrane disorganizing effects of 5 mol % P(alpha). The simultaneous two-states organization of P(alpha), at the membrane surface and deeply embedded in the bilayer, may be involved in the transmembrane carrier function of this primary amphipathic peptide.
Collapse
Affiliation(s)
- Thomas Plénat
- Nanostructures et Complexes Membranaires, Centre de Biochimie Structurale, INSERM UMR 554, CNRS UMR 5048-Université Montpellier I, 34090 Montpellier Cedex, France
| | | | | | | | | |
Collapse
|
38
|
Cross B, Ronzon F, Roux B, Rieu JP. Measurement of the anchorage force between GPI-anchored alkaline phosphatase and supported membranes by AFM force spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:5149-53. [PMID: 15896063 DOI: 10.1021/la0470986] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Mammalian alkaline phosphatases (AP) are glycosylphosphatidylinositol (GPI) anchored proteins that are localized on the outer layer of the plasma membrane. The GPI anchors are covalently attached to the C-termini of proteins and consist of a glycan chain bonded to phosphatidylinositol with two acyl chains anchored into the membrane bilayer. Force spectroscopy, based on atomic force microscope (AFM) technology, was used to determine the adhesion of alkaline phosphatase in the absence and presence of anchors. The GPI anchors increase markedly the adhesion frequency (i.e., the protein affinity for the membrane). An adhesion force of 350 +/- 200 pN is measured between GPI-anchored AP (AP(GPI)) and supported phospholipid bilayers of dipalmitoylphosphatidylcholine (DPPC) presenting structural defects (holes). In the absence of defects, the adhesion force (103 +/- 17 pN) and the adhesion frequency are reduced. These results indicate that AP(GPI) poorly spontaneously insert into membranes in vivo and open new perspectives for the characterization of the interactions between GPI proteins and membranes.
Collapse
Affiliation(s)
- Benjamin Cross
- Laboratoire de Physique de la Matière Condensée et Nanostructures, Université Claude Bernard Lyon-1 et CNRS, 69622 Villeurbanne, France
| | | | | | | |
Collapse
|
39
|
Orädd G, Lindblom G. NMR Studies of lipid lateral diffusion in the DMPC/gramicidin D/water system: peptide aggregation and obstruction effects. Biophys J 2005; 87:980-7. [PMID: 15298904 PMCID: PMC1304505 DOI: 10.1529/biophysj.103.038828] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The PFG-NMR method has been used in macroscopically oriented bilayers to investigate the effect of the peptide gramicidin D on the lateral diffusion of dimyristoylphosphatidylcholine. By varying both the temperature (21-35 degrees C) and the gramicidin content (0-5 mol %) we have introduced solid obstacles into the lipid liquid crystalline bilayer. It was shown that the obstruction effect exerted by the peptide can be described with several different theoretical models, each based on different premises, and that the fit of the models to experimental data gave reasonable results. We found that each gramicidin molecule was surrounded by approximately one layer of bound lipids and that the obstruction from gel phase patches can be described as small solid obstacles. No evidence of linear aggregates of gramicidin, such as those reported by atomic force microscopy in the gel phase, was found.
Collapse
Affiliation(s)
- Greger Orädd
- Department of Biophysical Chemistry, Umeå University, Umeå, Sweden.
| | | |
Collapse
|
40
|
Feng ZV, Spurlin TA, Gewirth AA. Direct visualization of asymmetric behavior in supported lipid bilayers at the gel-fluid phase transition. Biophys J 2004; 88:2154-64. [PMID: 15596519 PMCID: PMC1305267 DOI: 10.1529/biophysj.104.052456] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We utilize in situ, temperature-dependent atomic force microscopy to examine the gel-fluid phase transition behavior in supported phospholipid bilayers constructed from 1,2-dimyristoyl-sn-glycero-3-phosphocholine, 1,2-dipentadecanoyl-sn-glycero-3-phosphocholine, and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine. The primary gel-fluid phase transition at T(m) occurs through development of anisotropic cracks in the gel phase, which develop into the fluid phase. At approximately 5 degrees C above T(m), atomic force microscopy studies reveal the presence of a secondary phase transition in all three bilayers studied. The secondary phase transition occurs as a consequence of decoupling between the two leaflets of the bilayer due to enhanced stabilization of the lower leaflet with either the support or the water entrained between the support and the bilayer. Addition of the transmembrane protein gramicidin A or construction of a highly defected gel phase results in elimination of this decoupling and removal of the secondary phase transition.
Collapse
Affiliation(s)
- Z Vivian Feng
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
41
|
Plénat T, Deshayes S, Boichot S, Milhiet PE, Cole RB, Heitz F, Le Grimellec C. Interaction of primary amphipathic cell-penetrating peptides with phospholipid-supported monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:9255-9261. [PMID: 15461515 DOI: 10.1021/la048622b] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The mesoscopic organization adopted by two primary amphipathic peptides, P(beta) and P(alpha), in Langmuir-Blodgett (LB) films made of either the pure peptide or peptide-phospholipid mixtures was examined by atomic force microscopy. P(beta), a potent cell-penetrating peptide (CPP), and P(alpha) mainly differ by their conformational states, predominantly a beta-sheet for P(beta) and an alpha-helix for P(alpha), as determined by Fourier transform infrared spectroscopy. LB films of pure peptide, transferred significantly below their collapse pressure, were characterized by the presence of supramolecular structures, globular aggregates for P(beta) and filaments for P(alpha), inserted into the monomolecular film. In mixed peptide-phospholipid films, similar structures could be observed, as a function of the phospholipid headgroup and acyl chain saturation. They often coexisted with a liquid-expanded phase composed of miscible peptide-lipid. These data strongly suggest that primary amphipathic CPP and antimicrobial peptides may share, to some extent, common mechanisms of interaction with membranes.
Collapse
Affiliation(s)
- Thomas Plénat
- Nanostructures et Complexes Membranaires, CBS, CNRS UMR5048-INSERM U554, 29 rue de Navacelles, 34090 Montpellier Cedex, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Berquand A, Mingeot-Leclercq MP, Dufrêne YF. Real-time imaging of drug-membrane interactions by atomic force microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1664:198-205. [PMID: 15328052 DOI: 10.1016/j.bbamem.2004.05.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 05/25/2004] [Accepted: 05/28/2004] [Indexed: 11/30/2022]
Abstract
Understanding drug-biomembrane interactions at high resolution is a key issue in current biophysical and pharmaceutical research. Here we used real-time atomic force microscopy (AFM) imaging to visualize the interaction of the antibiotic azithromycin with lipid domains in model biomembranes. Various supported lipid bilayers were prepared by fusion of unilamellar vesicles on mica and imaged in buffer solution. Phase-separation was observed in the form of domains made of dipalmitoylphosphatidylcholine (DPPC), sphingomyelin (SM), or SM/cholesterol (SM/Chl) surrounded by a fluid matrix of dioleoylphosphatidylcholine (DOPC). Time-lapse images collected following addition of 1 mM azithromycin revealed progressive erosion and disappearance of DPPC gel domains within 60 min. We attribute this effect to the disruption of the tight molecular packing of the DPPC molecules by the drug, in agreement with earlier biophysical experiments. By contrast, SM and SM-Chl domains were not modified by azithromycin. We suggest that the higher membrane stability of SM-containing domains results from stronger intermolecular interactions between SM molecules. This work provides direct evidence that the perturbation of lipid domains by azithromycin strongly depends on the lipid nature and opens the door for developing new applications in membrane biophysics and pharmacology.
Collapse
Affiliation(s)
- A Berquand
- Unité de chimie des interfaces, Université catholique de Louvain, Croix du Sud 2/18, B-1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
43
|
Abstract
Gramicidin A was studied by continuous wave electron spin resonance (CW-ESR) and by double-quantum coherence electron spin resonance (DQC-ESR) in several lipid membranes (using samples that were macroscopically aligned by isopotential spin-dry ultracentrifugation) and vesicles. As a reporter group, the nitroxide spin-label was attached at the C-terminus yielding the spin-labeled product (GAsl). ESR spectra of aligned membranes containing GAsl show strong orientation dependence. In DPPC and DSPC membranes at room temperature the spectral shape is consistent with high ordering, which, in conjunction with the observed high polarity of the environment of the nitroxide, is interpreted in terms of the nitroxide moiety being close to the membrane surface. In contrast, spectra of GAsl in DMPC membranes indicate deeper embedding and tilt of the NO group. The GAsl spectrum in the DPPC membrane at 35 degrees C (the gel to Pbeta phase transition) exhibits sharp changes, and above this temperature becomes similar to that of DMPC. The dipolar spectrum from DQC-ESR clearly indicates the presence of pairs in DMPC membranes. This is not the case for DPPC, rapidly frozen from the gel phase; however, there are hints of aggregation. The interspin distance in the pairs is 30.9 A, in good agreement with estimates for the head-to-head GAsl dimer (the channel-forming conformation), which matches the hydrophobic thickness of the DMPC bilayer. Both DPPC and DSPC, apparently as a result of hydrophobic mismatch between the dimer length and bilayer thickness, do not favor the channel formation in the gel phase. In the Pbeta and Lalpha phases of DPPC (above 35 degrees C) the channel dimer forms, as evidenced by the DQC-ESR dipolar spectrum after rapid freezing. It is associated with a lateral expansion of lipid molecules and a concomitant decrease in bilayer thickness, which reduces the hydrophobic mismatch. A comparison with studies of dimer formation by other physical techniques indicates the desirability of using low concentrations of GA (approximately 0.4-1 mol %) accessible to the ESR methods employed in the study, since this yields non-interacting dimer channels.
Collapse
Affiliation(s)
- Boris G Dzikovski
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14583-1301, USA
| | | | | |
Collapse
|
44
|
Boichot S, Krauss U, Plénat T, Rennert R, Milhiet PE, Beck-Sickinger A, Le Grimellec C. Calcitonin-derived carrier peptide plays a major role in the membrane localization of a peptide-cargo complex. FEBS Lett 2004; 569:346-50. [PMID: 15225660 DOI: 10.1016/j.febslet.2004.05.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 05/18/2004] [Accepted: 05/18/2004] [Indexed: 10/26/2022]
Abstract
Bilayers made of dioleoylphosphatidylcholine (DOPC)/dipalmitoylphosphatidylcholine (DPPC) mixture containing or not cholesterol (Chl) were used to investigate the interaction of a carrier peptide with membranes. Atomic force microscopy revealed that the C-terminal 9-32 fragment of human calcitonin (hCT (9-32)), free or coupled to enhanced green fluorescent protein (hCT-eGFP) cargo forms aggregates in the DOPC fluid phase in absence of Chl and in the DPPC enriched liquid-ordered phase when Chl is present. The data show that hCT (9-32) plays a determinant role in the membrane localization of the peptide-cargo complex. They suggest that carpet-like mechanism for membrane destabilization may be involved in the carrier function of hCT (9-32).
Collapse
Affiliation(s)
- Sylvie Boichot
- Nanostructures et Complexes Membranaires, C.B.S. CNRS UMR5048-INSERM U554, 29 rue de Navacelles, 34090 Montpellier Cedex, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Orädd G, Lindblom G. Lateral diffusion studied by pulsed field gradient NMR on oriented lipid membranes. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2004; 42:123-131. [PMID: 14745791 DOI: 10.1002/mrc.1338] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This mini-review focuses on the utilization of pulsed magnetic field gradients to measure diffusional motion in systems of macroscopically oriented lipid bilayers. The NMR diffusion technique is proposed to have appreciable potential for future biophysical investigations in the field of membrane biology. Topics such as transport of molecules both across and in the plane of the membrane can be successfully studied, and the formation of lipid domains and their intrinsic dynamics can also be scrutinized. First, a short introduction to the NMR technique is given together with a brief discussion on methods of obtaining a good bilayer orientation. Then, a number of recent results on biophysical/biological membrane systems of great interest is presented, in which some unique conclusions on so-called 'raft membranes' are reached. It is shown for systems with large two-phase areas of liquid disordered and liquid ordered phases that lipid lateral diffusion is faster in the former phase and has a smaller apparent activation energy. Further, on the time-scale of the experiments (50-250 ms), exchange between the two phases is fast in the phospholipid-cholesterol-water ternary system, whereas it is slow in the sphingomyelin-dioleoylphosphatidylcholine-cholesterol-water quaternary system.
Collapse
Affiliation(s)
- Greger Orädd
- Department of Biophysical Chemistry, Umeå University, Umeå, Sweden
| | | |
Collapse
|
46
|
Santos NC, Castanho MARB. An overview of the biophysical applications of atomic force microscopy. Biophys Chem 2004; 107:133-49. [PMID: 14962595 DOI: 10.1016/j.bpc.2003.09.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2002] [Revised: 07/30/2003] [Accepted: 09/04/2003] [Indexed: 11/27/2022]
Abstract
The potentialities of the atomic force microscopy (AFM) make it a tool of undeniable value for the study of biologically relevant samples. AFM is progressively becoming a usual benchtop technique. In average, more than one paper is published every day on AFM biological applications. This figure overcomes materials science applications, showing that 17 years after its invention, AFM has completely crossed the limits of its traditional areas of application. Its potential to image the structure of biomolecules or bio-surfaces with molecular or even sub-molecular resolution, study samples under physiological conditions (which allows to follow in situ the real time dynamics of some biological events), measure local chemical, physical and mechanical properties of a sample and manipulate single molecules should be emphasized.
Collapse
Affiliation(s)
- Nuno C Santos
- Instituto de Bioquímica/Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal.
| | | |
Collapse
|
47
|
Wang R, Shi J, Parikh AN, Shreve AP, Chen L, Swanson BI. Evidence for cholera aggregation on GM1-decorated lipid bilayers. Colloids Surf B Biointerfaces 2004. [DOI: 10.1016/j.colsurfb.2003.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Partenskii MB, Miloshevsky GV, Jordan PC. Stabilization of ion channels due to membrane-mediated elastic interaction. J Chem Phys 2003. [DOI: 10.1063/1.1572460] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
49
|
Ivanova VP, Makarov IM, Schäffer TE, Heimburg T. Analyzing heat capacity profiles of peptide-containing membranes: cluster formation of gramicidin A. Biophys J 2003; 84:2427-39. [PMID: 12668450 PMCID: PMC1302808 DOI: 10.1016/s0006-3495(03)75047-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The analysis of peptide and protein partitioning in lipid membranes is of high relevance for the understanding of biomembrane function. We used statistical thermodynamics analysis to demonstrate the effect of peptide mixing behavior on heat capacity profiles of lipid membranes with the aim to predict peptide aggregation from c(P)-profiles. This analysis was applied to interpret calorimetric data on the interaction of the antibiotic peptide gramicidin A with lipid membranes. The shape of the heat capacity profiles was found to be consistent with peptide clustering in both gel and fluid phase. Applying atomic force microscopy, we found gramicidin A aggregates and established a close link between thermodynamics data and microscopic imaging. On the basis of these findings we described the effect of proteins on local fluctuations. It is shown that the elastic properties of the membrane are influenced in the peptide environment.
Collapse
Affiliation(s)
- V P Ivanova
- Membrane Biophysics and Thermodynamics Group, Max-Planck-Institute for Biophysical Chemistry, 37070 Göttingen, Germany
| | | | | | | |
Collapse
|
50
|
Kim G, Gurau MC, Lim SM, Cremer PS. Investigations of the Orientation of a Membrane Peptide by Sum Frequency Spectroscopy. J Phys Chem B 2003. [DOI: 10.1021/jp027479x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gibum Kim
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77843-3012
| | - Marc C. Gurau
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77843-3012
| | - Soon-Mi Lim
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77843-3012
| | - Paul S. Cremer
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77843-3012
| |
Collapse
|