1
|
Ornelas MY, Thomas AY, Johnson Rosas LI, Medina GN, Mehta AP. Characterization, Directed Evolution, and Targeting of DNA Virus-Encoded RNA Capping Enzymes Using Phenotypic Yeast Platforms. ACS Chem Biol 2023; 18:1808-1820. [PMID: 37498174 PMCID: PMC11024868 DOI: 10.1021/acschembio.3c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The constant and the sudden emergence of zoonotic human and animal viruses is a significant threat to human health, the world economy, and the world food supply. This has necessitated the development of broad-spectrum therapeutic strategies to combat these emerging pathogens. Mechanisms that are essential for viral replication and propagation have been successfully targeted in the past to develop broad-spectrum therapeutics that can be readily repurposed to combat new zoonotic pathogens. Because of the importance of viral RNA capping enzymes to viral replication and pathogenesis, as well as their presence in both DNA and RNA viruses, these viral proteins have been a long-standing therapeutic target. Here, we use genome sequencing information and yeast-based platforms (YeRC0M) to identify, characterize, and target viral genome-encoded essential RNA capping enzymes from emerging strains of DNA viruses, i.e., Monkeypox virus and African Swine Fever Virus, which are a significant threat to human and domestic animal health. We first identified and biochemically characterized these viral RNA capping enzymes and their necessary protein domains. We observed significant differences in functional protein domains and organization for RNA capping enzymes from emerging DNA viruses in comparison to emerging RNA viruses. We also observed several differences in the biochemical properties of these viral RNA capping enzymes using our phenotypic yeast-based approaches (YeRC0M) as compared to the previous in vitro studies. Further, using directed evolution, we were able to identify inactivation and attenuation mutations in these essential viral RNA capping enzymes; these data could have implications on virus biocontainment as well as live attenuated vaccine development. We also developed methods that would facilitate high-throughput phenotypic screening to identify broad-spectrum inhibitors that selectively target viral RNA capping enzymes over host RNA capping enzymes. As demonstrated here, our approaches to identify, characterize, and target viral genome-encoded essential RNA capping enzymes are highly modular and can be readily adapted for targeting emerging viral pathogens as well as their variants that emerge in the future.
Collapse
Affiliation(s)
- Marya Y Ornelas
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, Illinois 61801, United States
| | - Angela Y Thomas
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, Illinois 61801, United States
| | - L Idalee Johnson Rosas
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, Illinois 61801, United States
| | - Gisselle N Medina
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, USDA, Greenport, New York 11944, United States
- National Bio and Agro-Defense Facility (NBAF), ARS, USDA, Manhattan, Kansas 66502, United States
| | - Angad P Mehta
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, Illinois 61801, United States
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Structure and Biochemical Characteristic of the Methyltransferase (MTase) Domain of RNA Capping Enzyme from African Swine Fever Virus. J Virol 2021; 95:JVI.02029-20. [PMID: 33268516 PMCID: PMC8092831 DOI: 10.1128/jvi.02029-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
African swine fever virus (ASFV) is a complex nucleocytoplasmic large DNA virus (NCLDV) that causes a devastating swine disease and it is urgently needed to develop effective anti-ASFV vaccines and drugs. The process of mRNA 5'-end capping is a common characteristic in eukaryotes and many viruses, and the cap structure is required for mRNA stability and efficient translation. The ASFV protein pNP868R was found to have guanylyltransferase (GTase) activity involved in mRNA capping. Here we report the crystal structure of pNP868R methyltransferase (MTase) domain (referred as pNP868RMT) in complex with S-adenosyl-L-methionine (AdoMet). The structure shows the characteristic core fold of the class I MTase family and the AdoMet is bound in a negative-deep groove. Remarkably, the N-terminal extension of pNP868RMT is ordered and keeps away from the AdoMet-binding site, distinct from the close conformation over the active site of poxvirus RNA capping D1 subunit or the largely disordered conformation in most cellular RNA capping MTases. Structure-based mutagenesis studies based on the pNP868RMT-cap analog complex model revealed essential residues involved in substrate recognition and binding. Functional studies suggest the N-terminal extension may play an essential role in substrate recognition instead of AdoMet-binding. A positively charged path stretching from the N-terminal extension to the region around the active site was suggested to provide a favorable electrostatic environment for the binding and approaching of substrate RNA into the active site. Our structure and biochemical studies provide novel insights into the methyltransfer process of mRNA cap catalyzed by pNP868R.IMPORTANCE African swine fever (ASF) is a highly contagious hemorrhagic viral disease in pigs that is caused by African swine fever virus (ASFV). There are no effective drugs or vaccines for protection against ASFV infection till now. The protein pNP868R was predicted to be responsible for process of mRNA 5'-end capping in ASFV, which is essential for mRNA stability and efficient translation. Here, we solved the high-resolution crystal structure of the methyltransferase (MTase) domain of pNP868R. The MTase domain structure shows a canonical class I MTase family fold and the AdoMet binds into a negative pocket. Structure-based mutagenesis studies revealed critical and conserved residues involved in AdoMet-binding and substrate RNA-binding. Notably, both the conformation and the role in MTase activities of the N-terminal extension are distinct from those of previously characterized poxvirus MTase domain. Our structure-function studies provide the basis for potential anti-ASFV inhibitor design targeting the critical enzyme.
Collapse
|
3
|
Porcine Epidemic Diarrhea Virus Deficient in RNA Cap Guanine-N-7 Methylation Is Attenuated and Induces Higher Type I and III Interferon Responses. J Virol 2020; 94:JVI.00447-20. [PMID: 32461321 DOI: 10.1128/jvi.00447-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/16/2020] [Indexed: 12/23/2022] Open
Abstract
The 5' cap methylation of viral RNA plays important roles in RNA stability, efficient translation, and immune evasion. Thus, RNA cap methylation is an attractive target for antiviral discovery and development of new live attenuated vaccines. For coronaviruses, RNA cap structure is first methylated at the guanine-N-7 (G-N-7) position by nonstructural protein 14 (nsp14), which facilitates and precedes the subsequent ribose 2'-O methylation by the nsp16-nsp10 complex. Using porcine epidemic diarrhea virus (PEDV), an Alphacoronavirus, as a model, we showed that G-N-7 methyltransferase (G-N-7 MTase) of PEDV nsp14 methylated RNA substrates in a sequence-unspecific manner. PEDV nsp14 can efficiently methylate RNA substrates with various lengths in both neutral and alkaline pH environments and can methylate cap analogs (GpppA and GpppG) and single-nucleotide GTP but not ATP, CTP, or UTP. Mutations to the S-adenosyl-l-methionine (SAM) binding motif in the nsp14 abolished the G-N-7 MTase activity and were lethal to PEDV. However, recombinant rPEDV-D350A with a single mutation (D350A) in nsp14, which retained 29.0% of G-N-7 MTase activity, was viable. Recombinant rPEDV-D350A formed a significantly smaller plaque and had significant defects in viral protein synthesis and viral replication in Vero CCL-81 cells and intestinal porcine epithelial cells (IPEC-DQ). Notably, rPEDV-D350A induced significantly higher expression of both type I and III interferons in IPEC-DQ cells than the parental rPEDV. Collectively, our results demonstrate that G-N-7 MTase activity of PEDV modulates viral replication, gene expression, and innate immune responses.IMPORTANCE Coronaviruses (CoVs) include a wide range of important human and animal pathogens. Examples of human CoVs include severe acute respiratory syndrome coronavirus (SARS-CoV-1), Middle East respiratory syndrome coronavirus (MERS-CoV), and the most recently emerged SARS-CoV-2. Examples of pig CoVs include porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and swine enteric alphacoronavirus (SeACoV). There are no vaccines or antiviral drugs for most of these viruses. All known CoVs encode a bifunctional nsp14 protein which possesses ExoN and guanine-N-7 methyltransferase (G-N-7 MTase) activities, responsible for replication fidelity and RNA cap G-N-7 methylation, respectively. Here, we biochemically characterized G-N-7 MTase of PEDV nsp14 and found that G-N-7 MTase-deficient PEDV was defective in replication and induced greater responses of type I and III interferons. These findings highlight that CoV G-N-7 MTase may be a novel target for rational design of live attenuated vaccines and antiviral drugs.
Collapse
|
4
|
Varshney D, Petit AP, Bueren-Calabuig JA, Jansen C, Fletcher DA, Peggie M, Weidlich S, Scullion P, Pisliakov AV, Cowling VH. Molecular basis of RNA guanine-7 methyltransferase (RNMT) activation by RAM. Nucleic Acids Res 2016; 44:10423-10436. [PMID: 27422871 PMCID: PMC5137418 DOI: 10.1093/nar/gkw637] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/16/2016] [Accepted: 07/06/2016] [Indexed: 01/16/2023] Open
Abstract
Maturation and translation of mRNA in eukaryotes requires the addition of the 7-methylguanosine cap. In vertebrates, the cap methyltransferase, RNA guanine-7 methyltransferase (RNMT), has an activating subunit, RNMT-Activating Miniprotein (RAM). Here we report the first crystal structure of the human RNMT in complex with the activation domain of RAM. A relatively unstructured and negatively charged RAM binds to a positively charged surface groove on RNMT, distal to the active site. This results in stabilisation of a RNMT lobe structure which co-evolved with RAM and is required for RAM binding. Structure-guided mutagenesis and molecular dynamics simulations reveal that RAM stabilises the structure and positioning of the RNMT lobe and the adjacent α-helix hinge, resulting in optimal positioning of helix A which contacts substrates in the active site. Using biophysical and biochemical approaches, we observe that RAM increases the recruitment of the methyl donor, AdoMet (S-adenosyl methionine), to RNMT. Thus we report the mechanism by which RAM allosterically activates RNMT, allowing it to function as a molecular rheostat for mRNA cap methylation.
Collapse
Affiliation(s)
- Dhaval Varshney
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.,MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Alain-Pierre Petit
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Juan A Bueren-Calabuig
- Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.,Physics, School of Science and Engineering, University of Dundee, Nethergate, Dundee DD1 5EH, UK
| | - Chimed Jansen
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Dan A Fletcher
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Mark Peggie
- Division of Signal Transduction Therapies, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Simone Weidlich
- Division of Signal Transduction Therapies, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Paul Scullion
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Andrei V Pisliakov
- Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.,Physics, School of Science and Engineering, University of Dundee, Nethergate, Dundee DD1 5EH, UK
| | - Victoria H Cowling
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK .,MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
5
|
Crystal structure of vaccinia virus mRNA capping enzyme provides insights into the mechanism and evolution of the capping apparatus. Structure 2015; 22:452-65. [PMID: 24607143 DOI: 10.1016/j.str.2013.12.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/23/2013] [Accepted: 12/30/2013] [Indexed: 02/03/2023]
Abstract
Vaccinia virus capping enzyme is a heterodimer of D1 (844 aa) and D12 (287 aa) polypeptides that executes all three steps in m(7)GpppRNA synthesis. The D1 subunit comprises an N-terminal RNA triphosphatase (TPase)-guanylyltransferase (GTase) module and a C-terminal guanine-N7-methyltransferase (MTase) module. The D12 subunit binds and allosterically stimulates the MTase module. Crystal structures of the complete D1⋅D12 heterodimer disclose the TPase and GTase as members of the triphosphate tunnel metalloenzyme and covalent nucleotidyltransferase superfamilies, respectively, albeit with distinctive active site features. An extensive TPase-GTase interface clamps the GTase nucleotidyltransferase and OB-fold domains in a closed conformation around GTP. Mutagenesis confirms the importance of the TPase-GTase interface for GTase activity. The D1⋅D12 structure complements and rationalizes four decades of biochemical studies of this enzyme, which was the first capping enzyme to be purified and characterized, and provides new insights into the origins of the capping systems of other large DNA viruses.
Collapse
|
6
|
Zhu B, Yang C, Liu H, Cheng L, Song F, Zeng S, Huang X, Ji G, Zhu P. Identification of the active sites in the methyltransferases of a transcribing dsRNA virus. J Mol Biol 2014; 426:2167-74. [PMID: 24690366 PMCID: PMC7094362 DOI: 10.1016/j.jmb.2014.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 11/28/2022]
Abstract
Many double-stranded RNA (dsRNA) viruses are capable of transcribing and capping RNA within a stable icosahedral viral capsid. The turret of turreted dsRNA viruses belonging to the family Reoviridae is formed by five copies of the turret protein, which contains domains with both 7-N-methyltransferase and 2′-O-methyltransferase activities, and serves to catalyze the methylation reactions during RNA capping. Cypovirus of the family Reoviridae provides a good model system for studying the methylation reactions in dsRNA viruses. Here, we present the structure of a transcribing cypovirus to a resolution of ~ 3.8 Å by cryo-electron microscopy. The binding sites for both S-adenosyl-l-methionine and RNA in the two methyltransferases of the turret were identified. Structural analysis of the turret in complex with RNA revealed a pathway through which the RNA molecule reaches the active sites of the two methyltransferases before it is released into the cytoplasm. The pathway shows that RNA capping reactions occur in the active sites of different turret protein monomers, suggesting that RNA capping requires concerted efforts by at least three turret protein monomers. Thus, the turret structure provides novel insights into the precise mechanisms of RNA methylation. Structure of methyltransferases (MTases) and RNA in a transcribing dsRNA virus. S-Adenosyl-l-methionine/S-adenosyl-l-homocysteine was observed in the two MTases. A pathway was identified through which RNA reaches active sites of the two MTase. Methylation reactions require concerted efforts by turret protein monomers.
Collapse
Affiliation(s)
- Bin Zhu
- College of Physics and Information Science, Hunan Normal University, 36 Lushan Road, Changsha, Hunan 410081, China
| | - Chongwen Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hongrong Liu
- College of Physics and Information Science, Hunan Normal University, 36 Lushan Road, Changsha, Hunan 410081, China.
| | - Lingpeng Cheng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.
| | - Feng Song
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Songjun Zeng
- College of Physics and Information Science, Hunan Normal University, 36 Lushan Road, Changsha, Hunan 410081, China
| | - Xiaojun Huang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Gang Ji
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Ping Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| |
Collapse
|
7
|
Identification of sendai virus L protein amino acid residues affecting viral mRNA cap methylation. J Virol 2008; 83:1669-81. [PMID: 19052078 DOI: 10.1128/jvi.01438-08] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Viruses of the order Mononegavirales all encode a large (L) polymerase protein responsible for the replication and transcription of the viral genome as well as all posttranscriptional modifications of viral mRNAs. The L protein is conserved among all members of the Mononegavirales and has six conserved regions ("domains"). Using vesicular stomatitis virus (VSV) (family Rhabdoviridae) experimental system, we and others recently identified several conserved amino acid residues within L protein domain VI which are required for viral mRNA cap methylation. To verify that these critical amino acid residues have a similar function in other members of the Mononegavirales, we examined the Sendai virus (SeV) (family Paramyxoviridae) L protein by targeting homologous amino acid residues important for cap methylation in VSV which are highly conserved among all members of the Mononegavirales and are believed to constitute the L protein catalytic and S-adenosylmethionine-binding sites. In addition, an SeV L protein mutant with a deletion of the entire domain VI was generated. First, L mutants were tested for their abilities to synthesize viral mRNAs. While the domain VI deletion completely inactivated L, most of the amino acid substitutions had minor effects on mRNA synthesis. Using a reverse genetics approach, these mutations were introduced into the SeV genome, and recombinant infectious SeV mutants with single alanine substitutions at L positions 1782, 1804, 1805, and 1806 or a double substitution at positions 1804 and 1806 were generated. The mutant SeV virions were purified, detergent activated, and analyzed for their abilities to synthesize viral mRNAs methylated at their cap structures. In addition, further studies were done to examine these SeV mutants for a possible host range phenotype, which was previously shown for VSV cap methylation-defective mutants. In agreement with a predicted role of the SeV L protein invariant lysine 1782 as a catalytic residue, the recombinant virus with a single K1782A substitution was completely defective in cap methylation and showed a host range phenotype. In addition, the E1805A mutation within the putative S-adenosylmethionine-binding site of L resulted in a 60% reduction in cap methylation. In contrast to the homologous VSV mutants, other recombinant SeV mutants with amino acid substitutions at this site were neither defective in cap methylation nor host range restricted. The results of this initial study using an SeV experimental system demonstrate similarities as well as differences between the L protein cap methylation domains in different members of the Mononegavirales.
Collapse
|
8
|
Zheng S, Shuman S. Mutational analysis of vaccinia virus mRNA cap (guanine-N7) methyltransferase reveals essential contributions of the N-terminal peptide that closes over the active site. RNA (NEW YORK, N.Y.) 2008; 14:2297-2304. [PMID: 18799596 PMCID: PMC2578867 DOI: 10.1261/rna.1201308] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 07/23/2008] [Indexed: 05/26/2023]
Abstract
RNA guanine-N7 methyltransferase catalyzes the third step of eukaryal mRNA capping, the transfer of a methyl group from AdoMet to GpppRNA to form m(7)GpppRNA. Mutational and crystallographic analyses of cellular and poxvirus cap methyltransferases have yielded a coherent picture of a conserved active site and determinants of substrate specificity. Models of the Michaelis complex suggest a direct in-line mechanism of methyl transfer. Because no protein contacts to the guanine-N7 nucleophile, the AdoMet methyl carbon (Cepsilon) or the AdoHcy sulfur (Sdelta) leaving group were observed in ligand-bound structures of cellular cap methyltransferase, it was initially thought that the enzyme facilitates catalysis by optimizing proximity and geometry of the donor and acceptor. However, the structure of AdoHcy-bound vaccinia virus cap methyltransferase revealed the presence of an N-terminal "lid peptide" that closes over the active site and makes multiple contacts with the substrates, including the AdoMet sulfonium. This segment is disordered in the vaccinia apoenzyme and is not visible in the available structures of cellular cap methyltransferase. Here, we conducted a mutational analysis of the vaccinia virus lid peptide ((545)DKFRLNPEVSYFTNKRTRG(563)) entailing in vivo and in vitro readouts of the effects of alanine and conservative substitutions. We thereby identified essential functional groups that interact with the AdoMet sulfonium (Tyr555, Phe556), the AdoMet adenine (Asn550), and the cap triphosphate bridge (Arg560, Arg562). The results suggest that van der Waals contacts of Tyr555 and Phe556 to the AdoMet Sdelta and C epsilon atoms, and the electron-rich environment around the sulfonium, serve to stabilize the transition state of the transmethylation reaction.
Collapse
Affiliation(s)
- Sushuang Zheng
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | | |
Collapse
|
9
|
Kroschewski H, Lim SP, Butcher RE, Yap TL, Lescar J, Wright PJ, Vasudevan SG, Davidson AD. Mutagenesis of the Dengue Virus Type 2 NS5 Methyltransferase Domain. J Biol Chem 2008; 283:19410-21. [DOI: 10.1074/jbc.m800613200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
10
|
Characterization of a trifunctional mimivirus mRNA capping enzyme and crystal structure of the RNA triphosphatase domain. Structure 2008; 16:501-12. [PMID: 18400173 DOI: 10.1016/j.str.2008.01.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 01/02/2008] [Accepted: 01/03/2008] [Indexed: 01/26/2023]
Abstract
The RNA triphosphatase (RTPase) components of the mRNA capping apparatus are a bellwether of eukaryal taxonomy. Fungal and protozoal RTPases belong to the triphosphate tunnel metalloenzyme (TTM) family, exemplified by yeast Cet1. Several large DNA viruses encode metal-dependent RTPases unrelated to the cysteinyl-phosphatase RTPases of their metazoan host organisms. The origins of DNA virus RTPases are unclear because they are structurally uncharacterized. Mimivirus, a giant virus of amoeba, resembles poxviruses in having a trifunctional capping enzyme composed of a metal-dependent RTPase module fused to guanylyltransferase (GTase) and guanine-N7 methyltransferase domains. The crystal structure of mimivirus RTPase reveals a minimized tunnel fold and an active site strikingly similar to that of Cet1. Unlike homodimeric fungal RTPases, mimivirus RTPase is a monomer. The mimivirus TTM-type RTPase-GTase fusion resembles the capping enzymes of amoebae, providing evidence that the ancestral large DNA virus acquired its capping enzyme from a unicellular host.
Collapse
|
11
|
Zheng S, Shuman S. Structure-function analysis of vaccinia virus mRNA cap (guanine-N7) methyltransferase. RNA (NEW YORK, N.Y.) 2008; 14:696-705. [PMID: 18256245 PMCID: PMC2271365 DOI: 10.1261/rna.928208] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The guanine-N7 methyltransferase domain of vaccinia virus mRNA capping enzyme is a heterodimer composed of a catalytic subunit and a stimulatory subunit. Structure-function analysis of the catalytic subunit by alanine scanning and conservative substitutions (49 mutations at 25 amino acids) identified 12 functional groups essential for methyltransferase activity in vivo, most of which were essential for cap methylation in vitro. Defects in cap binding were demonstrated for a subset of lethal mutants that displayed residual activity in vitro. We discuss our findings in light of a model of the Michaelis complex derived from crystal structures of AdoHcy-bound vaccinia cap methyltransferase and GTP-bound cellular cap methyltransferase. The structure-function data yield a coherent picture of the vaccinia cap methyltransferase active site and the determinants of substrate specificity and affinity.
Collapse
Affiliation(s)
- Sushuang Zheng
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | | |
Collapse
|
12
|
De la Peña M, Kyrieleis OJP, Cusack S. Structural insights into the mechanism and evolution of the vaccinia virus mRNA cap N7 methyl-transferase. EMBO J 2007; 26:4913-25. [PMID: 17989694 DOI: 10.1038/sj.emboj.7601912] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 10/11/2007] [Indexed: 11/09/2022] Open
Abstract
The vaccinia virus mRNA capping enzyme is a multifunctional heterodimeric protein associated with the viral polymerase that both catalyses the three steps of mRNA capping and regulates gene transcription. The structure of a subcomplex comprising the C-terminal N7-methyl-transferase (MT) domain of the large D1 subunit, the stimulatory D12 subunit and bound S-adenosyl-homocysteine (AdoHcy) has been determined at 2.7 A resolution and reveals several novel features of the poxvirus capping enzyme. The structure shows for the first time the critical role played by the proteolytically sensitive N-terminus of the MT domain in binding the methyl donor and in catalysis. In addition, the poxvirus enzyme has a completely unique mode of binding of the adenosine moiety of AdoHcy, a feature that could be exploited for design of specific anti-poxviral compounds. The structure of the poxvirus-specific D12 subunit suggests that it was originally an RNA cap 2'O-MT that has evolved to a catalytically inactive form that has been retained for D1 stabilisation and MT activity enhancement through an allosteric mechanism.
Collapse
Affiliation(s)
- Marcos De la Peña
- Grenoble Outstation, European Molecular Biology Laboratory, Grenoble, France
| | | | | |
Collapse
|
13
|
Schwer B, Shuman S. Genetic analysis of poxvirus mRNA cap methyltransferase: suppression of conditional mutations in the stimulatory D12 subunit by second-site mutations in the catalytic D1 subunit. Virology 2006; 352:145-56. [PMID: 16716374 DOI: 10.1016/j.virol.2006.03.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2006] [Revised: 03/01/2006] [Accepted: 03/16/2006] [Indexed: 11/19/2022]
Abstract
The guanine-N7 methyltransferase domain of vaccinia virus mRNA capping enzyme, composed of catalytic vD1(498-844) and stimulatory vD12 subunits, can function in vivo in Saccharomyces cerevisiae in lieu of the essential cellular cap methyltransferase Abd1. Coexpression of both poxvirus subunits is required to complement the growth of abd1Delta cells. A double-alanine scan of the vD12 protein identified lethal and temperature-sensitive vD12 alleles. We used this mutant collection to perform a forward genetic screen for compensatory changes in the catalytic subunit that suppressed the growth phenotypes of the vD12 mutants. The screen reiteratively defined a small ensemble of amino acids in vD1(498-844) at which mutations restored methyltransferase function in conjunction with defective vD12 proteins. Reference to the crystal structure of the microsporidian cap methyltransferase suggests that distinct functional classes of suppressors were selected, including: (i) those that map to surface-exposed loops, which likely comprise the physical subunit interface; (ii) those in or near the substrate binding sites, which presumably affect or mimic inter-subunit allostery.
Collapse
Affiliation(s)
- Beate Schwer
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA.
| | | |
Collapse
|
14
|
Schwer B, Hausmann S, Schneider S, Shuman S. Poxvirus mRNA cap methyltransferase. Bypass of the requirement for the stimulatory subunit by mutations in the catalytic subunit and evidence for intersubunit allostery. J Biol Chem 2006; 281:18953-60. [PMID: 16707499 DOI: 10.1074/jbc.m602867200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The guanine-N7 methyltransferase domain of vaccinia virus mRNA capping enzyme is a heterodimer composed of a catalytic subunit vD1-(540-844) and a stimulatory subunit vD12. The poxvirus enzyme can function in vivo in Saccharomyces cerevisiae in lieu of the essential cellular cap methyltransferase Abd1. Coexpression of both poxvirus subunits is required to complement the growth of abd1delta cells. We performed a genetic screen for mutations in the catalytic subunit that bypassed the requirement for the stimulatory subunit in vivo. We thereby identified missense changes in vicinal residues Tyr-752 (to Ser, Cys, or His) and Asn-753 (to Ile), which are located in the cap guanine-binding pocket. Biochemical experiments illuminated a mechanism of intersubunit allostery, whereby the vD12 subunit enhances the affinity of the catalytic subunit for AdoMet and the cap guanine methyl acceptor by 6- and 14-fold, respectively, and increases kcat by a factor of 4. The bypass mutations elicited gains of function in both vD12-independent and vD12-dependent catalysis of cap methylation in vitro when compared with wild-type vD1-(540-844). These results highlight the power of yeast as a surrogate model for the genetic analysis of interacting poxvirus proteins and demonstrate that the activity of an RNA processing enzyme can be augmented through selection and protein engineering.
Collapse
Affiliation(s)
- Beate Schwer
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
15
|
Grdzelishvili VZ, Smallwood S, Tower D, Hall RL, Hunt DM, Moyer SA. Identification of a new region in the vesicular stomatitis virus L polymerase protein which is essential for mRNA cap methylation. Virology 2006; 350:394-405. [PMID: 16537083 DOI: 10.1016/j.virol.2006.02.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 01/27/2006] [Accepted: 02/13/2006] [Indexed: 11/29/2022]
Abstract
The vesicular stomatitis virus (VSV) L polymerase protein possesses two methyltransferase (MTase) activities, which catalyze the methylation of viral mRNA cap structures at the guanine-N7 and 2'-O-adenosine positions. To identify L sequences required for the MTase activities, we analyzed a host range (hr) and temperature-sensitive (ts) mutant of VSV, hr8, which was defective in mRNA cap methylation. Sequencing hr8 identified five amino acid substitutions, all residing in the L protein. Recombinant VSV were generated with each of the identified L mutations, and the presence of a single G1481R substitution in L, located between conserved domains V and VI, was sufficient to produce a dramatic reduction (about 90%) in overall mRNA methylation. Cap analysis showed residual guanine-N7 methylation and reduced 2'-O-adenosine methylation, identical to that of the original hr8 virus. When recombinant viruses were tested for virus growth under conditions that were permissive and nonpermissive for the hr8 mutant, the same single L mutation, G1481R, was solely responsible for both the hr and ts phenotypes. A spontaneous suppressor mutant of the rG1481R virus that restored both growth on nonpermissive cells and cap methylation was identified and mapped to a single change, L1450I, in L. Site-directed mutagenesis of the region between domains V and VI, amino acids 1419-1672 of L, followed by the rescue of recombinant viruses identified five additional virus mutants, K1468A, R1478A/D1479A, G1481A, G1481N, and G1672A, that were all hr and defective in mRNA cap methylation. Thus, in addition to the previously characterized domain VI [Grdzelishvili, V.Z., Smallwood, S., Tower, D., Hall, R.L., Hunt, D.M., Moyer, S.A., 2005. A single amino acid change in the L-polymerase protein of vesicular stomatitis virus completely abolishes viral mRNA cap methylation. J. Virol. 79, 7327-7337; Li, J., Fontaine-Rodriguez, E.C., Whelan, S.P., 2005. Amino acid residues within conserved domain VI of the vesicular stomatitis virus large polymerase protein essential for mRNA cap methyltransferase activity. J. Virol. 79, 13373-13384], a new region between L amino acids 1450-1481 was identified which is critical for mRNA cap methylation.
Collapse
Affiliation(s)
- Valery Z Grdzelishvili
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|
16
|
Hall MP, Ho CK. Characterization of a Trypanosoma brucei RNA cap (guanine N-7) methyltransferase. RNA (NEW YORK, N.Y.) 2006; 12:488-97. [PMID: 16431985 PMCID: PMC1383586 DOI: 10.1261/rna.2250606] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The m7GpppN cap structure of eukaryotic mRNA is formed by the sequential action of RNA triphosphatase, guanylyltransferase, and (guanine N-7) methyltransferase. In trypanosomatid protozoa, the m7GpppN is further modified by seven methylation steps within the first four transcribed nucleosides to form the cap 4 structure. The RNA triphosphatase and guanylyltransferase components have been characterized in Trypanosoma brucei. Here we describe the identification and characterization of a T. brucei (guanine N-7) methyltransferase (TbCmt1). Sequence alignment of the 324-amino acid TbCmt1 with the corresponding enzymes from human (Hcm1), fungal (Abd1), and microsporidian (Ecm1) revealed the presence of conserved residues known to be essential for methyltransferase activity. Purified recombinant TbCmt1 catalyzes the transfer of a methyl group from S-adenosylmethionine to the N-7 position of the cap guanine in GpppN-terminated RNA to form the m7GpppN cap. TbCmt1 also methylates GpppG and GpppA but not GTP or dGTP. Mutational analysis of individual residues of TbCmt1 that were predicted-on the basis of the crystal structure of Ecm1--to be located at or near the active site identified six conserved residues in the putative AdoMet- or cap-binding pocket that caused significant reductions in TbCmt1 methyltransferase activity. We also report the identification of a second T. brucei RNA (guanine N-7) cap methyltransferase (named TbCgm1). The 1050-amino acid TbCgm1 consists of a C-terminal (guanine N-7) methyltransferase domain, which is homologous with TbCmt1, and an N-terminal guanylyltransferase domain, which contains signature motifs found in the nucleotidyl transferase superfamily.
Collapse
Affiliation(s)
- Megan P Hall
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | | |
Collapse
|
17
|
Grdzelishvili VZ, Smallwood S, Tower D, Hall RL, Hunt DM, Moyer SA. A single amino acid change in the L-polymerase protein of vesicular stomatitis virus completely abolishes viral mRNA cap methylation. J Virol 2005; 79:7327-37. [PMID: 15919887 PMCID: PMC1143665 DOI: 10.1128/jvi.79.12.7327-7337.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vesicular stomatitis virus (VSV) RNA polymerase synthesizes viral mRNAs with 5'-cap structures methylated at the guanine-N7 and 2'-O-adenosine positions (7mGpppA(m)). Previously, our laboratory showed that a VSV host range (hr) and temperature-sensitive (ts) mutant, hr1, had a complete defect in mRNA cap methylation and that the wild-type L protein could complement the hr1 defect in vitro. Here, we sequenced the L, P, and N genes of mutant hr1 and found only two amino acid substitutions, both residing in the L-polymerase protein, which differentiate hr1 from its wild-type parent. These mutations (N505D and D1671V) were introduced separately and together into the L gene, and their effects on VSV in vitro transcription and in vivo chloramphenicol acetyltransferase minigenome replication were studied under conditions that are permissive and nonpermissive for hr1. Neither L mutation significantly affected viral RNA synthesis at 34 degrees C in permissive (BHK) and nonpermissive (HEp-2) cells, but D1671V reduced in vitro transcription and genome replication by about 50% at 40 degrees C in both cell lines. Recombinant VSV bearing each mutation were isolated, and the hr and ts phenotypes in infected cells were the result of a single D1671V substitution in the L protein. While the mutations did not significantly affect mRNA synthesis by purified viruses, 5'-cap analyses of product mRNAs clearly demonstrated that the D1671V mutation abrogated all methyltransferase activity. Sequence analysis suggests that an aspartic acid at amino acid 1671 is a critical residue within a putative conserved S-adenosyl-l-methionine-binding domain of the L protein.
Collapse
Affiliation(s)
- Valery Z Grdzelishvili
- University of Florida College of Medicine, Department of Molecular Genetics and Microbiology, 1600 S.W. Archer Road, P.O. Box 100266, Gainesville, FL 32610-0266, USA
| | | | | | | | | | | |
Collapse
|
18
|
Hausmann S, Zheng S, Fabrega C, Schneller SW, Lima CD, Shuman S. Encephalitozoon cuniculi mRNA cap (guanine N-7) methyltransferase: methyl acceptor specificity, inhibition BY S-adenosylmethionine analogs, and structure-guided mutational analysis. J Biol Chem 2005; 280:20404-12. [PMID: 15760890 DOI: 10.1074/jbc.m501073200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Encephalitozoon cuniculi mRNA cap (guanine N-7) methyltransferase Ecm1 has been characterized structurally but not biochemically. Here we show that purified Ecm1 is a monomeric protein that catalyzes methyl transfer from S-adenosylmethionine (AdoMet) to GTP. The reaction is cofactor-independent and optimal at pH 7.5. Ecm1 also methylates GpppA, GDP, and dGTP but not ATP, CTP, UTP, ITP, or m(7)GTP. The affinity of Ecm1 for the cap dinucleotide GpppA (K 0.1 mm) is higher than that for GTP (K(m) 1 mm) or GDP (K(m) 2.4 mm). Methylation of GTP by Ecm1 in the presence of 5 microm AdoMet is inhibited by the reaction product AdoHcy (IC(50) 4 microm) and by substrate analogs sinefungin (IC(50) 1.5 microm), aza-AdoMet (IC(50) 100 microm), and carbocyclic aza-AdoMet (IC(50) 35 microm). The crystal structure of an Ecm1.aza-AdoMet binary complex reveals that the inhibitor occupies the same site as AdoMet. Structure-function analysis of Ecm1 by alanine scanning and conservative substitutions identified functional groups necessary for methyltransferase activity in vivo. Amino acids Lys-54, Asp-70, Asp-78, and Asp-94, which comprise the AdoMet-binding site, and Phe-141, which contacts the cap guanosine, are essential for cap methyltransferase activity in vitro.
Collapse
Affiliation(s)
- Stéphane Hausmann
- Molecular Biology and Structural Biology Programs, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
19
|
Huang YL, Hsu YH, Han YT, Meng M. mRNA guanylation catalyzed by the S-adenosylmethionine-dependent guanylyltransferase of bamboo mosaic virus. J Biol Chem 2005; 280:13153-62. [PMID: 15677480 DOI: 10.1074/jbc.m412619200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The S-adenosylmethionine-dependent guanylyltransferase of bamboo mosaic virus belongs to a novel class of mRNA capping enzymes distantly conserved in Alphavirus-like superfamily. The reaction sequence of the viral enzyme has been proposed comprising steps of 1) binding of GTP and S-adenosylmethionine, 2) formation of m7GTP and S-adenosylhomocysteine, 3) formation of the covalent (Enzyme-m7GMP) intermediate, and 4) transfer of m7GMP from the intermediate to the RNA acceptor. In this study the acceptor specificity of the viral enzyme was characterized. The results show that adenylate or guanylate with 5'-diphosphate group is an essential feature for acceptors, which can be RNA or mononucleotide, to receive m7GMP. The transfer rate of m7GMP to guanylate is greater than to adenylate by a factor of approximately 3, and the K(m) value for mononucleotide acceptor is approximately 10(3)-fold higher than that for RNA. The capping efficiency of the viral genomic RNA transcript depends on the length of the transcript and the formation of a putative stem-loop structure, suggesting that mRNA capping process may participate in regulating the viral gene expression.
Collapse
Affiliation(s)
- Yih-Leh Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung, Taiwan 40227, Republic of China
| | | | | | | |
Collapse
|
20
|
Fabrega C, Hausmann S, Shen V, Shuman S, Lima CD. Structure and mechanism of mRNA cap (guanine-N7) methyltransferase. Mol Cell 2004; 13:77-89. [PMID: 14731396 DOI: 10.1016/s1097-2765(03)00522-7] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A suite of crystal structures is reported for a cellular mRNA cap (guanine-N7) methyltransferase in complex with AdoMet, AdoHcy, and the cap guanylate. Superposition of ligand complexes suggests an in-line mechanism of methyl transfer, albeit without direct contacts between the enzyme and either the N7 atom of guanine (the attacking nucleophile), the methyl carbon of AdoMet, or the sulfur of AdoMet/AdoHcy (the leaving group). The structures indicate that catalysis of cap N7 methylation is accomplished by optimizing proximity and orientation of the substrates, assisted by a favorable electrostatic environment. The enzyme-ligand structures, together with new mutational data, fully account for the biochemical specificity of the cap guanine-N7 methylation reaction, an essential and defining step of eukaryotic mRNA synthesis.
Collapse
Affiliation(s)
- Carme Fabrega
- Biochemistry Department, Structural Biology Program, Weill Medical College, Cornell University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
21
|
Saha N, Shuman S, Schwer B. Yeast-based genetic system for functional analysis of poxvirus mRNA cap methyltransferase. J Virol 2003; 77:7300-7. [PMID: 12805428 PMCID: PMC164803 DOI: 10.1128/jvi.77.13.7300-7307.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Structural differences between poxvirus and human mRNA capping enzymes recommend cap formation as a target for antipoxviral drug discovery. Genetic and pharmacologic analysis of the poxvirus capping enzymes requires in vivo assays in which the readout depends on the capacity of the viral enzyme to catalyze cap synthesis. Here we have used the budding yeast Saccharomyces cerevisiae as a genetic model for the study of poxvirus cap guanine-N7 methyltransferase. The S. cerevisiae capping system consists of separate triphosphatase (Cet1), guanylyltransferase (Ceg1), and methyltransferase (Abd1) components. All three activities are essential for cell growth. We report that the methyltransferase domain of vaccinia virus capping enzyme (composed of catalytic vD1-C and stimulatory vD12 subunits) can function in lieu of yeast Abd1. Coexpression of both vaccinia virus subunits is required for complementation of the growth of abd1Delta cells. Previously described mutations of vD1-C and vD12 that eliminate or reduce methyltransferase activity in vitro either abolish abd1Delta complementation or elicit conditional growth defects. We have used the yeast complementation assay as the primary screen in a new round of alanine scanning of the catalytic subunit. We thereby identified several new amino acids that are critical for cap methylation activity in vivo. Studies of recombinant proteins show that the lethal vD1-C mutations do not preclude heterodimerization with vD12 but either eliminate or reduce cap methyltransferase activity in vitro.
Collapse
Affiliation(s)
- Nayanendu Saha
- Department of Microbiology and Immunology, Weill Medical College of Cornell University. Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | |
Collapse
|
22
|
Abstract
In humans, 5' m(7)G cap addition is accomplished cotranscriptionally by the sequential action of the capping enzyme (Hce1) and the cap methyltransferase (Hcm1). We found that guanylylation and methylation occur efficiently during transcription with t(1/2)'s of less than 15 and 70 s, respectively. A two to four order of magnitude increase was found in the rate of guanylylation of RNA in transcription complexes compared to free RNA. This stimulation required only the RNA polymerase II elongation complex and Hce1. Capping activity was weakly associated with elongation but not preinitiation complexes. The CTD was not required for functional coupling but stimulated the rate of capping 4-fold. Inhibition of Cdk7 but not Cdk9 similarly slowed the rate of capping.
Collapse
Affiliation(s)
- Shin Moteki
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
23
|
Saha N, Shuman S. Effects of alanine cluster mutations in the D12 subunit of vaccinia virus mRNA (guanine-N7) methyltransferase. Virology 2001; 287:40-8. [PMID: 11504540 DOI: 10.1006/viro.2001.1006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The (guanine-N7)-methyltransferase domain of the vaccinia virus mRNA capping enzyme is a heterodimer composed of a catalytic subunit D1(498-844) bound to a stimulatory subunit D12. To identify structural elements of the 287-amino-acid D12 subunit that participate in binding and activation of the catalytic subunit, we introduced 12 double-alanine mutations at vicinal residues that are conserved in the D12 homologs of other vertebrate poxviruses. His-tagged D12 mutants were coexpressed in bacteria with the D1(498-544) subunit, and the recombinant D1(498-844)/His-D12 heterodimers were purified. Eight of the mutants (K111A-R112A, N120A-N121A, N126A-N127A, F141A-R142A, K223A-D224A, H260A-S261A, E275A-N276A, and R280A-R281A) had no significant effect on methyltransferase activity. Three of the mutants (L61A-K62A, F176A-K177A, and F245A-L246A) displayed an intermediate level of cap methylation (35-50% of wild-type activity). Only one mutation, N42A-Y43A, elicited a significant loss of the methyltransferase activation function (<20% of the wild-type activity). Nine of the D12-Ala/Ala proteins were produced individually in bacteria and tested for reconstitution of methyltransferase activity in vitro by mixing with the catalytic subunit. K111A-R112A, N120A-N121A, F176A-K177A, F245A-L246A, and L61A-K62A displayed diminished affinity for the D1 catalytic subunit. N42A-Y43A was uniquely defective in its ability to activate cap methylation by the catalytic subunit. Our results suggest that the methyltransferase activation function of D12, though clearly dependent on the physical interaction with D1, also requires constituents of D12 that are engaged specifically in catalysis.
Collapse
Affiliation(s)
- N Saha
- Molecular Biology Program, Sloan Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
24
|
Bujnicki JM, Feder M, Radlinska M, Rychlewski L. mRNA:guanine-N7 cap methyltransferases: identification of novel members of the family, evolutionary analysis, homology modeling, and analysis of sequence-structure-function relationships. BMC Bioinformatics 2001; 2:2. [PMID: 11472630 PMCID: PMC35267 DOI: 10.1186/1471-2105-2-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2001] [Accepted: 06/22/2001] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The 5'-terminal cap structure plays an important role in many aspects of mRNA metabolism. Capping enzymes encoded by viruses and pathogenic fungi are attractive targets for specific inhibitors. There is a large body of experimental data on viral and cellular methyltransferases (MTases) that carry out guanine-N7 (cap 0) methylation, including results of extensive mutagenesis. However, a crystal structure is not available and cap 0 MTases are too diverged from other MTases of known structure to allow straightforward homology-based interpretation of these data. RESULTS We report a 3D model of cap 0 MTase, developed using sequence-to-structure threading and comparative modeling based on coordinates of the glycine N-methyltransferase. Analysis of the predicted structural features in the phylogenetic context of the cap 0 MTase family allows us to rationalize most of the experimental data available and to propose potential binding sites. We identified a case of correlated mutations in the cofactor-binding site of viral MTases that may be important for the rational drug design. Furthermore, database searches and phylogenetic analysis revealed a novel subfamily of hypothetical MTases from plants, distinct from "orthodox" cap 0 MTases. CONCLUSIONS Computational methods were used to infer the evolutionary relationships and predict the structure of Eukaryotic cap MTase. Identification of novel cap MTase homologs suggests candidates for cloning and biochemical characterization, while the structural model will be useful in designing new experiments to better understand the molecular function of cap MTases.
Collapse
Affiliation(s)
- Janusz M Bujnicki
- Bioinformatics Laboratory, International Institute of Cell and Molecular Biology, ul. ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Marcin Feder
- Bioinformatics Laboratory, International Institute of Cell and Molecular Biology, ul. ks. Trojdena 4, 02-109 Warsaw, Poland
- Institute of Microbiology, Warsaw University, ul. Miecznikowa 1, 02-093 Warsaw, Poland
| | - Monika Radlinska
- Institute of Microbiology, Warsaw University, ul. Miecznikowa 1, 02-093 Warsaw, Poland
| | - Leszek Rychlewski
- Bioinformatics Laboratory, International Institute of Cell and Molecular Biology, ul. ks. Trojdena 4, 02-109 Warsaw, Poland
- BioInfoBank, ul. Limanowskiego 24A, 60-744 Poznan, Poland
| |
Collapse
|
25
|
Shuman S. Structure, mechanism, and evolution of the mRNA capping apparatus. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 66:1-40. [PMID: 11051760 DOI: 10.1016/s0079-6603(00)66025-7] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- S Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| |
Collapse
|
26
|
Ho CK, Martins A, Shuman S. A yeast-based genetic system for functional analysis of viral mRNA capping enzymes. J Virol 2000; 74:5486-94. [PMID: 10823853 PMCID: PMC112033 DOI: 10.1128/jvi.74.12.5486-5494.2000] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virus-encoded mRNA capping enzymes are attractive targets for antiviral therapy, but functional studies have been limited by the lack of genetically tractable in vivo systems that focus exclusively on the RNA-processing activities of the viral proteins. Here we have developed such a system by engineering a viral capping enzyme-vaccinia virus D1(1-545)p, an RNA triphosphatase and RNA guanylyltransferase-to function in the budding yeast Saccharomyces cerevisiae in lieu of the endogenous fungal triphosphatase (Cet1p) and guanylyltransferase (Ceg1p). This was accomplished by fusion of D1(1-545)p to the C-terminal guanylyltransferase domain of mammalian capping enzyme, Mce1(211-597)p, which serves as a vehicle to target the viral capping enzyme to the RNA polymerase II elongation complex. An inactivating mutation (K294A) of the mammalian guanylyltransferase active site in the fusion protein had no impact on genetic complementation of cet1Deltaceg1Delta cells, thus proving that (i) the viral guanylyltransferase was active in vivo and (ii) the mammalian domain can serve purely as a chaperone to direct other proteins to the transcription complex. Alanine scanning had identified five amino acids of vaccinia virus capping enzyme-Glu37, Glu39, Arg77, Glu192, and Glu194-that are essential for gamma phosphate cleavage in vitro. Here we show that the introduction of mutation E37A, R77A, or E192A into the fusion protein abrogates RNA triphosphatase function in vivo. The essential residues are located within three motifs that define a family of viral and fungal metal-dependent phosphohydrolases with a distinctive capacity to hydrolyze nucleoside triphosphates to nucleoside diphosphates in the presence of manganese or cobalt. The acidic residues Glu37, Glu39, and Glu192 likely comprise the metal-binding site of vaccinia virus triphosphatase, insofar as their replacement by glutamine abolishes the RNA triphosphatase and ATPase activities.
Collapse
Affiliation(s)
- C K Ho
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | |
Collapse
|
27
|
Saha N, Schwer B, Shuman S. Characterization of human, Schizosaccharomyces pombe, and Candida albicans mRNA cap methyltransferases and complete replacement of the yeast capping apparatus by mammalian enzymes. J Biol Chem 1999; 274:16553-62. [PMID: 10347220 DOI: 10.1074/jbc.274.23.16553] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Human and fission yeast cDNAs encoding mRNA (guanine-N7) methyltransferase were identified based on similarity of the human (Hcm1p; 476 amino acids) and Schizosaccharomyces pombe (Pcm1p; 389 amino acids) polypeptides to the cap methyltransferase of Saccharomyces cerevisiae (Abd1p). Expression of PCM1 or HCM1 in S. cerevisiae complemented the lethal phenotype resulting from deletion of the ABD1 gene, as did expression of the NH2-terminal deletion mutants PCM1(94-389) and HCM1(121-476). The CCM1 gene encoding Candida albicans cap methyltransferase (Ccm1p; 474 amino acids) was isolated from a C. albicans genomic library by selection for complementation of the conditional growth phenotype of S. cerevisiae abd1-ts mutants. Human cap methyltransferase was expressed in bacteria, purified, and characterized. Recombinant Hcm1p catalyzed quantitative S-adenosylmethionine-dependent conversion of GpppA-capped poly(A) to m7GpppA-capped poly(A). We identified by alanine-scanning mutagenesis eight amino acids (Asp-203, Gly-207, Asp-211, Asp-227, Arg-239, Tyr-289, Phe-291, and Phe-354) that are essential for human cap methyltransferase function in vivo. All eight residues are conserved in other cellular cap methyltransferases. Five of the mutant human proteins (D203A, R239A, Y289A, F291A, and F354A) were expressed in bacteria and found to be defective in cap methylation in vitro. Concordance of mutational effects on Hcm1p, Abd1p, and vaccinia capping enzyme underscores a conserved structural basis for cap methylation in DNA viruses, yeast, and metazoans. This is in contrast to the structural and mechanistic divergence of the RNA triphosphatase components of the yeast and metazoan capping systems. Nevertheless, we demonstrate that the entire three-component yeast capping apparatus, consisting of RNA 5'-triphosphatase (Cet1p), RNA guanylyltransferase (Ceg1p), and Abd1p could be replaced in vivo by the two-component mammalian apparatus consisting of a bifunctional triphosphatase-guanylyltransferase Mce1p and the methyltransferase Hcm1(121-476)p. Isogenic yeast strains with fungal versus mammalian capping systems should facilitate rational screens for antifungal drugs that target cap formation in vivo.
Collapse
Affiliation(s)
- N Saha
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | |
Collapse
|
28
|
Hassett DE, Lewis JI, Xing X, DeLange L, Condit RC. Analysis of a temperature-sensitive vaccinia virus mutant in the viral mRNA capping enzyme isolated by clustered charge-to-alanine mutagenesis and transient dominant selection. Virology 1997; 238:391-409. [PMID: 9400612 DOI: 10.1006/viro.1997.8820] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have previously reported the successful development of a targeted genetic method for the creation of temperature-sensitive vaccinia virus mutants [D. E. Hassett and R. C. Condit (1994) Proc. Natl. Acad. Sci. USA 91, 4554-4558]. This method has now been applied to the large subunit of the multifunctional vaccinia virus capping enzyme, encoded by gene D1R. Ten clustered charge-to-alanine mutations were created in a cloned copy of D1R. Four of these mutations were successfully transferred into the viral genome using transient dominant selection, and each of these four mutations yielded viruses with plaque phenotypes different from that of wild-type virus. Two of the mutant viruses, 516 and 793, were temperature sensitive in a plaque assay. Mutant 793 was also temperature sensitive in a one-step growth experiment. Phenotypic characterization of the 793 virus under both permissive and nonpermissive conditions revealed nearly normal patterns of viral protein and mRNA synthesis. Under nonpermissive conditions the 793 virus was defective in telomere resolution and blocked at an intermediate stage of viral morphogenesis. In vitro assays of various capping enzyme activities revealed that in permeabilized virions, enzyme guanylylate intermediate formation was reduced and methyltransferase activity was thermolabile, while in solubilized virion extracts enzyme guanylylate activity was reduced and both guanylyltransferase and methyltransferase activities were absent. Thus, the 793 mutation affects at least two separate enzymatic activities of the capping enzyme, guanylyltransferase and methyltransferase, and when incorporated into the virus genome, the mutation yields a virus that is temperature sensitive for growth, telomere resolution, and virion morphogenesis.
Collapse
Affiliation(s)
- D E Hassett
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville 32610, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
The m7GpppN cap structure of eukaryotic mRNA is formed cotranscriptionally by the sequential action of three enzymes: RNA triphosphatase, RNA guanylyltransferase, and RNA (guanine-7)-methyltransferase. A multifunctional polypeptide containing all three active sites is encoded by vaccinia virus. In contrast, fungi and Chlorella virus encode monofunctional guanylyltransferase polypeptides that lack triphosphatase and methyltransferase activities. Transguanylylation is a two-stage reaction involving a covalent enzyme-GMP intermediate. The active site is composed of six protein motifs that are conserved in order and spacing among yeast and DNA virus capping enzymes. We performed a structure-function analysis of the six motifs by targeted mutagenesis of Ceg1, the Saccharomyces cerevisiae guanylyltransferase. Essential acidic, basic, and aromatic functional groups were identified. The structural basis for covalent catalysis was illuminated by comparing the mutational results with the crystal structure of the Chlorella virus capping enzyme. The results also allowed us to identify the capping enzyme of Caenorhabditis elegans. The 573-amino acid nematode protein consists of a C-terminal guanylyltransferase domain, which is homologous to Ceg1 and is strictly conserved with respect to all 16 amino acids that are essential for Ceg1 function, and an N-terminal phosphatase domain that bears no resemblance to the vaccinia triphosphatase domain but, instead, has strong similarity to the superfamily of protein phosphatases that act via a covalent phosphocysteine intermediate.
Collapse
Affiliation(s)
- S P Wang
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | | | | | |
Collapse
|
30
|
Wang SP, Shuman S. Structure-function analysis of the mRNA cap methyltransferase of Saccharomyces cerevisiae. J Biol Chem 1997; 272:14683-9. [PMID: 9169431 DOI: 10.1074/jbc.272.23.14683] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Saccharomyces cerevisiae mRNA cap methylating enzyme is a 436-amino acid protein encoded by the essential ABD1 gene. To identify structural features of ABD1 required for enzyme function, we introduced alanine mutations at 19 positions within a 205-amino acid region of similarity to the methyltransferase domain of the vaccinia capping enzyme. Three new recessive lethal mutations, E170A, D194A, and R206A, were identified. Structure-function relationships were clarified by introducing conservative substitutions at Glu-170, Asp-194, and Arg-206, and at Tyr-254 (an essential residue identified previously). Alleles E170D and D194E were viable, whereas E170Q and D194N were lethal; hence, acidic side chains were critical at both positions. R206K was viable, suggesting that a basic residue sufficed. Y254S was lethal, whereas Y254F was viable, albeit slow growing; thus, an aromatic side chain was important. The ABD1 mutations that were deleterious in vivo elicited catalytic defects in vitro. By studying the effects of amino- and carboxyl-terminal deletions, we defined a fully active catalytic domain of ABD1 from residues 130 to 426. Residues 110-129 were dispensable for methyltransferase activity in vitro, but essential for function in vivo. This analysis allowed us to delineate a subfamily of ABD1-like proteins within the superfamily of AdoMet-dependent methyltransferases. In addition, we identify a candidate Caenorhabditis elegans gene encoding a putative cap methyltransferase. All residues essential for ABD1 activity are conserved in the C. elegans homologue.
Collapse
Affiliation(s)
- S P Wang
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|