1
|
Wenski SL, Thiengmag S, Helfrich EJ. Complex peptide natural products: Biosynthetic principles, challenges and opportunities for pathway engineering. Synth Syst Biotechnol 2022; 7:631-647. [PMID: 35224231 PMCID: PMC8842026 DOI: 10.1016/j.synbio.2022.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/03/2023] Open
Abstract
Complex peptide natural products exhibit diverse biological functions and a wide range of physico-chemical properties. As a result, many peptides have entered the clinics for various applications. Two main routes for the biosynthesis of complex peptides have evolved in nature: ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthetic pathways and non-ribosomal peptide synthetases (NRPSs). Insights into both bioorthogonal peptide biosynthetic strategies led to the establishment of universal principles for each of the two routes. These universal rules can be leveraged for the targeted identification of novel peptide biosynthetic blueprints in genome sequences and used for the rational engineering of biosynthetic pathways to produce non-natural peptides. In this review, we contrast the key principles of both biosynthetic routes and compare the different biochemical strategies to install the most frequently encountered peptide modifications. In addition, the influence of the fundamentally different biosynthetic principles on past, current and future engineering approaches is illustrated. Despite the different biosynthetic principles of both peptide biosynthetic routes, the arsenal of characterized peptide modifications encountered in RiPP and NRPS systems is largely overlapping. The continuous expansion of the biocatalytic toolbox of peptide modifying enzymes for both routes paves the way towards the production of complex tailor-made peptides and opens up the possibility to produce NRPS-derived peptides using the ribosomal route and vice versa.
Collapse
Affiliation(s)
- Sebastian L. Wenski
- Institute for Molecular Bio Science, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), 60325, Frankfurt am Main, Germany
| | - Sirinthra Thiengmag
- Institute for Molecular Bio Science, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), 60325, Frankfurt am Main, Germany
| | - Eric J.N. Helfrich
- Institute for Molecular Bio Science, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), 60325, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Zhang L, Yue Q, Wang C, Xu Y, Molnár I. Secondary metabolites from hypocrealean entomopathogenic fungi: genomics as a tool to elucidate the encoded parvome. Nat Prod Rep 2021; 37:1164-1180. [PMID: 32211677 DOI: 10.1039/d0np00007h] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: 2014 up to the third quarter of 2019 Hypocrealean entomopathogenic fungi (HEF) produce a large variety of secondary metabolites (SMs) that are prominent virulence factors or mediate various interactions in the native niches of these organisms. Many of these SMs show insecticidal, immune system modulatory, antimicrobial, cytotoxic and other bioactivities of clinical or agricultural significance. Recent advances in whole genome sequencing technologies and bioinformatics have revealed many biosynthetic gene clusters (BGCs) potentially involved in SM production in HEF. Some of these BGCs are now well characterized, with the structures of the cognate product congeners elucidated, and the proposed biosynthetic functions of key enzymes validated. However, the vast majority of HEF BGCs are still not linked to SM products ("orphan" BGCs), including many clusters that are not expressed (silent) under routine laboratory conditions. Thus, investigations into the encoded parvome (the secondary metabolome predicted from the genome) of HEF allows the discovery of BGCs for known SMs; uncovers novel metabolites based on the BGCs; and catalogues the predicted SM biosynthetic potential of these fungi. Herein, we summarize new developments of the field, and survey the polyketide, nonribosomal peptide, terpenoid and hybrid SM BGCs encoded in the currently available 40 HEF genome sequences. Studying the encoded parvome of HEF will increase our understanding of the multifaceted roles that SMs play in biotic and abiotic interactions and will also reveal biologically active SMs that can be exploited for the discovery of human and veterinary drugs or crop protection agents.
Collapse
Affiliation(s)
- Liwen Zhang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - Qun Yue
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - Chen Wang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - Yuquan Xu
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - István Molnár
- Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Rd., Tucson, AZ 85706, USA.
| |
Collapse
|
3
|
Ding Y, Ting JP, Liu J, Al-Azzam S, Pandya P, Afshar S. Impact of non-proteinogenic amino acids in the discovery and development of peptide therapeutics. Amino Acids 2020; 52:1207-1226. [PMID: 32945974 PMCID: PMC7544725 DOI: 10.1007/s00726-020-02890-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/05/2020] [Indexed: 12/14/2022]
Abstract
With the development of modern chemistry and biology, non-proteinogenic amino acids (NPAAs) have become a powerful tool for developing peptide-based drug candidates. Drug-like properties of peptidic medicines, due to the smaller size and simpler structure compared to large proteins, can be changed fundamentally by introducing NPAAs in its sequence. While peptides composed of natural amino acids can be used as drug candidates, the majority have shown to be less stable in biological conditions. The impact of NPAA incorporation can be extremely beneficial in improving the stability, potency, permeability, and bioavailability of peptide-based therapies. Conversely, undesired effects such as toxicity or immunogenicity should also be considered. The impact of NPAAs in the development of peptide-based therapeutics is reviewed in this article. Further, numerous examples of peptides containing NPAAs are presented to highlight the ongoing development in peptide-based therapeutics.
Collapse
Affiliation(s)
- Yun Ding
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Joey Paolo Ting
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Jinsha Liu
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Shams Al-Azzam
- Professional Scientific Services, Eurofins Lancaster Laboratories, Lancaster, PA, 17605, USA
| | - Priyanka Pandya
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Sepideh Afshar
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA.
| |
Collapse
|
4
|
Yang X, Feng P, Yin Y, Bushley K, Spatafora JW, Wang C. Cyclosporine Biosynthesis in Tolypocladium inflatum Benefits Fungal Adaptation to the Environment. mBio 2018; 9:e01211-18. [PMID: 30279281 PMCID: PMC6168864 DOI: 10.1128/mbio.01211-18] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/22/2018] [Indexed: 12/19/2022] Open
Abstract
The cycloundecapeptide cyclosporin A (CsA) was first isolated from the insect-pathogenic fungus Tolypocladium inflatum for its antifungal activity and later developed as an immunosuppressant drug. However, the full biosynthetic mechanism of CsA remains unknown and has puzzled researchers for decades. In this study, the biosynthetic gene cluster is suggested to include 12 genes encoding enzymes, including the nonribosomal peptide synthetase (NRPS) (SimA) responsible for assembling the 11 amino acid substrates of cyclosporine and a polyketide synthase (PKS) (SimG) to mediate the production of the unusual amino acid (4R)-4-[(E)-2-butenyl]-4-methyl-l-threonine (Bmt). Individual deletion of 10 genes, isolation of intermediates, and substrate feeding experiments show that Bmt is biosynthesized by three enzymes, including SimG, SimI, and SimJ. The substrate d-alanine is catalyzed from l-alanine by alanine racemase SimB. Gene cluster transcription is regulated by a putative basic leucine zipper (bZIP)-type protein encoded by the cluster gene SimL We also found that the cluster cyclophilin (SimC) and transporter (SimD) genes contribute to the tolerance of CsA in the CsA-producing fungus. We also found that cyclosporine production could enable the fungus to outcompete other fungi during cocultivation tests. Deletion of the CsA biosynthetic genes also impaired fungal virulence against insect hosts. Taking all the data together, in addition to proposing a biosynthetic pathway of cyclosporines, the results of this study suggest that CsA produced by this fungus might play important ecological roles in fungal environment interactions.IMPORTANCE The cyclopeptide cyclosporin A was first isolated from the filamentous fungus Tolypocladium inflatum showing antifungal activity and was later developed as an immunosuppressant drug. We report the biosynthetic mechanism of cyclosporines that are mediated by a cluster of genes encoding NRPS and PKS controlled by a bZIP-type transcriptional regulator. The two unusual amino acids Bmt and d-Ala are produced by the PKS pathway and alanine racemase, respectively. The cyclophilin and transporter genes jointly contribute to fungal self-protection against cyclosporines. Cyclosporine confers on T. inflatum the abilities to outcompete other fungi in competitive interactions and to facilitate fungal infection of insect hosts, which therefore benefits fungal adaptations to different environments.
Collapse
Affiliation(s)
- Xiuqing Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Feng
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ying Yin
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Kathryn Bushley
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
5
|
Xu L, Li Y, Biggins JB, Bowman BR, Verdine GL, Gloer JB, Alspaugh JA, Bills GF. Identification of cyclosporin C from Amphichorda felina using a Cryptococcus neoformans differential temperature sensitivity assay. Appl Microbiol Biotechnol 2018; 102:2337-2350. [PMID: 29396588 DOI: 10.1007/s00253-018-8792-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/02/2018] [Accepted: 01/16/2018] [Indexed: 12/25/2022]
Abstract
We used a temperature differential assay with the opportunistic fungal pathogen Cryptococcus neoformans as a simple screening platform to detect small molecules with antifungal activity in natural product extracts. By screening of a collection extracts from two different strains of the coprophilous fungus, Amphichorda felina, we detected strong, temperature-dependent antifungal activity using a two-plate agar zone of inhibition assay at 25 and 37 °C. Bioassay-guided fractionation of the crude extract followed by liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance spectroscopy (NMR) identified cyclosporin C (CsC) as the main component of the crude extract responsible for growth inhibition of C. neoformans at 37 °C. The presence of CsC was confirmed by comparison with a commercial standard. We sequenced the genome of A. felina to identify and annotate the CsC biosynthetic gene cluster. The only previously characterized gene cluster for the biosynthesis of similar compounds is that of the related immunosuppressant drug cyclosporine A (CsA). The CsA and CsC gene clusters share a high degree of synteny and sequence similarity. Amino acid changes in the adenylation domain of the CsC nonribosomal peptide synthase's sixth module may be responsible for the substitution of L-threonine compared to L-α-aminobutyric acid in the CsA peptide core. This screening strategy promises to yield additional antifungal natural products with a focused spectrum of antimicrobial activity.
Collapse
Affiliation(s)
- Lijian Xu
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, 1881 East Road, 3SCR6.4676, Houston, TX, 77054, USA
- College of Agricultural Resources and Environment, Heilongjiang University, Harbin, 150080, China
| | - Yan Li
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, 1881 East Road, 3SCR6.4676, Houston, TX, 77054, USA
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - John B Biggins
- LifeMine Therapeutics, 430 E. 29th Street, Suite 830, New York, NY, 10016, USA
| | - Brian R Bowman
- LifeMine Therapeutics, 430 E. 29th Street, Suite 830, New York, NY, 10016, USA
| | - Gregory L Verdine
- LifeMine Therapeutics, 430 E. 29th Street, Suite 830, New York, NY, 10016, USA
| | - James B Gloer
- Department of Chemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - J Andrew Alspaugh
- Departments of Biochemistry and Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Gerald F Bills
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, 1881 East Road, 3SCR6.4676, Houston, TX, 77054, USA.
| |
Collapse
|
6
|
Sato M, Dander JE, Sato C, Hung YS, Gao SS, Tang MC, Hang L, Winter JM, Garg NK, Watanabe K, Tang Y. Collaborative Biosynthesis of Maleimide- and Succinimide-Containing Natural Products by Fungal Polyketide Megasynthases. J Am Chem Soc 2017; 139:5317-5320. [PMID: 28365998 DOI: 10.1021/jacs.7b02432] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fungal polyketide synthases (PKSs) can function collaboratively to synthesize natural products of significant structural diversity. Here we present a new mode of collaboration between a highly reducing PKS (HRPKS) and a PKS-nonribosomal peptide synthetase (PKS-NRPS) in the synthesis of oxaleimides from the Penicillium species. The HRPKS is recruited in the synthesis of an olefin-containing free amino acid, which is activated and incorporated by the adenylation domain of the PKS-NRPS. The precisely positioned olefin from the unnatural amino acid is proposed to facilitate a scaffold rearrangement of the PKS-NRPS product to forge the maleimide and succinimide cores of oxaleimides.
Collapse
Affiliation(s)
- Michio Sato
- Department of Pharmaceutical Sciences, University of Shizuoka , Shizuoka 422-8526, Japan
| | | | | | | | | | | | | | - Jaclyn M Winter
- Medicinal Chemistry Department, University of Utah , Salt Lake City, Utah 84112, United States
| | | | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka , Shizuoka 422-8526, Japan
| | | |
Collapse
|
7
|
Süssmuth RD, Mainz A. Nonribosomal Peptide Synthesis-Principles and Prospects. Angew Chem Int Ed Engl 2017; 56:3770-3821. [PMID: 28323366 DOI: 10.1002/anie.201609079] [Citation(s) in RCA: 582] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 01/05/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) are large multienzyme machineries that assemble numerous peptides with large structural and functional diversity. These peptides include more than 20 marketed drugs, such as antibacterials (penicillin, vancomycin), antitumor compounds (bleomycin), and immunosuppressants (cyclosporine). Over the past few decades biochemical and structural biology studies have gained mechanistic insights into the highly complex assembly line of nonribosomal peptides. This Review provides state-of-the-art knowledge on the underlying mechanisms of NRPSs and the variety of their products along with detailed analysis of the challenges for future reprogrammed biosynthesis. Such a reprogramming of NRPSs would immediately spur chances to generate analogues of existing drugs or new compound libraries of otherwise nearly inaccessible compound structures.
Collapse
Affiliation(s)
- Roderich D Süssmuth
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| | - Andi Mainz
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| |
Collapse
|
8
|
Süssmuth RD, Mainz A. Nicht-ribosomale Peptidsynthese - Prinzipien und Perspektiven. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609079] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Roderich D. Süssmuth
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| | - Andi Mainz
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| |
Collapse
|
9
|
Henke MT, Soukup AA, Goering AW, McClure RA, Thomson RJ, Keller NP, Kelleher NL. New Aspercryptins, Lipopeptide Natural Products, Revealed by HDAC Inhibition in Aspergillus nidulans. ACS Chem Biol 2016; 11:2117-23. [PMID: 27310134 PMCID: PMC5119465 DOI: 10.1021/acschembio.6b00398] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Unlocking the biochemical stores of fungi is key for developing future pharmaceuticals. Through reduced expression of a critical histone deacetylase in Aspergillus nidulans, increases of up to 100-fold were observed in the levels of 15 new aspercryptins, recently described lipopeptides with two noncanonical amino acids derived from octanoic and dodecanoic acids. In addition to two NMR-verified structures, MS/MS networking helped uncover an additional 13 aspercryptins. The aspercryptins break the conventional structural orientation of lipopeptides and appear "backward" when compared to known compounds of this class. We have also confirmed the 14-gene aspercryptin biosynthetic gene cluster, which encodes two fatty acid synthases and several enzymes to convert saturated octanoic and dodecanoic acid to α-amino acids.
Collapse
Affiliation(s)
- Matthew T. Henke
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Alexandra A. Soukup
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Anthony W. Goering
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Ryan A. McClure
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Regan J. Thomson
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Nancy P. Keller
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706, United States
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, United States
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Neil L. Kelleher
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Lawen A. Biosynthesis of cyclosporins and other natural peptidyl prolyl cis/trans isomerase inhibitors. Biochim Biophys Acta Gen Subj 2014; 1850:2111-20. [PMID: 25497210 DOI: 10.1016/j.bbagen.2014.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/01/2014] [Accepted: 12/04/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND Peptidyl-prolyl-cis/trans-isomerases (PPIases) are ubiquitously expressed and have been implicated in a wide range of biological functions. Their inhibition is beneficial in immunosuppression, cancer treatment, treatment of autoimmune diseases, protozoan and viral infections. SCOPE OF REVIEW Three classes of PPIases are known, each class having their own specific inhibitors. This review will cover the present knowledge on the biosynthesis of the natural PPIase inhibitors. These include for the cyclophilins: the cyclosporins, the analogues of peptolide SDZ 214-103 and the sanglifehrins; for the FKBPs: ascomycin, rapamycin and FK506 and for the parvulins the naphtoquinone juglone. MAJOR CONCLUSIONS Over the last thirty years much progress has been made in understanding PPIase function and the biosynthesis of natural PPIase inhibitors. Non-immunosuppressive analogues were discovered and served as lead compounds for the development of novel antiviral drugs. There are, however, still unsolved questions which deserve further research into this exciting field. GENERAL SIGNIFICANCE As all the major natural inhibitors of the cyclophilins and FKBPs are synthesized by complex non-ribosomal peptide synthetases and/or polyketide synthases, total chemical synthesis is not a viable option. Thus, fully understanding the modular enzyme systems involved in their biosynthesis may help engineering enzymes capable of synthesizing novel PPIase inhibitors with improved functions for a wide range of conditions. This article is part of a Special Issue entitled Proline-directed Foldases: Cell signaling catalysts and drug targets.
Collapse
Affiliation(s)
- Alfons Lawen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Victoria 3800, Australia.
| |
Collapse
|
11
|
|
12
|
Walsh CT, O'Brien RV, Khosla C. Nonproteinogenic amino acid building blocks for nonribosomal peptide and hybrid polyketide scaffolds. Angew Chem Int Ed Engl 2013; 52:7098-124. [PMID: 23729217 PMCID: PMC4634941 DOI: 10.1002/anie.201208344] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Indexed: 12/24/2022]
Abstract
Freestanding nonproteinogenic amino acids have long been recognized for their antimetabolite properties and tendency to be uncovered to reactive functionalities by the catalytic action of target enzymes. By installing them regiospecifically into biogenic peptides and proteins, it may be possible to usher a new era at the interface between small molecule and large molecule medicinal chemistry. Site-selective protein functionalization offers uniquely attractive strategies for posttranslational modification of proteins. Last, but not least, many of the amino acids not selected by nature for protein incorporation offer rich architectural possibilities in the context of ribosomally derived polypeptides. This Review summarizes the biosynthetic routes to and metabolic logic for the major classes of the noncanonical amino acid building blocks that end up in both nonribosomal peptide frameworks and in hybrid nonribosomal peptide-polyketide scaffolds.
Collapse
Affiliation(s)
- Christopher T Walsh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
13
|
Zheng D, Burr TJ. An Sfp-type PPTase and associated polyketide and nonribosomal peptide synthases in Agrobacterium vitis are essential for induction of tobacco hypersensitive response and grape necrosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:812-22. [PMID: 23581823 DOI: 10.1094/mpmi-12-12-0295-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
An Sfp-type phosphopantetheinyl transferase (PPTase) encoding gene F-avi5813 in Agrobacterium vitis F2/5 was found to be required for the induction of a tobacco hypersensitive response (HR) and grape necrosis. Sfp-type PPTases are post-translation modification enzymes that activate acyl-carry protein (ACP) domains in polyketide synthases (PKS) and peptidyl-carrier protein (PCP) domains of nonribosomal peptide synthases (NRPS). Mutagenesis of PKS and NRPS genes in A. vitis led to the identification of a PKS gene (F-avi4330) and NRPS gene (F-avi3342) that are both required for HR and necrosis. The gene immediately downstream of F-avi4330 (F-avi4329) encoding a predicted aminotransferase was also found to be required for HR and necrosis. Regulation of F-avi4330 and F-avi3342 by quorum-sensing genes avhR, aviR, and avsR and by a lysR-type regulator, lhnR, was investigated. It was determined that F-avi4330 expression is positively regulated by avhR, aviR, and lhnR and negatively regulated by avsR. F-avi3342 was found to be positively regulated by avhR, aviR, and avsR and negatively regulated by lhnR. Our results suggest that a putative hybrid peptide-polyketide metabolite synthesized by F-avi4330 and F-avi3342 is associated with induction of tobacco HR and grape necrosis. This is the first report that demonstrates that NRPS and PKS play essential roles in conferring the unique ability of A. vitis to elicit a non-host-specific HR and host-specific necrosis.
Collapse
Affiliation(s)
- Desen Zheng
- Department of Plant Pathology and Plant-Microbe Biology, New York State Agricultural Experimental Station, Cornell University, 630 W. North Street Geneva, NY 14456, USA
| | | |
Collapse
|
14
|
Bushley KE, Raja R, Jaiswal P, Cumbie JS, Nonogaki M, Boyd AE, Owensby CA, Knaus BJ, Elser J, Miller D, Di Y, McPhail KL, Spatafora JW. The genome of tolypocladium inflatum: evolution, organization, and expression of the cyclosporin biosynthetic gene cluster. PLoS Genet 2013; 9:e1003496. [PMID: 23818858 PMCID: PMC3688495 DOI: 10.1371/journal.pgen.1003496] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 03/20/2013] [Indexed: 01/07/2023] Open
Abstract
The ascomycete fungus Tolypocladium inflatum, a pathogen of beetle larvae, is best known as the producer of the immunosuppressant drug cyclosporin. The draft genome of T. inflatum strain NRRL 8044 (ATCC 34921), the isolate from which cyclosporin was first isolated, is presented along with comparative analyses of the biosynthesis of cyclosporin and other secondary metabolites in T. inflatum and related taxa. Phylogenomic analyses reveal previously undetected and complex patterns of homology between the nonribosomal peptide synthetase (NRPS) that encodes for cyclosporin synthetase (simA) and those of other secondary metabolites with activities against insects (e.g., beauvericin, destruxins, etc.), and demonstrate the roles of module duplication and gene fusion in diversification of NRPSs. The secondary metabolite gene cluster responsible for cyclosporin biosynthesis is described. In addition to genes necessary for cyclosporin biosynthesis, it harbors a gene for a cyclophilin, which is a member of a family of immunophilins known to bind cyclosporin. Comparative analyses support a lineage specific origin of the cyclosporin gene cluster rather than horizontal gene transfer from bacteria or other fungi. RNA-Seq transcriptome analyses in a cyclosporin-inducing medium delineate the boundaries of the cyclosporin cluster and reveal high levels of expression of the gene cluster cyclophilin. In medium containing insect hemolymph, weaker but significant upregulation of several genes within the cyclosporin cluster, including the highly expressed cyclophilin gene, was observed. T. inflatum also represents the first reference draft genome of Ophiocordycipitaceae, a third family of insect pathogenic fungi within the fungal order Hypocreales, and supports parallel and qualitatively distinct radiations of insect pathogens. The T. inflatum genome provides additional insight into the evolution and biosynthesis of cyclosporin and lays a foundation for further investigations of the role of secondary metabolite gene clusters and their metabolites in fungal biology.
Collapse
Affiliation(s)
- Kathryn E. Bushley
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| | - Rajani Raja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Jason S. Cumbie
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Mariko Nonogaki
- College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| | - Alexander E. Boyd
- Center for Genome Research & Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - C. Alisha Owensby
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Brian J. Knaus
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Justin Elser
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Daniel Miller
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Yanming Di
- Department of Statistics, Oregon State University, Corvallis, Oregon, United States of America
| | - Kerry L. McPhail
- College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| | - Joseph W. Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
15
|
Walsh CT, O'Brien RV, Khosla C. Nichtproteinogene Aminosäurebausteine für Peptidgerüste aus nichtribosomalen Peptiden und hybriden Polyketiden. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201208344] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
|
17
|
Ismaiel AA, El-Sayed A, Mahmoud AA. Some optimal culture conditions for production of cyclosporin a by Fusarium roseum. Braz J Microbiol 2010; 41:1112-23. [PMID: 24031594 PMCID: PMC3769746 DOI: 10.1590/s1517-838220100004000033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 03/10/2010] [Accepted: 06/21/2010] [Indexed: 11/22/2022] Open
Abstract
A suitable chemically defined culture medium was selected and some optimal conditions for the production of the highly immunosuppressive compound, cyclosporin A (Cyc A) are reported. Medium of the following composition was favorable for the production of Cyc A by Fusarium roseum: glucose, 30; NaNO3, 2; KH2PO4, 1; MgSO4.7H2O, 0.5 and KCL, 0.5 (g/l). Maximum productivity of Cyc A was achieved at pH 6.0 when 50 ml of the fermentation medium/250 ml flask, inoculated with five fungal agar discs (6 mm, diameter) of 7-days old F. roseum culture after incubation at 30 ºC at 120 rpm for 7 days.
Collapse
Affiliation(s)
- Ahmed A Ismaiel
- Department of Botany, Faculty of Science, Zagazig University , Zagazig Egypt
| | | | | |
Collapse
|
18
|
Wilkinson B, Micklefield J. Chapter 14. Biosynthesis of nonribosomal peptide precursors. Methods Enzymol 2009; 458:353-78. [PMID: 19374990 DOI: 10.1016/s0076-6879(09)04814-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nonribosomal peptides are natural products typically of bacterial and fungal origin. These highly complex molecules display a broad spectrum of biological activities, and have been exploited for the development of immunosuppressant, antibiotic, anticancer, and other therapeutic agents. The nonribosomal peptides are assembled by nonribosomal peptide synthetase (NRPS) enzymes comprising repeating modules that are responsible for the sequential selection, activation, and condensation of precursor amino acids. In addition to this, fatty acids, alpha-keto acids and alpha-hydroxy acids, as well as polyketide derived units, can also be utilized by NRPS assembly lines. Final tailoring-steps, including glycosylation and prenylation, serve to further decorate the nonribosomal peptides produced. The wide range of experimental methods that are employed in the elucidation of nonribosomal peptide precursor biosynthesis will be discussed, with particularly emphasis on genomics based approaches which have become wide spread over the last 5 years.
Collapse
Affiliation(s)
- Barrie Wilkinson
- Biotica, Chesterford Research Park, Little Chesterford, Essex, United Kingdom
| | | |
Collapse
|
19
|
Felnagle EA, Jackson EE, Chan YA, Podevels AM, Berti AD, McMahon MD, Thomas MG. Nonribosomal peptide synthetases involved in the production of medically relevant natural products. Mol Pharm 2008; 5:191-211. [PMID: 18217713 PMCID: PMC3131160 DOI: 10.1021/mp700137g] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Natural products biosynthesized wholly or in part by nonribosomal peptide synthetases (NRPSs) are some of the most important drugs currently used clinically for the treatment of a variety of diseases. Since the initial research into NRPSs in the early 1960s, we have gained considerable insights into the mechanism by which these enzymes assemble these natural products. This review will present a brief history of how the basic mechanistic steps of NRPSs were initially deciphered and how this information has led us to understand how nature modified these systems to generate the enormous structural diversity seen in nonribosomal peptides. This review will also briefly discuss how drug development and discovery are being influenced by what we have learned from nature about nonribosomal peptide biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael G. Thomas
- Department of Bacteriology, University of Wisconsin-Madison, Madison WI 53706
| |
Collapse
|
20
|
Wu X, Ballard J, Jiang YW. Structure and biosynthesis of the BT peptide antibiotic from Brevibacillus texasporus. Appl Environ Microbiol 2006; 71:8519-30. [PMID: 16332843 PMCID: PMC1317412 DOI: 10.1128/aem.71.12.8519-8530.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We isolated a novel gram-positive bacterium, Brevibacillus texasporus, that produces an antibiotic, BT. BT is a group of related peptides that are produced by B. texasporus cells in response to nutrient limitation. We report here purification and determination of the structure of the most abundant BT isomer, BT1583. Amino acid composition and tandem mass spectrometry experiments yielded a partial BT1583 structure. The presence of ornithine and d-form residues in the partial BT1583 structure indicated that the peptide is synthesized by a nonribosomal peptide synthetase (NRPS). The BT NRPS operon was rapidly and accurately identified by using a novel in silico NRPS operon hunting strategy that involved direct shotgun genomic sequencing rather than the unreliable cosmid library hybridization scheme. Sequence analysis of the BT NRPS operon indicated that it encodes a colinear modular NRPS with a strict correlation between the NRPS modules and the amino acid residues in the peptide. The colinear nature of the BT NRPS enabled us to utilize the genomic information to refine the BT1583 peptide sequence to Me(2)-4-methyl-4-[(E)-2-butenyl]-4,N-methyl-threonine-L-dO-I-V-V-dK-V-dL-K-dY-L-V-CH2OH. In addition, we report the discovery of novel NRPS codons (sets of the substrate specificity-conferring residues in NRPS modules) for valine, lysine, ornithine, and tyrosine.
Collapse
Affiliation(s)
- Xiaofeng Wu
- Department of Medical Biochemistry and Genetics, 428 Reynolds Medical Building, Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
| | | | | |
Collapse
|
21
|
Sallam LAR, El-Refai AMH, Hamdi AHA, El-Minofi HA, Abd-Elsalam IS. Studies on the application of immobilization technique for the production of cyclosporin A by a local strain of Aspergillus terreus. J GEN APPL MICROBIOL 2005; 51:143-9. [PMID: 16107751 DOI: 10.2323/jgam.51.143] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The formation of cyclosporin A (Cy A) by immobilized spores and mycelia of Aspergillus terreus was investigated. Different carriers were tested as immobilizing carriers, whereby Ca-alginate was selected for further experimentation. The role of alginate concentration, biomass weight, pH value of the cultivation medium, repeated utilization of the immobilized fungus as well as the supplementation of different amino acid precursors were studied. Best Cy A outputs were attained with Ca-alginate 3% (w/v), mycelial weight 15% (w/v), pH 4.5 and four repeated cycles. Similarly, the Cy A productivity was markedly accelerated in the presence of L-valine and L-valine and L-leucine mixture.
Collapse
Affiliation(s)
- Lotfy A R Sallam
- Microbial and Natural Products Chemistry Department, National Research Centre, Cairo, Egypt
| | | | | | | | | |
Collapse
|
22
|
Sallam LAR, El-Refai AMH, Hamdy AHA, El-Minofi HA, Abdel-Salam IS. Role of some fermentation parameters on cyclosporin A production by a new isolate of Aspergillus terreus. J GEN APPL MICROBIOL 2003; 49:321-8. [PMID: 14747973 DOI: 10.2323/jgam.49.321] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A local isolate of Aspergillus terreus was selected among different microorganisms as a new cyclosporin A (Cy A) producing culture. The formation of Cy A was investigated under different fermentation conditions (including selection of the cultivation medium, fermentation time course, inoculum nature, medium volume, agitation rate, pH value). Relatively high Cy A productivities were maintained when the fermentation process was carried out using a medium composed of (g/L): glucose, 50; bactopeptone, 10; KH(2)PO(4), 5; KCl, 2.5; pH 5.3, inoculated with 2% standard inoculum of 48 h age, shaken at 200 rpm for 10 days.
Collapse
Affiliation(s)
- Lotfy A R Sallam
- Microbial and Natural Products Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | | | | | | | | |
Collapse
|
23
|
Velkov T, Lawen A. Non-ribosomal peptide synthetases as technological platforms for the synthesis of highly modified peptide bioeffectors – Cyclosporin synthetase as a complex example. BIOTECHNOLOGY ANNUAL REVIEW 2003; 9:151-97. [PMID: 14650927 DOI: 10.1016/s1387-2656(03)09002-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Many microbial peptide secondary metabolites possess important medicinal properties, of which the immunosuppressant cyclosporin A is an example. The enormous structural and functional diversity of these low-molecular weight peptides is attributable to their mode of biosynthesis. Peptide secondary metabolites are assembled non-ribosomally by multi-functional enzymes, termed non-ribosomal peptide synthetases. These systems consist of a multi-modular arrangement of the functional domains responsible for the catalysis of the partial reactions of peptide assembly. The extensive homology shared among NRPS systems allows for the generalisation of the knowledge garnered from studies of systems of diverse origins. In this review we shall focus the contemporary knowledge of non-ribosomal peptide biosynthesis on the structure and function of the cyclosporin biosynthetic system, with some emphasis on the re-direction of the biosynthetic potential of this system by combinatorial approaches.
Collapse
Affiliation(s)
- Tony Velkov
- Monash University, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, P.O. Box 13D, Melbourne, Victoria 3800, Australia
| | | |
Collapse
|
24
|
Metzler DE, Metzler CM, Sauke DJ. Specific Aspects of Lipid Metabolism. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Du L, Sánchez C, Shen B. Hybrid peptide-polyketide natural products: biosynthesis and prospects toward engineering novel molecules. Metab Eng 2001; 3:78-95. [PMID: 11162234 DOI: 10.1006/mben.2000.0171] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structural and catalytic similarities between modular nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) inspired us to search for hybrid NRPS-PKS systems. By examining the biochemical and genetic data known to date for the biosynthesis of hybrid peptide-polyketide natural products, we show (1) that the same catalytic sites are conserved between the hybrid NRPS-PKS and normal NRPS or PKS systems, although the ketoacyl synthase domain in NRPS/PKS hybrids is unique, and (2) that specific interpolypeptide linkers exist at both the C- and N-termini of the NRPS and PKS proteins, which presumably play a critical role in facilitating the transfer of the growing peptide or polyketide intermediate between NRPS and PKS modules in hybrid NRPS-PKS systems. These findings provide new insights for intermodular communications in hybrid NRPS-PKS systems and should now be taken into consideration in engineering hybrid peptide-polyketide biosynthetic pathways for making novel "unnatural" natural products.
Collapse
Affiliation(s)
- L Du
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA
| | | | | |
Collapse
|
26
|
Mishra PK, Drueckhammer DG. Coenzyme A Analogues and Derivatives: Synthesis and Applications as Mechanistic Probes of Coenzyme A Ester-Utilizing Enzymes. Chem Rev 2000; 100:3283-3310. [PMID: 11777425 DOI: 10.1021/cr990010m] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pranab K. Mishra
- Department of Chemistry, State University at Stony Brook, Stony Brook, New York 11794
| | | |
Collapse
|
27
|
Liu Y, Li Z, Vederas JC. Biosynthetic incorporation of advanced precursors into dehydrocurvularin, a polyketide phytotoxin from Alternaria cinerariae. Tetrahedron 1998. [DOI: 10.1016/s0040-4020(98)01003-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
|
29
|
von Döhren H, Keller U, Vater J, Zocher R. Multifunctional Peptide Synthetases. Chem Rev 1997; 97:2675-2706. [PMID: 11851477 DOI: 10.1021/cr9600262] [Citation(s) in RCA: 190] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hans von Döhren
- Section Biochemistry and Molecular Biology, Max-Volmer-Institute of Biophysical Chemistry and Biochemistry, Technical University Berlin, Franklinstrasse 29, D-10587 Berlin, Germany
| | | | | | | |
Collapse
|