1
|
Clémençon B, Fine M, Hediger MA. Conservation of the oligomeric state of native VDAC1 in detergent micelles. Biochimie 2016; 127:163-72. [PMID: 27238246 DOI: 10.1016/j.biochi.2016.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Abstract
The voltage-dependent anion-selective channel (VDAC) is an intrinsic β-barrel membrane protein located within the mitochondrial outer membrane where it serves as a pore, connecting the mitochondria to the cytosol. The high-resolution structures of both the human and murine VDACs have been resolved by X-ray diffraction and nuclear magnetic resonance spectroscopy (NMR) in 2008. However, the structural data are not completely in line with the findings that were obtained after decades of research on biochemical and functional analysis of VDAC. This discrepancy may be related to the fact that structural biology studies of membrane proteins reveal specific static conformations that may not necessarily represent the physiological state. For example, overexpression of membrane proteins in bacterial inclusion bodies or simply the extraction from the native lipid environment using harsh purification methods (i.e. chaotropic agents) can disturb the physiological conformations and the supramolecular assemblies. To address these potential issues, we have developed a method, allowing rapid one step purification of endogenous VDAC expressed in the native mitochondrial membrane without overexpression of recombinant protein or usage of harsh chaotropic extraction procedures. Using the Saccharomyces cerevisiae isoform 1 of VDAC as a model, this method yields efficient purification, preserving VDAC in a more physiological, native state following extraction from mitochondria. Single particle analysis using transmission electron microscopy (TEM) demonstrated conservation of oligomeric assembly after purification. Maintenance of the native state was evaluated using functional assessment that involves an ATP-binding assay by micro-scale thermophoresis (MST). Using this approach, we were able to determine for the first time the apparent KD for ATP of 1.2 mM.
Collapse
Affiliation(s)
- Benjamin Clémençon
- Institute of Biochemistry and Molecular Medicine (IBMM), National Center of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland.
| | - Michael Fine
- Institute of Biochemistry and Molecular Medicine (IBMM), National Center of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland
| | - Matthias A Hediger
- Institute of Biochemistry and Molecular Medicine (IBMM), National Center of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Yeast mitochondrial interactosome model: metabolon membrane proteins complex involved in the channeling of ADP/ATP. Int J Mol Sci 2012; 13:1858-1885. [PMID: 22408429 PMCID: PMC3291998 DOI: 10.3390/ijms13021858] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/20/2012] [Accepted: 01/31/2012] [Indexed: 01/06/2023] Open
Abstract
The existence of a mitochondrial interactosome (MI) has been currently well established in mammalian cells but the exact composition of this super-complex is not precisely known, and its organization seems to be different from that in yeast. One major difference is the absence of mitochondrial creatine kinase (MtCK) in yeast, unlike that described in the organization model of MI, especially in cardiac, skeletal muscle and brain cells. The aim of this review is to provide a detailed description of different partner proteins involved in the synergistic ADP/ATP transport across the mitochondrial membranes in the yeast Saccharomyces cerevisiae and to propose a new mitochondrial interactosome model. The ADP/ATP (Aacp) and inorganic phosphate (PiC) carriers as well as the VDAC (or mitochondrial porin) catalyze the import and export of ADP, ATP and Pi across the mitochondrial membranes. Aacp and PiC, which appear to be associated with the ATP synthase, consist of two nanomotors (F0, F1) under specific conditions and form ATP synthasome. Identification and characterization of such a complex were described for the first time by Pedersen and co-workers in 2003.
Collapse
|
3
|
Thomas A, Rey M, Aubry L, Pelosi L. A hybrid model to study pathological mutations of the human ADP/ATP carriers. Biochimie 2011; 93:1415-23. [DOI: 10.1016/j.biochi.2011.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 04/20/2011] [Indexed: 11/25/2022]
|
4
|
Clémençon B, Rey M, Trézéguet V, Forest E, Pelosi L. Yeast ADP/ATP carrier isoform 2: conformational dynamics and role of the RRRMMM signature sequence methionines. J Biol Chem 2011; 286:36119-36131. [PMID: 21868387 DOI: 10.1074/jbc.m111.277376] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial ADP/ATP carrier, or Ancp, is a member of the mitochondrial carrier family responsible for exchanging ADP and ATP across the mitochondrial inner membrane. ADP/ATP transport involves Ancp switching between two conformational states. These can be analyzed using specific inhibitors, carboxyatractyloside (CATR) and bongkrekic acid (BA). The high resolution three-dimensional structure of bovine Anc1p (bAnc1p), as a CATR-carrier complex, has been solved. However, because the structure of the BA-carrier complex has not yet been determined, the detailed mechanism of transport remains unknown. Recently, sample processing for hydrogen/deuterium exchange experiments coupled to mass spectrometry was improved, providing novel insights into bAnc1p conformational transitions due to inhibitor binding. In this work we performed both hydrogen/deuterium exchange-mass spectrometry experiments and genetic manipulations. Because these are very difficult to apply with bovine Anc1p, we used Saccharomyces cerevisiae Anc isoform 2 (ScAnc2p). Significant differences in solvent accessibility were observed throughout the amino acid sequence for ScAnc2p complexed to either CATR or BA. Interestingly, in detergent solution, the conformational dynamics of ScAnc2p were dissimilar to those of bAnc1p, in particular for the upper half of the cavity, toward the intermembrane space, and the m2 loop, which is thought to be easily accessible to the solvent from the matrix in bAnc1p. Our study then focused on the methionyl residues of the Ancp signature sequence, RRRMMM. All our results indicate that the methionine cluster is involved in the ADP/ATP transport mechanism and confirm that the Ancp cavity is a highly dynamic structure.
Collapse
Affiliation(s)
- Benjamin Clémençon
- Commissariat à l'Energie Atomique (CEA), Direction des Sciences du Vivant (DSV), Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Biologie à Grande Echelle, Grenoble, F-38054, France; Université Joseph Fourier, Grenoble, F-38000, France; INSERM, U1038, Grenoble, F-38054, France
| | - Martial Rey
- Commissariat à l'Energie Atomique (CEA), Direction des Sciences du Vivant (DSV), Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Biologie à Grande Echelle, Grenoble, F-38054, France; Université Joseph Fourier, Grenoble, F-38000, France; INSERM, U1038, Grenoble, F-38054, France
| | - Véronique Trézéguet
- Laboratoire de Physiologie Moléculaire et Cellulaire, UMR 5095 CNRS, Institut de Biochimie et Génétique Cellulaires, 1 rue Camille Saint-Saëns, F-33077 Bordeaux, France; Université Victor Segalen, Bordeaux, F-33076, France
| | - Eric Forest
- Université Joseph Fourier, Grenoble, F-38000, France; CEA, DSV, Institut de Biologie Structurale, Grenoble, F-38054, France; Laboratoire de Spectrométrie de Masse des Protéines, UMR 5075 CNRS, Grenoble, F-38027, France.
| | - Ludovic Pelosi
- Commissariat à l'Energie Atomique (CEA), Direction des Sciences du Vivant (DSV), Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Biologie à Grande Echelle, Grenoble, F-38054, France; Université Joseph Fourier, Grenoble, F-38000, France.
| |
Collapse
|
5
|
Abstract
The mitochondrial ADP/ATP carrier (Ancp) has long been a paradigm for studies of the mitochondrial carrier family due to, among other properties, its natural abundance and the existence of specific inhibitors, namely, carboxyatractyloside (CATR) and bongkrekic acid (BA), which lock the carrier under distinct and stable conformations. Bovine Anc1p isolated in complex with CATR in the presence of an aminoxyde detergent (LAPAO) was crystallized and its 3D structure determined. It is the first mitochondrial carrier structure resolved at high resolution (2.2 A, as reported by Pebay-Peyroula et al. (Nature 426:39-44, 2003)). Analyses revealed a monomer while most of the biochemical studies led to hypothesize Ancp functions as a dimer. To address the structural organization issue, we engineered a mutant of the yeast Ancp that corresponds to a covalent homodimer in view of 3D structure determination. We compare in this chapter the purification yield and quality of the chimera tagged either with six histidines at its C-ter end or nine histidines at its N-ter. We show that, as expected, length and position of the tag are important criteria for qualitative purification. We also discuss the advantages and drawbacks of purifying Ancp either from a natural source or from engineered yeast cells.
Collapse
|
6
|
Trézéguet V, Pélosi L, Lauquin GJM, Brandolin G. The mitochondrial ADP/ATP carrier: functional and structural studies in the route of elucidating pathophysiological aspects. J Bioenerg Biomembr 2008; 40:435-43. [PMID: 18979193 DOI: 10.1007/s10863-008-9178-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 07/23/2008] [Indexed: 01/21/2023]
Abstract
The mitochondrial ADP/ATP carrier plays a central role in aerobic cell energetics by providing to the cytosol the ATP generated by oxidative phosphorylation. Though discovered around 40 years ago owing to the existence of unique inhibitors and in spite of numerous experimental approaches, this carrier, which stands as a model of the mitochondrial solute carriers keeps some long-standing mystery. There are still open challenging questions among them the precise ADP/ATP transport mechanism, the functional oligomeric state of the carrier and relationships between human ADP/ATP carrier dysfunctioning and pathologies. Deciphering the 3D structure of this carrier afforded a considerable progress of the knowledge but requires now additional data focused on molecular dynamics from this static picture. State of the art in this topic is reviewed and debated in this paper in view of better comprehending origin of the discrepancies in these questions and, finally, the multiple physiological roles of this carrier in eukaryotic cell economy.
Collapse
Affiliation(s)
- Véronique Trézéguet
- Laboratoire de Physiologie Moléculaire et Cellulaire, Institut de Biochimie et Génétique Cellulaires-UMR 5095, CNRS-Université Bordeaux2, Bordeaux Cedex, France.
| | | | | | | |
Collapse
|
7
|
Klingenberg M. The ADP and ATP transport in mitochondria and its carrier. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1978-2021. [PMID: 18510943 DOI: 10.1016/j.bbamem.2008.04.011] [Citation(s) in RCA: 461] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 04/24/2008] [Accepted: 04/24/2008] [Indexed: 10/22/2022]
Abstract
Different from some more specialised short reviews, here a general although not encyclopaedic survey of the function, metabolic role, structure and mechanism of the ADP/ATP transport in mitochondria is presented. The obvious need for an "old fashioned" review comes from the gateway role in metabolism of the ATP transfer to the cytosol from mitochondria. Amidst the labours, 40 or more years ago, of unravelling the role of mitochondrial compartments and of the two membranes, the sequence of steps of how ATP arrives in the cytosol became a major issue. When the dust settled, a picture emerged where ATP is exported across the inner membrane in a 1:1 exchange against ADP and where the selection of ATP versus ADP is controlled by the high membrane potential at the inner membrane, thus uplifting the free energy of ATP in the cytosol over the mitochondrial matrix. Thus the disparate energy and redox states of the two major compartments are bridged by two membrane potential responsive carriers to enable their symbiosis in the eukaryotic cell. The advance to the molecular level by studying the binding of nucleotides and inhibitors was facilitated by the high level of carrier (AAC) binding sites in the mitochondrial membrane. A striking flexibility of nucleotide binding uncovered the reorientation of carrier sites between outer and inner face, assisted by the side specific high affinity inhibitors. The evidence of a single carrier site versus separate sites for substrate and inhibitors was expounded. In an ideal setting principles of transport catalysis were elucidated. The isolation of intact AAC as a first for any transporter enabled the reconstitution of transport for unravelling, independently of mitochondrial complications, the factors controlling the ADP/ATP exchange. Electrical currents measured with the reconstituted AAC demonstrated electrogenic translocation and charge shift of reorienting carrier sites. Aberrant or vital para-functions of AAC in basal uncoupling and in the mitochondrial pore transition were demonstrated in mitochondria and by patch clamp with reconstituted AAC. The first amino acid sequence of AAC and of any eukaryotic carrier furnished a 6-transmembrane helix folding model, and was the basis for mapping the structure by access studies with various probes, and for demonstrating the strong conformation changes demanded by the reorientation mechanism. Mutations served to elucidate the function of residues, including the particular sensitivity of ATP versus ADP transport to deletion of critical positive charge in AAC. After resisting for decades, at last the atomic crystal structure of the stabilised CAT-AAC complex emerged supporting the predicted principle fold of the AAC but showing unexpected features relevant to mechanism. Being a snapshot of an extreme abortive "c-state" the actual mechanism still remains a conjecture.
Collapse
|
8
|
Clémençon B, Rey M, Dianoux AC, Trézéguet V, Lauquin GJM, Brandolin G, Pelosi L. Structure-function relationships of the C-terminal end of the Saccharomyces cerevisiae ADP/ATP carrier isoform 2. J Biol Chem 2008; 283:11218-25. [PMID: 18299327 DOI: 10.1074/jbc.m709565200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adenine nucleotide carrier (Ancp) catalyzes the transport of ADP and ATP across the mitochondrial inner membrane, thus playing an essential role in the cellular energy metabolism. Two regions of Anc2p from Saccharomyces cerevisiae are specifically photolabeled using a photoactivable ADP derivative; they are the central matrix loop, m2, and the C-terminal end. To get more insights into the structure-function relationships of the C-terminal region during nucleotide transport, we have developed two independent approaches. In the first we have deleted the last eight amino acids of Anc2p (Anc2pDeltaCter) and demonstrated that the C-terminal end of Anc2p plays an essential role in yeast growth on a non-fermentable carbon source. This resulted from impaired nucleotide binding properties of the Anc2pDeltaCter variant in line with conversion of ADP binding sites from high to low affinity. In the second we probed the ligand-induced conformational changes of Anc2p C-terminal end (i) by assessing its accessibility to anti-C-terminal antibodies and (ii) by measuring intrinsic fluorescence changes of an Anc2p mutant containing only one tryptophan residue located at its C-terminal end (Anc2p3Y-u). We show that the C-terminal region is no further accessible to antibodies when Anc2p binds non-transportable analogues of ADP. Besides, Trp-316 fluorescence is highly increased upon ligand binding, suggesting large conformational changes. Taken together, our results highlight the involvement of the Anc2p C-terminal region in nucleotide recognition, binding, and transport.
Collapse
Affiliation(s)
- Benjamin Clémençon
- Laboratoire de Biochimie et Biophysique des Systè Intégrés, Institut de Recherches en Technologies et Sciences du Vivant, UMR 5092 CNRS-Commissariat à l'Energie Atomique-Université Joseph Fourier, F-38054 Grenoble cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Nury H, Dahout-Gonzalez C, Trézéguet V, Lauquin GJM, Brandolin G, Pebay-Peyroula E. Relations between structure and function of the mitochondrial ADP/ATP carrier. Annu Rev Biochem 2007; 75:713-41. [PMID: 16451122 DOI: 10.1146/annurev.biochem.75.103004.142747] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Import and export of metabolites through mitochondrial membranes are vital processes that are highly controlled and regulated at the level of the inner membrane. Proteins of the mitochondrial carrier family ( MCF ) are embedded in this membrane, and each member of the family achieves the selective transport of a specific metabolite. Among these, the ADP/ATP carrier transports ADP into the mitochondrial matrix and exports ATP toward the cytosol after its synthesis. Because of its natural abundance, the ADP/ATP carrier is the best characterized within MCF, and a high-resolution structure of one conformation is known. The overall structure is basket shaped and formed by six transmembrane helices that are not only tilted with respect to the membrane, but three of them are also kinked at the level of prolines. The functional mechanisms, nucleotide recognition, and conformational changes for the transport, suggested from the structure, are discussed along with the large body of biochemical and functional results.
Collapse
Affiliation(s)
- H Nury
- Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075 CEA-CNRS-Université Joseph Fourier, F-38027 Grenoble cedex 1, France.
| | | | | | | | | | | |
Collapse
|
10
|
Postis V, De Marcos Lousa C, Arnou B, Lauquin GJM, Trézéguet V. Subunits of the yeast mitochondrial ADP/ATP carrier: cooperation within the dimer. Biochemistry 2006; 44:14732-40. [PMID: 16274221 DOI: 10.1021/bi051648x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mitochondrial ADP/ATP carrier, or Ancp, is a member of the mitochondrial carrier family (MCF). It exchanges ADP and ATP between matrix and intermembrane space. It is postulated from numerous experiments that the inactive Ancp bound to one of its inhibitors (CATR or BA) is a dimer, and it is inferred that the active unit is a dimer, too. However, the structure of beef Ancp bound to CATR obtained at high resolution is that of a monomer. To ascertain the dimeric organization of Ancp, we have constructed covalent tandem dimers of which one "subunit" (protomer) is the wild type and the other is inactive for ADP/ATP exchange. We have chosen either the op1 mutant or another member of the MCF, the phosphate carrier (Picp). Activities of the chimeras were first evaluated in vivo. The Ancp/op1 constructs exchange the adenine nucleotides. The Anc/Pic chimeras are considered as bifunctional forms since they exchange ADP and ATP and transport P(i) within the same cells. We have then controlled the fact that the chimeras are stable in vivo and in vitro. Proteinase K digestion showed that both protomers of Ancp/op1 have similar organization in the membrane. Analyses of kinetic properties indicated that protomers of Ancp/op1 chimeras crosstalk during the nucleotide exchange unlike those of Anc/Pic. However, full inhibition of phosphate uptake by CATR, a very specific inhibitor of Ancp, strongly suggests that the native functional unit of Ancp, and thus of Picp, is a dimer.
Collapse
Affiliation(s)
- Vincent Postis
- Laboratoire de Physiologie Moléculaire et Cellulaire, UMR 5095-Université de Bordeaux2-CNRS, IBGC, 1, rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France
| | | | | | | | | |
Collapse
|
11
|
Dassa EP, Dahout-Gonzalez C, Dianoux AC, Brandolin G. Functional characterization and purification of a Saccharomyces cerevisiae ADP/ATP carrier-iso 1 cytochrome c fusion protein. Protein Expr Purif 2005; 40:358-69. [PMID: 15766878 DOI: 10.1016/j.pep.2004.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 12/14/2004] [Indexed: 10/25/2022]
Abstract
A recombinant fusion protein combining the mitochondrial ADP/ATP carrier (Anc2p) and the iso-1-cytochrome c (Cyc1p), both from Saccharomyces cerevisiae, has been genetically elaborated with the aim of increasing the polar surface area of the carrier to facilitate its crystallization. The gene encoding the his-tagged fusion protein was expressed in yeast under the control of the regulatory sequences of ScANC2. The chimeric carrier, Anc2-Cyc1(His6)p, was able to restore growth on a non-fermentable carbon source of a yeast strain devoid of functional ADP/ATP carrier, which demonstrated its transport activity. The kinetic exchange properties of Anc2-Cyc1(His6)p and the wild type his-tagged carrier Anc2(His6)p were very similar. However, Anc2-Cyc1(His6)p restored cell growth less efficiently than Anc2(His6)p which correlates with the lower amount found in mitochondria. Purification of Anc2-Cyc1(His6)p in complex with carboxyatractyloside (CATR), a high affinity inhibitor of ADP/ATP transport, was achieved by combining ion-exchange chromatography and ion-metal affinity chromatography in the presence of LAPAO, an aminoxide detergent. As characterized by absorption in the visible range, heme was found to be present in isolated Anc2-Cyc1(His6)p, giving the protein a red color. Large-scale purification of Anc2-Cyc1(His6)p-CATR complex opens up novel possibilities for the use of crystallographic approaches to the yeast ADP/ATP carrier.
Collapse
Affiliation(s)
- Emmanuel Philippe Dassa
- Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, Département de Réponse et Dynamique Cellulaires, UMR 5092 CNRS-CEA-Université Joseph Fourier, CEA-Grenoble, 17 Avenue des Martyrs, 38054 Grenoble Cedex 9, France
| | | | | | | |
Collapse
|
12
|
Kihira Y, Iwahashi A, Majima E, Terada H, Shinohara Y. Twisting of the Second Transmembrane α-Helix of the Mitochondrial ADP/ATP Carrier during the Transition between Two Carrier Conformational States. Biochemistry 2004; 43:15204-9. [PMID: 15568812 DOI: 10.1021/bi0494222] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To investigate the structural and functional features of the second alpha-helical transmembrane segment (TM2) of the mitochondrial ADP/ATP carrier (AAC), we adopted cysteine scanning mutagenesis analysis. Single-cysteine mutations of yeast AAC were systematically introduced at residues 98-106 in TM2, and the mutants were treated with the fluorescent SH reagent eosin-5-maleimide (EMA). EMA modified different amino acid residues of alpha-helical TM2 between the two distinct carrier conformations, called the m-state and the c-state, in which the substrate recognition site faces the matrix and cytosol, respectively. When amino acids in the helix were projected on a wheel plot, these EMA-modified amino acids were observed at distinct sides of the wheel. Since the SH reagent specifically modified cysteine in the water-accessible environment, these results indicate that distinct helical surfaces of TM2 faced the water-accessible space between the two conformations, possibly as a result of twisting of this helix. In the recently reported crystal structure of bovine AAC, several amino acids faced cocrystallized carboxyatractyloside (CATR), a specific inhibitor of the carrier. These residues correspond to those modified with EMA in the yeast carrier in the c-state. Since the binding site of CATR is known to overlap that of the transport substrate, the water-accessible space was thought to be a substrate transport pathway, and hence, the observed twisting of TM2 between the m-state and the c-state may be involved in the process of substrate translocation. On the basis of the results, the roles of TM2 in the transport function of AAC were discussed.
Collapse
Affiliation(s)
- Yoshitaka Kihira
- Faculty of Pharmaceutical Sciences, University of Tokushima, Shomachi-1, Tokushima 770-8505, Japan
| | | | | | | | | |
Collapse
|
13
|
Zeman I, Schwimmer C, Postis V, Brandolin G, David C, Trézéguet V, Lauquin GJM. Four mutations in transmembrane domains of the mitochondrial ADP/ATP carrier increase resistance to bongkrekic acid. J Bioenerg Biomembr 2004; 35:243-56. [PMID: 13678275 DOI: 10.1023/a:1024611731860] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Two distinct conformations of the mitochondrial ADP/ATP carrier involved in the adenine nucleotide transport are called BA and CATR conformations, as they were distinguished by binding of specific inhibitors bongkrekic acid (BA) and carboxyatractyloside (CATR), respectively. To find out which amino acids are implicated in the transition between these two conformations, which occurs during transport, mutants of the Saccharomyces cerevisiae ADP/ATP carrier Anc2p responsible for resistance of yeast cells to BA were identified and characterized after in vivo chemical or UV mutagenesis. Only four different mutations could be identified in spite of a large number of mutants analyzed. They are located in the Anc2p transmembrane segments I (G30S), II (Y97C), III (L142S), and VI (G298S), and are independently enabling growth of cells in the presence of BA. The variant and wild-type Anc2p were produced practically to the same level in mitochondria, as evidenced by immunochemical analysis and by atractyloside binding experiments. ADP/ATP exchange mediated by Anc2p variants in isolated mitochondria was more efficient than that of the wild-type Anc2p in the presence of BA, confirming that BA resistance of the mutant cells was linked to the functional properties of the modified ADP/ATP carrier. These results suggest that resistance to BA is caused by alternate conformation of Anc2p due to appearance of Ser or Cys at specific positions. Different interactions of these residues with other amino acids and/or BA could prevent formation of stable inactive Anc2p . BA complex.
Collapse
Affiliation(s)
- Igor Zeman
- Department of Biochemistry, Faculty of Sciences, Comenius University, Mlynská dolina CH-1, 842 15 Bratislava, Slovakia
| | | | | | | | | | | | | |
Collapse
|
14
|
Lórenz-Fonfría VA, Villaverde J, Trézéguet V, Lauquin GJM, Brandolin G, Padrós E. Structural and functional implications of the instability of the ADP/ATP transporter purified from mitochondria as revealed by FTIR spectroscopy. Biophys J 2003; 85:255-66. [PMID: 12829481 PMCID: PMC1303082 DOI: 10.1016/s0006-3495(03)74471-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The ADP/ATP transporter shows a high instability when solubilized, making it difficult to obtain functional protein with sufficient purity for long-term spectroscopic studies. When solubilized in the detergent dodecyl maltoside the protein is in equilibrium between the so-called CATR and BA conformations and in a few hours it becomes nonfunctional, unable to bind either its inhibitors or its substrates. By Fourier transform infrared spectroscopy, we studied the structural changes involved in this denaturation process. To do so, the carboxyatractyloside-inhibited protein was used as a structural model for the protein in the CATR conformation and its spectrum was compared with that of the unliganded time-inactivated protein. From the difference spectra of the amide I, amide II, and amide A bands combined with dichroism spectra of the carboxyatractyloside-inhibited protein, we concluded that few structural differences exist between both states, affecting as few as 11 amino acids (3.5% of the protein); the structural changes consisted in the disappearance of large loop structure and the appearance of aggregated strands. We hypothesize that some mitochondrial loop (tentatively loop M1) shows a high tendency to aggregate, being responsible for the observed features. The functional consequences of this hypothesis are discussed.
Collapse
Affiliation(s)
- Víctor A Lórenz-Fonfría
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
15
|
De Marcos Lousa C, Trézéguet V, Dianoux AC, Brandolin G, Lauquin GJM. The human mitochondrial ADP/ATP carriers: kinetic properties and biogenesis of wild-type and mutant proteins in the yeast S. cerevisiae. Biochemistry 2002; 41:14412-20. [PMID: 12450408 DOI: 10.1021/bi0261490] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mitochondrial adenine nucleotide carrier, or Ancp, plays a key role in the maintenance of the energetic fluxes in eukaryotic cells. Human disorders have been found associated to unusual human ANC gene (HANC) expression but also to direct inactivation of the protein, either by autoantibody binding or by mutation. However, the individual biochemical properties of the three HAncp isoforms have not yet been deciphered. To do so, the three HANC ORF were expressed in yeast under the control of the regulatory sequences of ScANC2. Each of the three HANC was able to restore growth on a nonfermentable carbon source of a yeast mutant strain lacking its three endogenous ANC. Their ADP/ATP exchange properties could then be measured for the first time in isolated mitochondria. HANC3 was the most efficient to restore yeast growth, and HAnc3p presented the highest V(M) (80 nmol ADP min(-1) mg protein(-1)) and K(ADP)(M)(8.4 microM). HAnc1p and HAnc2p presented similar kinetic constants (V(M) approximately 30-40 nmol ADP min(-(1) mg protein(-1) and K(ADP)(M) approximately 2.5-3.7 microM), whose values were consistent with HANC1's and HANC2's lower capacity to restore yeast growth. However, the HANC genes restored growth at a lower level than ScANC2, indicating that HAncp amount may be limiting in vivo. To optimize the HAncp production, we investigated their biogenesis into mitochondria by mutagenesis of two charged amino acids in the N-terminus of HAnc1p. Severe effects were observed with the D3A and D3K mutations that precluded yeast growth. On the contrary, the K10A mutation increased yeast growth complementation and nucleotide exchange rate as compared to the wild type. These results point to the importance of the N-terminal region of HAnc1p for its biogenesis and transport activity in yeast mitochondria.
Collapse
Affiliation(s)
- Carine De Marcos Lousa
- Laboratoire de Physiologie Moléculaire et Cellulaire, Institut de Biochimie et Génétique Cellulaires, 1, rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France
| | | | | | | | | |
Collapse
|
16
|
Lórenz VA, Villaverde J, Trézéguet V, Lauquin GJ, Brandolin G, Padrós E. The secondary structure of the inhibited mitochondrial ADP/ATP transporter from yeast analyzed by FTIR spectroscopy. Biochemistry 2001; 40:8821-33. [PMID: 11467943 DOI: 10.1021/bi010091s] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fourier transform infrared spectroscopy has been applied to the study of the carboxyatractyloside-inhibited mitochondrial ADP/ATP transporter from the yeast Saccharomyces cerevisiae, either solubilized in dodecyl maltoside or reconstituted in phosphatidylcholine liposomes. Its secondary structure has been estimated by means of Fourier self-deconvolution followed by curve fit. A Voigt function was used to fit the components of the deconvoluted spectrum, aiming to account for any distortions introduced by deconvolution. For any of the states analyzed, reconstituted or solubilized, in solution or in dry films, 60-70% of the amino acids are found to adopt alpha-helix plus unordered structures, coherent with the six transmembrane spanning helix model. Moreover, the problem of structure preservation on drying was addressed, and several observations pointed to a maintenance of the protein structure in dry films. Comparison of reconstituted and solubilized samples indicated the presence of both lipid-induced changes in the protein (decrease of the beta-sheets and increase of unordered structures) and protein-induced changes in the lipids (strong hydrogen bonding of lipid C=O groups). To obtain a better discrimination of alpha-helix and unordered structure contributions for the reconstituted form, H/D exchange experiments were performed. Between 35% and 45% of the amino acids were finally assigned to alpha-helix structures, compatible with the existence of five or six transmembrane spanning helices in the transporter. The level of H/D exchange was determined after 15 h of exposure to D(2)O vapor to be 85%, reflecting a high accessibility of the amide hydrogens even for the carboxyatractyloside-inhibited state.
Collapse
Affiliation(s)
- V A Lórenz
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Dianoux AC, Noël F, Fiore C, Trézéguet V, Kieffer S, Jaquinod M, Lauquin GJ, Brandolin G. Two distinct regions of the yeast mitochondrial ADP/ATP carrier are photolabeled by a new ADP analogue: 2-azido-3'-O-naphthoyl-[beta-32P]ADP. Identification of the binding segments by mass spectrometry. Biochemistry 2000; 39:11477-87. [PMID: 10985794 DOI: 10.1021/bi000618l] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel photoactivatable radioactive ADP derivative, namely, 2-azido-3'-O-naphthoyl-[beta-(32)P]ADP (2-azido-N-[(32)P]ADP), was synthesized with the aim at mapping the substrate binding site(s) of the yeast mitochondrial ADP/ATP carrier. It was used with mitochondria isolated from genetically modified strains of Saccharomyces cerevisiae, producing the native or the His-tagged Anc2p isoform of the carrier. In darkness, 2-azido-N-[(32)P]ADP was reversibly bound to the carrier in mitochondria, without being transported. Upon photoirradiation, only the ADP/ATP carrier was covalently radiolabeled among all mitochondrial proteins. Specificity of labeling was demonstrated since carboxyatractyloside (CATR), a potent inhibitor of ADP/ATP transport, totally prevented the incorporation of the photoprobe. To localize the radioactive region(s), the purified photolabeled carrier was submitted to CNBr or hydroxylamine cleavage. The resulting fragments were characterized and identified by SDS-PAGE, Western blotting, amino acid sequencing, and MALDI-MS and ESI-MS analyses. Two short photolabeled distinct segments, eight and nine residues long, were identified: S183-R191, located in the central part of the ADP/ATP carrier; and I311-K318, belonging to its C-terminal end. Plausible models of organization of the nucleotide binding site(s) of the carrier involving the two regions specifically labeled by 2-azido-N-[(32)P]ADP are proposed.
Collapse
Affiliation(s)
- A C Dianoux
- Laboratoire de Biophysique et Biochimie des Systèmes Intégrés, CNRS-UMR 5092, DBMS, CEA-Grenoble, 17 Rue des Martyrs, 38054 Grenoble Cedex 9, France.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Fiore C, Trézéguet V, Roux P, Le Saux A, Noël F, Schwimmer C, Arlot D, Dianoux AC, Lauquin GJ, Brandolin G. Purification of histidine-tagged mitochondrial ADP/ATP carrier: influence of the conformational states of the C-terminal region. Protein Expr Purif 2000; 19:57-65. [PMID: 10833391 DOI: 10.1006/prep.2000.1213] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A functional recombinant mitochondrial ADP/ATP carrier from the yeast Saccharomyces cerevisiae that bears a six-histidine tag at the C-terminus, Anc2(His(6))p, has been engineered to allow its purification by immobilized metal-ion affinity chromatography (IMAC). The tagged carrier was expressed at a level similar to that of unmodified Anc2p as determined by immunodetection and titration of the specific atractyloside binding sites. Anc2(His(6))p, enriched by chromatography on hydroxyapatite of detergent extracts of mitochondria, was still contaminated by mitochondrial proteins and a large amount of ergosterol. It was highly purified after adsorption on Ni-NTA resin and elution by imidazole buffer, with a 90-95% overall yield. Anc2(His(6))p interacted differently with immobilized ions depending on whether it was unliganded or bound to carboxyatractyloside (CATR) or bongkrekic acid (BA), two specific inhibitors of the ADP/ATP transport, thus indicating that accessibility of the C-terminus is markedly influenced by the conformational state of the carrier. Fluorometric assays demonstrated that purified unliganded Anc2(His(6))p was in a functional state since it underwent CATR- and BA-sensitive and ADP (or ATP)-induced conformational changes. Large-scale purification of Anc2(His(6))p-CATR and Anc2(His(6))p-BA complexes by IMAC will be of major interest for structural analysis of the ADP/ATP carrier.
Collapse
Affiliation(s)
- C Fiore
- Laboratoire de Biophysique et Biochimie des Systèmes Intégrés, CNRS-UMR 314, CEA-Grenoble, 17 Rue des Martyrs, Grenoble, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Trézéguet V, Le Saux A, David C, Gourdet C, Fiore C, Dianoux A, Brandolin G, Lauquin GJ. A covalent tandem dimer of the mitochondrial ADP/ATP carrier is functional in vivo. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1457:81-93. [PMID: 10692552 DOI: 10.1016/s0005-2728(99)00115-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The adenine nucleotide carrier, or Ancp, is an integral protein of the inner mitochondrial membrane. It is established that the inactive Ancp bound to one of its inhibitors (CATR or BA) is a dimer, but different contradictory models were proposed over the past years to describe the organization of the active Ancp. In order to decide in favor of a single model, it is necessary to establish the orientations of the N- and C-termini and thus the parity of the Ancp transmembrane segments (TMS). According to this, we have constructed a gene encoding a covalent tandem dimer of the Saccharomyces cerevisiae Anc2p and we demonstrate that it is stable and active in vivo as well as in vitro. The properties of the isolated dimer are strongly similar to those of the native Anc2p, as seen from nucleotide exchange and inhibitor binding experiments. We can therefore conclude that the native Anc2p has an even number of TMS and that the N- and C-terminal regions are exposed to the same cellular compartment. Furthermore, our results support the idea of a minimal dimeric functional organization of the Ancp in the mitochondrial membrane and we can suggest that TMS 1 of one monomer and TMS 6 of the other monomer in the native dimer are very close to each other.
Collapse
Affiliation(s)
- V Trézéguet
- Laboratoire de Physiologie Moléculaire et Cellulaire, IBGC-CNRS, 1 rue Camille Saint-Saëns, 33077, Bordeaux cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hashimoto M, Shinohara Y, Majima E, Hatanaka T, Yamazaki N, Terada H. Expression of the bovine heart mitochondrial ADP/ATP carrier in yeast mitochondria: significantly enhanced expression by replacement of the N-terminal region of the bovine carrier by the corresponding regions of the yeast carriers. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1409:113-24. [PMID: 9878703 DOI: 10.1016/s0005-2728(98)00155-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
To characterize the transport mechanism mediated by the mammalian mitochondrial ADP/ATP carrier (AAC), we tried to express bovine heart mitochondrial AAC (bhAAC) in Saccharomyces cerevisiae. The open reading frame of the bhAAC was introduced into the haploid strain WB-12, in which intrinsic AAC genes were disrupted. Growth of the transformant was very low in glycerol medium, and a little amount of bhAAC was detected in the mitochondrial membrane. For improvement of bhAAC expression in WB-12, we introduced DNA fragments encoding chimeric bhAACs, in which the N-terminal region of the bhAAC extending into the cytosol was replaced by the corresponding regions of the type 1 and type 2 yeast AAC isoforms (yAAC1 and yAAC2). These transformants grew well, and the amounts of the chimeric bhAACs in their mitochondria were as high as that of yAAC2. The carriers expressed showed essentially the same ADP transport activities as that of AAC in bovine heart mitochondria.
Collapse
Affiliation(s)
- M Hashimoto
- Faculty of Pharmaceutical Sciences, University of Tokushima, Shomachi-1, Tokushima 770-8505, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Fiore C, Trézéguet V, Le Saux A, Roux P, Schwimmer C, Dianoux AC, Noel F, Lauquin GJ, Brandolin G, Vignais PV. The mitochondrial ADP/ATP carrier: structural, physiological and pathological aspects. Biochimie 1998; 80:137-50. [PMID: 9587671 DOI: 10.1016/s0300-9084(98)80020-5] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Under the conditions of oxidative phosphorylation, the mitochondrial ADP/ATP carrier catalyses the one to one exchange of cytosolic ADP against matrix ATP across the inner mitochondrial membrane. The ADP/ATP transport system can be blocked very specifically by two families of inhibitors: atractyloside (ATR) and carboxyatractyloside (CATR) on one hand, and bongkrekic acid (BA) and isobongkrekic acid (isoBA) on the other hand. It is well established that these inhibitors recognise two different conformations of the carrier protein, the CATR- and BA-conformations, which exhibit different chemical, immunochemical and enzymatic reactivities. The reversible transition of the ADP/ATP carrier between the two conformations was studied by fluorometric techniques. This transconversion, which is only triggered by transportable nucleotides, is probably the same as that which occurs during the functioning of ADP/ATP transport system. The fluorometric approach, using the tryptophanyl residues of the yeast carrier as intrinsic fluorescence probes, was combined to a mutagenesis approach to elucidate the ADP/ATP transport mechanism at the molecular level. Finally, recent reports that myopathies might result from defect in ADP/ATP transport led us to develop a method to quantify the carrier protein in muscular biopsies.
Collapse
Affiliation(s)
- C Fiore
- UMR 314 CNRS, Département de Biologie Moléculaire et Structurale, CEA-Grenoble, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|