1
|
Hale J, An X, Guo X, Gao E, Papoin J, Blanc L, Hillyer CD, Gratzer W, Baines A, Mohandas N. αI-spectrin represents evolutionary optimization of spectrin for red blood cell deformability. Biophys J 2021; 120:3588-3599. [PMID: 34352252 PMCID: PMC8456306 DOI: 10.1016/j.bpj.2021.07.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 11/15/2022] Open
Abstract
Spectrin tetramers of the membranes of enucleated mammalian erythrocytes play a critical role in red blood cell survival in circulation. One of the spectrins, αI, emerged in mammals with enucleated red cells after duplication of the ancestral α-spectrin gene common to all animals. The neofunctionalized αI-spectrin has moderate affinity for βI-spectrin, whereas αII-spectrin, expressed in nonerythroid cells, retains ancestral characteristics and has a 10-fold higher affinity for βI-spectrin. It has been hypothesized that this adaptation allows for rapid make and break of tetramers to accommodate membrane deformation. We have tested this hypothesis by generating mice with high-affinity spectrin tetramers formed by exchanging the site of tetramer formation in αI-spectrin (segments R0 and R1) for that of αII-spectrin. Erythrocytes with αIIβI presented normal hematologic parameters yet showed increased thermostability, and their membranes were significantly less deformable; under low shear forces, they displayed tumbling behavior rather than tank treading. The membrane skeleton is more stable with αIIβI and shows significantly less remodeling under deformation than red cell membranes of wild-type mice. These data demonstrate that spectrin tetramers undergo remodeling in intact erythrocytes and that this is required for the normal deformability of the erythrocyte membrane. We conclude that αI-spectrin represents evolutionary optimization of tetramer formation: neither higher-affinity tetramers (as shown here) nor lower affinity (as seen in hemolytic disease) can support the membrane properties required for effective tissue oxygenation in circulation.
Collapse
Affiliation(s)
- John Hale
- The Red Cell Physiology Laboratory, The New York Blood Center, New York, New York.
| | - Xiuli An
- Membrane Biology Laboratory, The New York Blood Center, New York, New York
| | - Xinhua Guo
- Membrane Biology Laboratory, The New York Blood Center, New York, New York
| | - Erjing Gao
- The Red Cell Physiology Laboratory, The New York Blood Center, New York, New York
| | - Julien Papoin
- Nelkin Laboratory of Pediatric Oncology and Laboratory of Developmental Erythropoiesis, The Feinstein Institutes for Medical Research, Manhasset, New York
| | - Lionel Blanc
- Nelkin Laboratory of Pediatric Oncology and Laboratory of Developmental Erythropoiesis, The Feinstein Institutes for Medical Research, Manhasset, New York; Department of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| | | | - Walter Gratzer
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Anthony Baines
- Department of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Narla Mohandas
- The Red Cell Physiology Laboratory, The New York Blood Center, New York, New York
| |
Collapse
|
2
|
A composite polynomial approach for analyzing the indefinite self-association of macromolecules studied by sedimentation equilibrium. Biophys Chem 2017. [PMID: 28628895 DOI: 10.1016/j.bpc.2017.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A different approach is described for analyzing sedimentation equilibrium experiments of indefinitely self-associating systems. The procedure involves application of conservation of mass criteria, along with local evaluation of the weight average molar mass, to generate a polynomial based on a composite pseudo-independent variable. The outlined method does not depend upon non-linear regression to generate a solution, but instead requires evaluation of the roots of a high-order polynomial.
Collapse
|
3
|
Bose D, Patra M, Chakrabarti A. Effect of pH on stability, conformation, and chaperone activity of erythroid & non-erythroid spectrin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:694-702. [PMID: 28373029 DOI: 10.1016/j.bbapap.2017.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 11/29/2022]
Abstract
Spectrin, a major component of the eukaryotic membrane skeleton, has been shown to have chaperone like activity. Here we investigate the pH induced changes in the structure and stability of erythroid and brain spectrin by spectroscopic methods. We also correlate these changes with modulations of chaperone potential at different pH. We have followed the pH induced structural changes by circular dichroism spectroscopy and intrinsic tryptophan fluorescence. It is seen that lowering the pH from 9 has little effect on structure of the proteins till about pH6. At pH4, there is significant change of the secondary structure of the proteins, along with a 5nm hypsochromic shift of the emission maxima. Below pH4 the proteins undergo acid denaturation. Probing exposed hydrophobic patches on the proteins using protein-bound 8-anilinonaphthalene-1-sulfonate fluorescence demonstrates that there is higher solvent accessibility of hydrophobic surfaces in both forms of spectrin at around pH4. Dynamic light scattering and 90° light scattering studies show that the both forms of spectrin forms oligomers at pH~4. Chemical unfolding data shows that these oligomers are less stable than the tetrameric form. Aggregation studies with BSA show that at pH4, both spectrins exhibit better chaperone activity. This enhancement of chaperone like activity appears to result from an increase in regions of solvent-exposed hydrophobicity and oligomeric state of the spectrins which in turn are induced by moderately acid pH. This may have in-vivo implications in cells facing stress conditions where cytoplasmic pH is lowered.
Collapse
Affiliation(s)
- Dipayan Bose
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, HBNI, Kolkata, India
| | - Malay Patra
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, HBNI, Kolkata, India
| | - Abhijit Chakrabarti
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, HBNI, Kolkata, India.
| |
Collapse
|
4
|
Fluorescence study of the effect of cholesterol on spectrin–aminophospholipid interactions. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:635-45. [DOI: 10.1007/s00249-015-1057-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 06/17/2015] [Accepted: 06/25/2015] [Indexed: 11/26/2022]
|
5
|
Brown JW, Bullitt E, Sriswasdi S, Harper S, Speicher DW, McKnight CJ. The Physiological Molecular Shape of Spectrin: A Compact Supercoil Resembling a Chinese Finger Trap. PLoS Comput Biol 2015; 11:e1004302. [PMID: 26067675 PMCID: PMC4466138 DOI: 10.1371/journal.pcbi.1004302] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/27/2015] [Indexed: 01/29/2023] Open
Abstract
The primary, secondary, and tertiary structures of spectrin are reasonably well defined, but the structural basis for the known dramatic molecular shape change, whereby the molecular length can increase three-fold, is not understood. In this study, we combine previously reported biochemical and high-resolution crystallographic data with structural mass spectroscopy and electron microscopic data to derive a detailed, experimentally-supported quaternary structure of the spectrin heterotetramer. In addition to explaining spectrin’s physiological resting length of ~55-65 nm, our model provides a mechanism by which spectrin is able to undergo a seamless three-fold extension while remaining a linear filament, an experimentally observed property. According to the proposed model, spectrin’s quaternary structure and mechanism of extension is similar to a Chinese Finger Trap: at shorter molecular lengths spectrin is a hollow cylinder that extends by increasing the pitch of each spectrin repeat, which decreases the internal diameter. We validated our model with electron microscopy, which demonstrated that, as predicted, spectrin is hollow at its biological resting length of ~55-65 nm. The model is further supported by zero-length chemical crosslink data indicative of an approximately 90 degree bend between adjacent spectrin repeats. The domain-domain interactions in our model are entirely consistent with those present in the prototypical linear antiparallel heterotetramer as well as recently reported inter-strand chemical crosslinks. The model is consistent with all known physical properties of spectrin, and upon full extension our Chinese Finger Trap Model reduces to the ~180-200 nm molecular model currently in common use. Spectrins are cytoskeletal and scaffolding proteins ubiquitously expressed in essentially all cell-types. Despite unequivocal evidence for a short physiological length of ~55–65 nm at rest, spectrin is typically represented as an extended ~200 nm molecule that is implied based on crystallographic structures of a number of tandem repeats. Here, we incorporate previously reported biochemical and crystallographic data with structural mass spectroscopy and electron microscopic data to derive a detailed, experimentally-supported quaternary structure of the physiological compact form of spectrin. In addition to explaining spectrin’s physiological resting length (~55–65 nm), our model provides a mechanism by which spectrin can undergo a seamless three-fold extension, which is an experimentally observed property that is responsible for restoration of cell shape after mechanical deformation.
Collapse
Affiliation(s)
- Jeffrey W. Brown
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Internal Medicine Residency Program, University of Pittsburgh Medical Center, UPMC Montefiore Hospital, Pittsburgh, Pennsylvania, United States of America
| | - Esther Bullitt
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Sira Sriswasdi
- Center for Systems and Computational Biology, and Molecular and Cellular Oncogenesis Program, the Wistar Institute, Philadelphia, Pennsylvania, United States of America
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sandra Harper
- Center for Systems and Computational Biology, and Molecular and Cellular Oncogenesis Program, the Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - David W. Speicher
- Center for Systems and Computational Biology, and Molecular and Cellular Oncogenesis Program, the Wistar Institute, Philadelphia, Pennsylvania, United States of America
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - C. James McKnight
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
6
|
Mitra M, Chaudhuri A, Patra M, Mukhopadhyay C, Chakrabarti A, Chattopadhyay A. Organization and Dynamics of Tryptophan Residues in Brain Spectrin: Novel Insight into Conformational Flexibility. J Fluoresc 2015; 25:707-17. [DOI: 10.1007/s10895-015-1556-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/05/2015] [Indexed: 10/23/2022]
|
7
|
Patra M, Mukhopadhyay C, Chakrabarti A. Probing conformational stability and dynamics of erythroid and nonerythroid spectrin: effects of urea and guanidine hydrochloride. PLoS One 2015; 10:e0116991. [PMID: 25617632 PMCID: PMC4305312 DOI: 10.1371/journal.pone.0116991] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/18/2014] [Indexed: 11/19/2022] Open
Abstract
We have studied the conformational stability of the two homologous membrane skeletal proteins, the erythroid and non-erythroid spectrins, in their dimeric and tetrameric forms respectively during unfolding in the presence of urea and guanidine hydrochloride (GuHCl). Fluorescence and circular dichroism (CD) spectroscopy have been used to study the changes of intrinsic tryptophan fluorescence, anisotropy, far UV-CD and extrinsic fluorescence of bound 1-anilinonapthalene-8-sulfonic acid (ANS). Chemical unfolding of both proteins were reversible and could be described as a two state transition. The folded erythroid spectrin and non-erythroid spectrin were directly converted to unfolded monomer without formation of any intermediate. Fluorescence quenching, anisotropy, ANS binding and dynamic light scattering data suggest that in presence of low concentrations of the denaturants (up-to 1M) hydrogen bonding network and van der Waals interaction play a role inducing changes in quaternary as well as tertiary structures without complete dissociation of the subunits. This is the first report of two large worm like, multi-domain proteins obeying twofold rule which is commonly found in small globular proteins. The free energy of stabilization (ΔGuH20) for the dimeric spectrin has been 20 kcal/mol lesser than the tetrameric from.
Collapse
Affiliation(s)
- Malay Patra
- Chemistry Department, University of Calcutta, Kolkata, West Bengal, India
| | | | - Abhijit Chakrabarti
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
| |
Collapse
|
8
|
Patra M, Mukhopadhyay C, Chakrabarti A. Malachite green interacts with the membrane skeletal protein, spectrin. RSC Adv 2015. [DOI: 10.1039/c5ra15488j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Energy minimized complex of MG with the self association domain of spectrin.
Collapse
Affiliation(s)
- Malay Patra
- Chemistry Department
- University of Calcutta
- Kolkata 700009
- India
| | | | - Abhijit Chakrabarti
- Crystallography & Molecular Biology Division
- Saha Institute of Nuclear Physics
- Kolkata 700064
- India
| |
Collapse
|
9
|
Patra M, Mitra M, Chakrabarti A, Mukhopadhyay C. Binding of polarity-sensitive hydrophobic ligands to erythroid and nonerythroid spectrin: fluorescence and molecular modeling studies. J Biomol Struct Dyn 2013; 32:852-65. [PMID: 24404769 DOI: 10.1080/07391102.2013.793212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have used three polarity-sensitive fluorescence probes, 6-propionyl 2-(N,N-dimethyl-amino) naphthalene (Prodan), pyrene and 8-anilino 1-naphthalene sulphonic acid, to study their binding with erythroid and nonerythroid spectrin, using fluorescence spectroscopy. We have found that both bind to prodan and pyrene with high affinities with apparent dissociation constants (Kd) of .50 and .17 μM, for prodan, and .04 and .02 μM, for pyrene, respectively. The most striking aspect of these bindings have been that the binding stoichiometry have been equal to 1 in erythroid spectrin, both in dimeric and tetrameric form, and in tetrameric nonerythroid spectrin. From an estimate of apparent dielectric constants, the polarity of the binding site in both erythroid and nonerythroid forms have been found to be extremely hydrophobic. Thermodynamic parameters associated with such binding revealed that the binding is favored by positive change in entropy. Molecular docking studies alone indicate that both prodan and pyrene bind to the four major structural domains, following the order in the strength of binding to the Ankyrin binding domain > SH3 domain > Self-association domain > N-terminal domain of α-spectrin of both forms of spectrin. The binding experiments, particularly with the tetrameric nonerythroid spectrin, however, indicate more toward the self association domain in offering the unique binding site, since the binding stoichiometry have been 1 in all forms of dimeric and tetrameric spectrin, so far studied by us. Further studies are needed to characterize the hydrophobic binding sites in both forms of spectrin.
Collapse
Affiliation(s)
- Malay Patra
- a Chemistry Department , University of Calcutta , Kolkata , 700009 , India
| | | | | | | |
Collapse
|
10
|
Non-erythroid beta spectrin interacting proteins and their effects on spectrin tetramerization. Cell Mol Biol Lett 2011; 16:595-609. [PMID: 21866423 PMCID: PMC3675649 DOI: 10.2478/s11658-011-0025-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/18/2011] [Indexed: 11/20/2022] Open
Abstract
With yeast two-hybrid methods, we used a C-terminal fragment (residues 1697–2145) of non-erythroid beta spectrin (βII-C), including the region involved in the association with alpha spectrin to form tetramers, as the bait to screen a human brain cDNA library to identify proteins interacting with βII-C. We applied stringent selection steps to eliminate false positives and identified 17 proteins that interacted with βII-C (IPβII-C s). The proteins include a fragment (residues 38–284) of “THAP domain containing, apoptosis associated protein 3, isoform CRA g”, “glioma tumor suppressor candidate region gene 2” (residues 1-478), a fragment (residues 74–442) of septin 8 isoform c, a fragment (residues 704–953) of “coatomer protein complex, subunit beta 1, a fragment (residues 146–614) of zinc-finger protein 251, and a fragment (residues 284–435) of syntaxin binding protein 1. We used yeast three-hybrid system to determine the effects of these βII-C interacting proteins as well as of 7 proteins previously identified to interact with the tetramerization region of non-erythroid alpha spectrin (IPαII-N s) [1] on spectrin tetramer formation. The results showed that 3 IPβII-C s were able to bind βII-C even in the presence of αII-N, and 4 IPαII-N s were able to bind αII-N in the presence of βII-C. We also found that the syntaxin binding protein 1 fragment abolished αII-N and βII-C interaction, suggesting that this protein may inhibit or regulate non-erythroid spectrin tetramer formation.
Collapse
|
11
|
Song Y, Antoniou C, Memic A, Kay BK, Fung LWM. Apparent structural differences at the tetramerization region of erythroid and nonerythroid beta spectrin as discriminated by phage displayed scFvs. Protein Sci 2011; 20:867-79. [PMID: 21412925 DOI: 10.1002/pro.617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/25/2011] [Accepted: 02/28/2011] [Indexed: 01/26/2023]
Abstract
We have screened a human immunoglobulin single-chain variable fragment (scFv) phage library against the C-terminal tetramerization regions of erythroid and nonerythroid beta spectrin (βI-C1 and βII-C1, respectively) to explore the structural uniqueness of erythroid and nonerythroid β-spectrin isoforms. We have identified interacting scFvs, with clones "G5" and "A2" binding only to βI-C1, and clone "F11" binding only to βII-C1. The K(d) values, estimated by competitive enzyme-linked immunosorbent assay, of these scFvs with their target spectrin proteins were 0.1-0.3 μM. A more quantitative K(d) value from isothermal titration calorimetry experiments with the recombinant G5 and βI-C1 was 0.15 μM. The α-spectrin fragments (model proteins), αI-N1 and αII-N1, competed with the βI-C1, or βII-C1, binding scFvs, with inhibitory concentration (IC(50) ) values of ∼50 μM for αI-N1, and ∼0.5 μM for αII-N1. Our predicted structures of βI-C1 and βII-C1 suggest that the Helix B' of the C-terminal partial domain of βI differs from that of βII. Consequently, an unstructured region downstream of Helix B' in βI may interact specifically with the unstructured, complementarity determining region H1 of G5 or A2 scFv. The corresponding region in βII was helical, and βII did not bind G5 scFv. Our results suggest that it is possible for cellular proteins to differentially associate with the C-termini of different β-spectrin isoforms to regulate α- and β-spectrin association to form functional spectrin tetramers, and may sort β-spectrin isoforms to their specific cellular localizations.
Collapse
Affiliation(s)
- Yuanli Song
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | | | | | |
Collapse
|
12
|
Mehboob S, Song Y, Witek M, Long F, Santarsiero BD, Johnson ME, Fung LWM. Crystal structure of the nonerythroid alpha-spectrin tetramerization site reveals differences between erythroid and nonerythroid spectrin tetramer formation. J Biol Chem 2010; 285:14572-84. [PMID: 20228407 DOI: 10.1074/jbc.m109.080028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have solved the crystal structure of a segment of nonerythroid alpha-spectrin (alphaII) consisting of the first 147 residues to a resolution of 2.3 A. We find that the structure of this segment is generally similar to a corresponding segment from erythroid alpha-spectrin (alphaI) but exhibits unique differences with functional significance. Specific features include the following: (i) an irregular and frayed first helix (Helix C'); (ii) a helical conformation in the junction region connecting Helix C' with the first structural domain (D1); (iii) a long A(1)B(1) loop in D1; and (iv) specific inter-helix hydrogen bonds/salt bridges that stabilize D1. Our findings suggest that the hydrogen bond networks contribute to structural domain stability, and thus rigidity, in alphaII, and the lack of such hydrogen bond networks in alphaI leads to flexibility in alphaI. We have previously shown the junction region connecting Helix C' to D1 to be unstructured in alphaI (Park, S., Caffrey, M. S., Johnson, M. E., and Fung, L. W. (2003) J. Biol. Chem. 278, 21837-21844) and now find it to be helical in alphaII, an important difference for alpha-spectrin association with beta-spectrin in forming tetramers. Homology modeling and molecular dynamics simulation studies of the structure of the tetramerization site, a triple helical bundle of partial domain helices, show that mutations in alpha-spectrin will affect Helix C' structural flexibility and/or the junction region conformation and may alter the equilibrium between spectrin dimers and tetramers in cells. Mutations leading to reduced levels of functional tetramers in cells may potentially lead to abnormal neuronal functions.
Collapse
Affiliation(s)
- Shahila Mehboob
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois 60607, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Important residue (G46) in erythroid spectrin tetramer formation. Cell Mol Biol Lett 2009; 15:46-54. [PMID: 19756397 PMCID: PMC3166252 DOI: 10.2478/s11658-009-0031-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 08/21/2009] [Indexed: 12/02/2022] Open
Abstract
Spectrin tetramerization is important for the erythrocyte to maintain its unique shape, elasticity and deformability. We used recombinant model proteins to show the importance of one residue (G46) in the erythroid α-spectrin junction region that affects spectrin tetramer formation. The G46 residue in the erythroid spectrin N-terminal junction region is the only residue that differs from that in non-erythroid spectrin. The corresponding residue is R37. We believe that this difference may be, at least in part, responsible for the 15-fold difference in the equilibrium constants of erythroid and non-erythroid tetramer formation. In this study, we replaced the Gly residue with Ala, Arg or Glu residues in an erythroid α-spectrin model protein to give G46A, G46R or G46E, respectively. We found that their association affinities with a β-spectrin model protein were quite different from each other. G46R exhibited a 10-fold increase and G46E exhibited a 16-fold decrease, whereas G46A showed little difference, when compared with the wild type. The thermal and urea denaturation experiments showed insignificant structural change in G46R. Thus, the differences in affinity were due to differences in local, specific interactions, rather than conformational differences in these variants. An intra-helical salt bridge in G46R may stabilize the partial domain single helix in α-spectrin, Helix C’, to allow a more stable helical bundling in the αβ complex in spectrin tetramers. These results not only showed the importance of residue G46 in erythroid α-spectrin, but also provided insights toward the differences in association affinity between erythroid and non-erythroid spectrin to form spectrin tetramers.
Collapse
|
14
|
Long F, McElheny D, Jiang S, Park S, Caffrey MS, Fung LWM. Conformational change of erythroid alpha-spectrin at the tetramerization site upon binding beta-spectrin. Protein Sci 2007; 16:2519-30. [PMID: 17905835 PMCID: PMC2211704 DOI: 10.1110/ps.073115307] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We previously determined the solution structures of the first 156 residues of human erythroid alpha-spectrin (SpalphaI-1-156, or simply Spalpha). Spalpha consists of the tetramerization site of alpha-spectrin and associates with a model beta-spectrin protein (Spbeta) with an affinity similar to that of native alpha- and beta-spectrin. Upon alphabeta-complex formation, our previous results indicate that there is an increase in helicity in the complex, suggesting conformational change in either Spalpha or Spbeta or in both. We have now used isothermal titration calorimetry, circular dichroism, static and dynamic light scattering, and solution NMR methods to investigate properties of the complex as well as the conformation of Spalpha in the complex. The results reveal a highly asymmetric complex, with a Perrin shape parameter of 1.23, which could correspond to a prolate ellipsoid with a major axis of about five and a minor axis of about one. We identified 12 residues, five prior to and seven following the partial domain helix in Spalpha that moved freely relative to the structural domain in the absence of Spbeta but when in the complex moved with a mobility similar to that of the structural domain. Thus, it appears that the association with Spbeta induced an unstructured-to-helical conformational transition in these residues to produce a rigid and asymmetric complex. Our findings may provide insight toward understanding different association affinities of alphabeta-spectrin at the tetramerization site for erythroid and non-erythroid spectrin and a possible mechanism to understand some of the clinical mutations, such as L49F of alpha-spectrin, which occur outside the functional partial domain region.
Collapse
Affiliation(s)
- Fei Long
- Department of Chemistry, University of Illinois at Chicago 60607, USA
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Spectrin is the major constituent protein of the erythrocyte cytoskeleton which forms a filamentous network on the cytoplasmic face of the membrane by providing a scaffold for a variety of proteins. In this review, several aspects of spectrin organization are highlighted, particularly with respect to its ability to bind hydrophobic ligands and its interaction with membrane surfaces. The characteristic binding of the fluorescent hydrophobic probes Prodan and pyrene to spectrin, which allows an estimation of the polarity of the hydrophobic probe binding site, is illustrated. In addition, the contribution of uniquely localized and conserved tryptophan residues in the 'spectrin repeats' in these processes is discussed. A functional implication of the presence of hydrophobic binding sites in spectrin is its recently discovered chaperone-like activity. Interestingly, spectrin exhibits residual structural integrity even after denaturation which could be considered as a hallmark of cytoskeletal proteins. Future research could provide useful information about the possible role played by spectrin in cellular physiology in healthy and diseased states.
Collapse
Affiliation(s)
- Abhijit Chakrabarti
- Biophysics Division, Saha Institute of Nuclear Physics, Kolkata 700 064, India.
| | | | | |
Collapse
|
16
|
Bhattacharya M, Mukhopadhyay C, Chakrabarti A. Specificity of Prodan for the Self-associating Domain of Spectrin: A Molecular Docking Study. J Biomol Struct Dyn 2006; 24:269-76. [PMID: 17054385 DOI: 10.1080/07391102.2006.10507119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The hydrophobic fluorescent probe Prodan binds to the self-associating domain of spectrin with 1:1 stoichiometry. A model of the self-associating domain was generated based on its homology with other domains of spectrin. Prodan was then docked onto the model, and several sites with low interaction energy were identified. To verify whether the binding of Prodan is specific towards the self-associating domain of spectrin, it was docked on to several other domains of spectrin, having a known three-dimensional structure. Analysis of the docking results suggests that the binding of Prodan to the self-associating domain of spectrin will involve hydrophobic and hydrophilic groups of Prodan. The results clearly indicate the preference of Prodan for a particular binding site of the self-associating domain.
Collapse
Affiliation(s)
- Malyasri Bhattacharya
- Biophysics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 India
| | | | | |
Collapse
|
17
|
Bignone PA, Baines AJ. Spectrin alpha II and beta II isoforms interact with high affinity at the tetramerization site. Biochem J 2003; 374:613-24. [PMID: 12820899 PMCID: PMC1223645 DOI: 10.1042/bj20030507] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2003] [Revised: 06/23/2003] [Accepted: 06/23/2003] [Indexed: 11/17/2022]
Abstract
Spectrin tetramers form by the interaction of two alpha-beta dimers through two helices close to the C-terminus of a beta subunit and a single helix at the N-terminus of an alpha subunit. Early work on spectrin from solid tissues (typified by alphaII and betaII polypeptides) indicated that it forms a more stable tetramer than erythroid spectrin (alphaI-betaI). In the present study, we have probed the molecular basis of this phenomenon. We have quantified the interactions of N-terminal regions of two human alpha polypeptides (alphaI and alphaII) with the C-terminal regions of three beta isoforms (betaISigma1, betaIISigma1 and betaIISigma2). alphaII binds either betaII form with a much higher affinity than alphaI binds betaISigma1 ( K (d) values of 5-9 nM and 840 nM respectively at 25 degrees C). betaIISigma1 and betaIISigma2 are splice variants with different C-terminal extensions outside the tetramerization site: these extensions affect the rate rather than the affinity of alpha subunit interaction. alphaII spectrin interacts with each beta subunit with higher affinity than alphaI, and the betaII polypeptides have higher affinities for both alpha chains than betaISigma1. The first full repeat of the alpha subunit has a major role in determining affinity. Enthalpy changes in the alphaII-betaIISigma2 interaction are large, but the entropy change is comparatively small. The interaction is substantially reduced, but not eliminated, by concentrated salt solutions. The high affinity and slow overall kinetics of association and dissociation of alphaII-betaII spectrin may suit it well to a role in strengthening cell junctions and providing stable anchor points for transmembrane proteins at points specified by cell-adhesion molecules.
Collapse
Affiliation(s)
- Paola A Bignone
- Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | | |
Collapse
|
18
|
Park S, Caffrey MS, Johnson ME, Fung LWM. Solution structural studies on human erythrocyte alpha-spectrin tetramerization site. J Biol Chem 2003; 278:21837-44. [PMID: 12672815 DOI: 10.1074/jbc.m300617200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have determined the solution NMR structure of a recombinant peptide that consists of the first 156 residues of erythroid alpha-spectrin. The first 20 residues preceding the first helix (helix C') are in a disordered conformation. The subsequent three helices (helices A1, B1, and C1) form a triple helical bundle structural domain that is similar, but not identical, to previously published structures for spectrin from Drosophila and chicken brain. Paramagnetic spin label-induced NMR resonance broadening shows that helix C', the partial domain involved in alpha- and beta-spectrin association, exhibits little interaction with the structural domain. Surprisingly, helix C' is connected to helix A1 of the structural domain by a segment of 7 residues (the junction region) that exhibits a flexible disordered conformation, in contrast to the predicted rigid helical structure. We suggest that the flexibility of this particular junction region may play an important role in modulating the association affinity of alpha- and beta-spectrin at the tetramerization site of different isoforms, such as erythroid spectrin and brain spectrin. These findings may provide insight for explaining various physiological and pathological conditions that are a consequence of varying alpha- and beta-subunit self-association affinities in their formation of the various spectrin tetramers.
Collapse
Affiliation(s)
- Sunghyouk Park
- Center for Pharmaceutical Biotechnology, University of Illinois, 900 S. Ashland, Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
19
|
Luo BH, Mehboob S, Hurtuk MG, Pipalia NH, Fung LWM. Important region in the beta-spectrin C-terminus for spectrin tetramer formation. Eur J Haematol 2002; 68:73-9. [PMID: 12038451 DOI: 10.1034/j.1600-0609.2002.01569.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Many hereditary hemolytic anemias are due to spectrin mutations at the C-terminal region of beta-spectrin (the betaC region) that destabilize spectrin tetramer formation. However, little is known about the betaC region of spectrin. We have prepared four recombinant beta-peptides of different lengths from human erythrocyte spectrin, all starting at position 1898 of the C-terminal region, but terminating at position 2070, 2071, 2072 or 2073. Native polyacrylamide gel electrophoresis showed that the two peptides terminating at positions 2070 and 2071 did not associate with an N-terminal region alpha-peptide (Spalpha1-156) in the micromolar range. However, the peptides that terminated at positions 2072 and 2073 associated with the alpha-peptide. Circular dichroism results showed that the unassociated helices in both alpha- and beta-peptides became associated, presumably to form a helical bundle, for those beta-peptides that formed an alphabeta complex, but not for those beta-peptides that did not form an alphabeta complex. In addition, upon association, an increase in the alpha-helical content was observed. These results showed that the beta-peptides ending prior to residue 2072 (Thr) would not associate with alpha-peptide, and that no helical bundling of the partial domains was observed. Thus, we suggest that the C-terminal segment of beta-spectrin, starting from residue 2073 (Thr), is not critical to spectrin tetramer formation. However, the C-terminal region ending with residue 2072 is important for its association with alpha-spectrin in forming tetramers.
Collapse
Affiliation(s)
- Bing-Hao Luo
- Department of Chemistry, Loyola University of Chicago, IL 60626, USA
| | | | | | | | | |
Collapse
|
20
|
Cherry L, Fung LW, Menhart N. Flexibility of the alpha-spectrin N-terminus by EPR and fluorescence polarization. Biophys J 2000; 79:526-35. [PMID: 10866978 PMCID: PMC1300956 DOI: 10.1016/s0006-3495(00)76314-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structure and flexibility of the biologically important alpha-spectrin amino terminal region was examined by the use of fluorescence and EPR spectroscopy. The region studied has been previously demonstrated to be essential for the alpha-spectrin:beta-spectrin association of the tetramerization site. Appropriate spectroscopic probe moieties were coupled to this region in a recombinant fragment of human erythroid alpha-spectrin. There was good agreement between the EPR and fluorescence techniques in most of this region. Mobility determinations indicated that a portion of the region was relatively immobilized. This is significant, since although predictive methods have indicated that this region should be alpha-helical, previous experimental evidence obtained on smaller synthetic peptides had indicated that this region was disordered. Observed rigidity appears to be incompatible with such a disordered state, and has important ramifications for the flexibility of this molecule that is so integral to its role in stabilizing erythrocyte membranes.
Collapse
Affiliation(s)
- L Cherry
- Department of Chemistry, Loyola University of Chicago, Chicago, Illinois 60626, USA
| | | | | |
Collapse
|
21
|
Begg GE, Harper SL, Morris MB, Speicher DW. Initiation of spectrin dimerization involves complementary electrostatic interactions between paired triple-helical bundles. J Biol Chem 2000; 275:3279-87. [PMID: 10652315 DOI: 10.1074/jbc.275.5.3279] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The spectrin heterodimer is formed by the antiparallel lateral association of an alpha and a beta subunit, each of which comprises largely a series of homologous triple-helical motifs. Initiation of dimer assembly involves strong binding between complementary motifs near the actin-binding end of the dimer. In this study, the mechanism of lateral spectrin association at this dimer nucleation site was investigated using the analytical ultracentrifuge to analyze heterodimers formed from recombinant peptides containing two or four homologous motifs from each subunit (alpha20-21/beta1-2; alpha18-21/beta1-4). Both the two-motif and four-motif dimer associations were weakened substantially with increasing salt concentration, indicating that electrostatic interactions are important for the dimer initiation process. Modeling of the electrostatic potential on the surface of the alpha20 and beta2 motifs showed that the side of the motifs comprising the A and B helices is the most favorable for association, with an area of positive electrostatic potential on the AB face of the beta2 motif opposite negative potential on the AB face of the alpha20 motif and vise versa. Protease protection analysis of the alpha20-21/beta1-2 dimer showed that multiple trypsin and proteinase K sites in the A helices of the beta2 and alpha21 motifs become buried upon dimer formation. Together, these data support a model where complementary long range electrostatic interactions on the AB faces of the triple-helical motifs in the dimer nucleation site initiate the correct pairing of motifs, i.e. alpha21-beta1 and alpha20-beta2. After initial docking of these complementary triple-helical motifs, this association is probably stabilized by subsequent formation of stronger hydrophobic interactions in a complex involving the A helices of both subunits and possibly most of the AB faces. The beta subunit A helix in particular appears to be buried in the dimer interface.
Collapse
Affiliation(s)
- G E Begg
- Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
22
|
Cherry L, Menhart N, Fung LW. Interactions of the alpha-spectrin N-terminal region with beta-spectrin. Implications for the spectrin tetramerization reaction. J Biol Chem 1999; 274:2077-84. [PMID: 9890967 DOI: 10.1074/jbc.274.4.2077] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spectrin of the erythrocyte membrane skeleton is composed of alpha- and beta-spectrin, which associate to form heterodimers and tetramers. It has been suggested that a fractional domain (helix C) in the amino-terminal region of alpha-spectrin (Nalpha region) bundles with another fractional domain in the carboxyl-terminal region of beta-spectrin (Cbeta region) to yield a triple alpha-helical bundle and that this helical bundling is largely responsible for tetramer formation. However, there are certain objections to assigning a preeminent role to this helical bundling in the tetramerization reactions. We prepared several recombinant peptides of alpha-spectrin fragments spanning only the Nalpha region (lacking the dimer nucleation site) and quantitatively studied their interaction with beta-spectrin. We found that a majority of the interactions were localized, as expected, in the Nalpha-helix C region but that there was also some contribution from the nonhomologous region. More importantly, the temperature and ionic strength dependence of this interaction in our model peptides was different from that in intact spectrin. We suggest that, although the regions involving the putative helical bundling in alpha- and beta-spectrin undoubtedly play a significant role in tetramerization, regions distal to the Nalpha-helix C region in spectrin are also involved in tetramer formation. Structural flexibility and lateral interactions may play a role in spectrin tetramerization.
Collapse
Affiliation(s)
- L Cherry
- Department of Chemistry, Loyola University of Chicago, Chicago, Illinois 60626, USA
| | | | | |
Collapse
|