1
|
pH-responsive titratable inotropic performance of histidine-modified cardiac troponin I. Biophys J 2012; 102:1570-9. [PMID: 22500757 DOI: 10.1016/j.bpj.2012.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 01/11/2012] [Accepted: 01/17/2012] [Indexed: 11/22/2022] Open
Abstract
Cardiac troponin I (cTnI) functions as the molecular switch of the thin filament. Studies have shown that a histidine button engineered into cTnI (cTnI A164H) specifically enhances inotropic function in the context of numerous pathophysiological challenges. To gain mechanistic insight into the basis of this finding, we analyzed histidine ionization states in vitro by studying the myofilament biophysics of amino acid substitutions that act as constitutive chemical mimetics of altered histidine ionization. We also assessed the role of histidine-modified cTnI in silico by means of molecular dynamics simulations. A functional in vitro analysis of myocytes at baseline (pH 7.4) indicated similar cellular contractile function and myofilament calcium sensitivity between myocytes expressing wild-type (WT) cTnI and cTnI A164H, whereas the A164R variant showed increased myofilament calcium sensitivity. Under acidic conditions, compared with WT myocytes, the myocytes expressing cTnI A164H maintained a contractile performance similar to that observed for the constitutively protonated cTnI A164R variant. Molecular dynamics simulations showed similar intermolecular atomic contacts between the WT and the deprotonated cTnI A164H variant. In contrast, simulations of protonated cTnI A164H showed various potential structural configurations, one of which included a salt bridge between His-164 of cTnI and Glu-19 of cTnC. This salt bridge was recapitulated in simulations of the cTnI A164R variant. These data suggest that differential histidine ionization may be necessary for cTnI A164H to act as a molecular sensor capable of modulating sarcomere performance in response to changes in the cytosolic milieu.
Collapse
|
2
|
Patel DA, Root DD. Close proximity of myosin loop 3 to troponin determined by triangulation of resonance energy transfer distance measurements. Biochemistry 2009; 48:357-69. [PMID: 19108638 DOI: 10.1021/bi801554m] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cooperative activation of the thin filament is known to be influenced by the tight binding of myosin to actin, but the molecular mechanism underlying this contribution of myosin is not well understood. To better understand the structural relationship of myosin with the regulatory troponin complex, resonance energy transfer measurements were used to map the location of troponin relative to a neighboring myosin bound to actin using atomic models. Using a chicken troponin T isoform that contains a single cysteine near the binding interface between troponins T, I, and C, this uniquely labeled cysteine on troponin was found to be remarkably near loop 3 of myosin. This loop has previously been localized near the actin and myosin interface by chemical cross-linking methods, but its functional contributions have not been established. The implications of this close proximity are examined by molecular modeling, which suggests that only restricted conformations of actomyosin can accommodate the presence of troponin at this location near the cross-bridge. This potential for interaction between troponin and myosin heads that bind near it along the thin filament raises the possibility of models in which direct myosin and troponin interactions may play a role in the regulatory mechanism.
Collapse
Affiliation(s)
- Dipesh A Patel
- University of North Texas, P.O. Box 305220, Denton, Texas 76203-5220, USA
| | | |
Collapse
|
3
|
Differential effects of a green tea-derived polyphenol (-)-epigallocatechin-3-gallate on the acidosis-induced decrease in the Ca(2+) sensitivity of cardiac and skeletal muscle. Pflugers Arch 2008; 456:787-800. [PMID: 18231806 DOI: 10.1007/s00424-008-0456-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 01/12/2008] [Accepted: 01/14/2008] [Indexed: 10/22/2022]
Abstract
(-)-Epigallocatechin-3-gallate (EGCg), a green tea-derived polyphenol, has received much attention as a protective agent against cardiovascular diseases. In this study, we determined its effects on the acidosis-induced change in the Ca(2+) sensitivity of myofilaments in myofibrils prepared from porcine ventricular myocardium and chicken pectoral muscle. EGCg (0.1 mM) significantly inhibited the decrease caused by lowering the pH from 7.0 to 6.0 in the Ca(2+) sensitivity of myofibrillar ATPase activity in cardiac muscle, but not in skeletal muscle. Studies on recombinant mouse cardiac troponin C (cTnC) and chicken fast skeletal troponin C (sTnC) using circular dichroism and intrinsic and extrinsic fluorescence spectroscopy showed that EGCg bound to cTnC with a dissociation constant of approximately 3-4 muM, but did not bind to sTnC. By presumably binding to the cTnC C-lobe, EGCg decreased Ca(2+) binding to cTnC and overcame the depressant effect of protons on the Ca(2+) sensitivity of the cardiac contractile response. To demonstrate isoform-specific effects of the action of EGCg, the pH sensitivity of the Ca(2+) response was examined in cardiac myofibrils in which endogenous cTnC was replaced with exogenous sTnC or cTnC and in skeletal myofibrils in which the endogenous sTn complex was replaced with whole cardiac Tn complex (cTn). The results suggest that the binding of EGCg to the cardiac isoform-specific TnC or Tn complex alters the effect of pH on myofilament Ca(2+) sensitivity in striated muscle.
Collapse
|
4
|
Westfall MV, Metzger JM. Single amino acid substitutions define isoform-specific effects of troponin I on myofilament Ca2+ and pH sensitivity. J Mol Cell Cardiol 2007; 43:107-18. [PMID: 17602701 PMCID: PMC2043486 DOI: 10.1016/j.yjmcc.2007.05.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 04/23/2007] [Accepted: 05/15/2007] [Indexed: 11/25/2022]
Abstract
Troponin I isoforms play a key role in determining myofilament Ca2+ sensitivity in cardiac muscle. The goal here was to identify domain clusters and residues that confer troponin I isoform-specific myofilament Ca2+ and pH sensitivities of contraction. Key domains/residues that contribute to troponin I isoform-specific Ca2+ and pH sensitivity were studied using gene transfer of a slow skeletal troponin I (ssTnI) template, with targeted cardiac troponin I (cTnI) residue substitutions. Substitutions in ssTnI with cognate cTnI residues R125Q, H132A, and V134E, studied both independently and together (ssTnIQAE), resulted in efficient stoichiometric replacement of endogenous myofilament cTnI in adult cardiac myocytes. In permeabilized myocytes, the pCa50 of tension ([Ca2+] required for half maximal force), and the acidosis-induced rightward shift of pCa50 were converted to the cTnI phenotype in myocytes expressing ssTnIQAE or ssTnIH132A, and there was no functionally additive effect of ssTnIQAE versus ssTnIH132A. Interestingly, only the acidosis-induced shift in Ca2+ sensitivity was comparable to cTnI in myocytes expressing ssTnIV134E, while ssTnIR125Q fully retained the ssTnI phenotype. An additional ssTnIN141H substitution, which lies within the same structural region of TnI as V134, produced a shift in myofilament Ca2+ sensitivity comparable to cTnI at physiological pH, while the acidic pH response was similar to the effect of wild-type ssTnI. Analysis of sarcomere shortening in intact adult cardiac myocytes was consistent with the force measurements. Targeted substitutions in the carboxyl portion of TnI produced residue-specific influences on myofilament Ca2+ and pH sensitivity of force and give new molecular insights into the TnI isoform dependence of myofilament function.
Collapse
Affiliation(s)
- Margaret V Westfall
- Department of Surgery, Cardiac Surgery Section, University of Michigan, 1150 W. Medical Center Drive, B560 MSRB II, Ann Arbor, MI 48109-0686, USA.
| | | |
Collapse
|
5
|
Vinogradova MV, Stone DB, Malanina GG, Mendelson RA, Fletterick RJ. Ca ion and the troponin switch. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 592:47-57. [PMID: 17278355 DOI: 10.1007/978-4-431-38453-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
|
6
|
Yu ZB, Jin JP. Removing the regulatory N-terminal domain of cardiac troponin I diminishes incompatibility during bacterial expression. Arch Biochem Biophys 2007; 461:138-45. [PMID: 17303066 PMCID: PMC1991298 DOI: 10.1016/j.abb.2007.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 01/07/2007] [Accepted: 01/09/2007] [Indexed: 11/22/2022]
Abstract
Troponin I (TnI) is a muscle-specific protein and plays an allosteric function in the Ca(2+) regulation of cardiac and skeletal muscle contraction. Expression of cloned cDNA in Escherichia coli is an essential approach to preparing human TnI and mutants for structural and functional studies. The expression level of cardiac TnI in E. coli is very low. To reduce the potential toxicity of cardiac TnI to the host cell, we constructed a bi-cistronic expression vector to co-express cardiac TnI and cardiac/slow troponin C (TnC), a natural binding partner of TnI and a protein that readily expresses in E. coli at high levels. The co-expression moderately increased the expression of cardiac TnI although a high amount of TnC protein was produced from the bi-cistronic mRNA. The use of an E. coli strain containing additional tRNAs for certain low bacterial usage eukaryotic codons improved the expression of cardiac TnI. Modifications of two 5'-regional codons that have predicted low usages in bacterial cells did not reproduce the improvement, indicating that not the 5' but the overall codon usage restricts the translational efficiency of cardiac TnI mRNA in E. coli. However, deletion of the cardiac TnI-specific N-terminal 28 amino acids significantly improved the protein expression independent of the host cell tRNA modifications. The results suggest that the regulatory N-terminal domain of cardiac TnI is a dominant factor for the incompatibility in bacterial cells, supporting its role in modulating the overall molecular conformation.
Collapse
Affiliation(s)
| | - J-P Jin
- * To whom correspondence should be addressed. Tel: (847)570-1960. Fax: (847)570-1865. E-mail:
| |
Collapse
|
7
|
Santamaria-Kisiel L, Rintala-Dempsey A, Shaw G. Calcium-dependent and -independent interactions of the S100 protein family. Biochem J 2006; 396:201-14. [PMID: 16683912 PMCID: PMC1462724 DOI: 10.1042/bj20060195] [Citation(s) in RCA: 460] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 03/24/2006] [Accepted: 03/27/2006] [Indexed: 12/12/2022]
Abstract
The S100 proteins comprise at least 25 members, forming the largest group of EF-hand signalling proteins in humans. Although the proteins are expressed in many tissues, each S100 protein has generally been shown to have a preference for expression in one particular tissue or cell type. Three-dimensional structures of several S100 family members have shown that the proteins assume a dimeric structure consisting of two EF-hand motifs per monomer. Calcium binding to these S100 proteins, with the exception of S100A10, results in an approx. 40 degrees alteration in the position of helix III, exposing a broad hydrophobic surface that enables the S100 proteins to interact with a variety of target proteins. More than 90 potential target proteins have been documented for the S100 proteins, including the cytoskeletal proteins tubulin, glial fibrillary acidic protein and F-actin, which have been identified mostly from in vitro experiments. In the last 5 years, efforts have concentrated on quantifying the protein interactions of the S100 proteins, identifying in vivo protein partners and understanding the molecular specificity for target protein interactions. Furthermore, the S100 proteins are the only EF-hand proteins that are known to form both homo- and hetero-dimers, and efforts are underway to determine the stabilities of these complexes and structural rationales for their formation and potential differences in their biological roles. This review highlights both the calcium-dependent and -independent interactions of the S100 proteins, with a focus on the structures of the complexes, differences and similarities in the strengths of the interactions, and preferences for homo- compared with hetero-dimeric S100 protein assembly.
Collapse
Affiliation(s)
| | - Anne C. Rintala-Dempsey
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Gary S. Shaw
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| |
Collapse
|
8
|
Braga CACA, Pinto JR, Valente AP, Silva JL, Sorenson MM, Foguel D, Suarez MC. Ca(2+) and Mg(2+) binding to weak sites of TnC C-domain induces exposure of a large hydrophobic surface that leads to loss of TnC from the thin filament. Int J Biochem Cell Biol 2005; 38:110-22. [PMID: 16183325 DOI: 10.1016/j.biocel.2005.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 07/29/2005] [Accepted: 08/18/2005] [Indexed: 10/25/2022]
Abstract
The C-domain of troponin C, the Ca(2+)-binding subunit of the troponin complex, has two high-affinity sites for Ca(2+) that also bind Mg(2+) (Ca(2+)/Mg(2+) sites), whereas the N-domain has two low-affinity sites for Ca(2+). Two more sites that bind Mg(2+) with very low affinity (K(a)<10(3)M(-1)) have been detected by several laboratories but have not been localized or studied in any detail. Here we investigated the effects of Ca(2+) and Mg(2+) binding to isolated C-domain, focusing primarily on low-affinity sites. Since TnC has no Trp residues, we utilized a mutant with Phe 154 replaced by Trp (F154W/C-domain). As expected from previous reports, the changes in Trp fluorescence revealed different conformations induced by the addition of Ca(2+) or Mg(2+) (Ca(2+)/Mg(2+) sites). Exposure of hydrophobic surfaces of F154W/C-domain was monitored using the fluorescence intensity of bis-anilino naphthalene sulfonic acid. Unlike the changes reported by Trp, the increments in bis-ANS fluorescence were much greater (4.2-fold) when Ca(2+)+Mg(2+) were both present or when Ca(2+) was present at high concentration. Bis-ANS fluorescence increased as a function of [Ca(2+)] in two well-defined steps: one at low [Ca(2+)], consistent with the Ca(2+)/Mg(2+) sites (K(a) approximately 1.5 x 10(6)M(-1)), and one of much lower affinity (K(a) approximately 52.3M(-1)). Controls were performed to rule out artifacts due to aggregation, high ionic strength and formation of the bis-ANS-TnC complex itself. With a low concentration of Ca(2+) (0.6mM) to occupy the Ca(2+)/Mg(2+) sites, a large increase in bis-ANS binding also occurred as Mg(2+) occupied a class of low-affinity sites (K(a) approximately 59 M(-1)). In skinned fibers, a high concentration of Mg(2+) (10-44 mM) caused TnC to dissociate from the thin filament. These data provide new evidence for a class of weak binding sites for divalent cations. They are located in the C-domain, lead to exposure of a large hydrophobic surface, and destabilize the binding of TnC to the regulatory complex even when sites III and IV are occupied.
Collapse
Affiliation(s)
- Carolina A C A Braga
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Av Bauhinia 400 CCS bloco E sala 42, 21941-590 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
9
|
Vinogradova MV, Stone DB, Malanina GG, Karatzaferi C, Cooke R, Mendelson RA, Fletterick RJ. Ca(2+)-regulated structural changes in troponin. Proc Natl Acad Sci U S A 2005; 102:5038-43. [PMID: 15784741 PMCID: PMC555973 DOI: 10.1073/pnas.0408882102] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Indexed: 11/18/2022] Open
Abstract
Troponin senses Ca2+ to regulate contraction in striated muscle. Structures of skeletal muscle troponin composed of TnC (the sensor), TnI (the regulator), and TnT (the link to the muscle thin filament) have been determined. The structure of troponin in the Ca(2+)-activated state features a nearly twofold symmetrical assembly of TnI and TnT subunits penetrated asymmetrically by the dumbbell-shaped TnC subunit. Ca ions are thought to regulate contraction by controlling the presentation to and withdrawal of the TnI inhibitory segment from the thin filament. Here, we show that the rigid central helix of the sensor binds the inhibitory segment of TnI in the Ca(2+)-activated state. Comparison of crystal structures of troponin in the Ca(2+)-activated state at 3.0 angstroms resolution and in the Ca(2+)-free state at 7.0 angstroms resolution shows that the long framework helices of TnI and TnT, presumed to be a Ca(2+)-independent structural domain of troponin are unchanged. Loss of Ca ions causes the rigid central helix of the sensor to collapse and to release the inhibitory segment of TnI. The inhibitory segment of TnI changes conformation from an extended loop in the presence of Ca2+ to a short alpha-helix in its absence. We also show that Anapoe, a detergent molecule, increases the contractile force of muscle fibers and binds specifically, together with the TnI switch helix, in a hydrophobic pocket of TnC upon activation by Ca ions.
Collapse
Affiliation(s)
- Maia V Vinogradova
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143-2240, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Tiroli AO, Tasic L, Oliveira CLP, Bloch C, Torriani I, Farah CS, Ramos CHI. Mapping contacts between regulatory domains of skeletal muscle TnC and TnI by analyses of single-chain chimeras. FEBS J 2005; 272:779-90. [PMID: 15670158 DOI: 10.1111/j.1742-4658.2004.04515.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The troponin (Tn) complex is formed by TnC, TnI and TnT and is responsible for the calcium-dependent inhibition of muscle contraction. TnC and TnI interact in an antiparallel fashion in which the N domain of TnC binds in a calcium-dependent manner to the C domain of TnI, releasing the inhibitory effect of the latter on the actomyosin interaction. While the crystal structure of the core cardiac muscle troponin complex has been determined, very little high resolution information is available regarding the skeletal muscle TnI-TnC complex. With the aim of obtaining structural information regarding specific contacts between skeletal muscle TnC and TnI regulatory domains, we have constructed two recombinant chimeric proteins composed of the residues 1-91 of TnC linked to residues 98-182 or 98-147 of TnI. The polypeptides were capable of binding to the thin filament in a calcium-dependent manner and to regulate the ATPase reaction of actomyosin. Small angle X-ray scattering results showed that these chimeras fold into compact structures in which the inhibitory plus the C domain of TnI, with the exception of residues 148-182, were in close contact with the N-terminal domain of TnC. CD and fluorescence analysis were consistent with the view that the last residues of TnI (148-182) are not well folded in the complex. MS analysis of fragments produced by limited trypsinolysis showed that the whole TnC N domain was resistant to proteolysis, both in the presence and in the absence of calcium. On the other hand the TnI inhibitory and C-terminal domains were completely digested by trypsin in the absence of calcium while the addition of calcium results in the protection of only residues 114-137.
Collapse
Affiliation(s)
- Ana O Tiroli
- Centro de Biologia Molecular Estrutural, Laboratório Nacional de Luz Síncrotron, Brazil
| | | | | | | | | | | | | |
Collapse
|
11
|
King WA, Stone DB, Timmins PA, Narayanan T, von Brasch AAM, Mendelson RA, Curmi PMG. Solution Structure of the Chicken Skeletal Muscle Troponin Complex Via Small-angle Neutron and X-ray Scattering. J Mol Biol 2005; 345:797-815. [PMID: 15588827 DOI: 10.1016/j.jmb.2004.10.090] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 10/29/2004] [Accepted: 10/29/2004] [Indexed: 10/26/2022]
Abstract
Troponin is a Ca2+-sensitive switch that regulates the contraction of vertebrate striated muscle by participating in a series of conformational events within the actin-based thin filament. Troponin is a heterotrimeric complex consisting of a Ca2+-binding subunit (TnC), an inhibitory subunit (TnI), and a tropomyosin-binding subunit (TnT). Ternary troponin complexes have been produced by assembling recombinant chicken skeletal muscle TnC, TnI and the C-terminal portion of TnT known as TnT2. A full set of small-angle neutron scattering data has been collected from TnC-TnI-TnT2 ternary complexes, in which all possible combinations of the subunits have been deuterated, in both the +Ca2+ and -Ca2+ states. Small-angle X-ray scattering data were also collected from the same troponin TnC-TnI-TnT2 complex. Guinier analysis shows that the complex is monomeric in solution and that there is a large change in the radius of gyration of TnI when it goes from the +Ca2+ to the -Ca2+ state. Starting with a model based on the human cardiac troponin crystal structure, a rigid-body Monte Carlo optimization procedure was used to yield models of chicken skeletal muscle troponin, in solution, in the presence and in the absence of regulatory calcium. The optimization was carried out simultaneously against all of the scattering data sets. The optimized models show significant differences when compared to the cardiac troponin crystal structure in the +Ca2+ state and provide a structural model for the switch between +Ca2+ and -Ca2+ states. A key feature is that TnC adopts a dumbbell conformation in both the +Ca2+ and -Ca2+ states. More importantly, the data for the -Ca2+ state suggest a long extension of the troponin IT arm, consisting mainly of TnI. Thus, the troponin complex undergoes a large structural change triggered by Ca2+ binding.
Collapse
Affiliation(s)
- William A King
- School of Physics, University of New South Wales, Sydney NSW 2052, Australia
| | | | | | | | | | | | | |
Collapse
|
12
|
Davis JP, Rall JA, Alionte C, Tikunova SB. Mutations of hydrophobic residues in the N-terminal domain of troponin C affect calcium binding and exchange with the troponin C-troponin I96-148 complex and muscle force production. J Biol Chem 2004; 279:17348-60. [PMID: 14970231 DOI: 10.1074/jbc.m314095200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interactions between troponin C and troponin I play a critical role in the regulation of skeletal muscle contraction and relaxation. We individually substituted 27 hydrophobic Phe, Ile, Leu, Val, and Met residues in the regulatory domain of the fluorescent troponin C(F29W) with polar Gln to examine the effects of these mutations on: (a) the calcium binding and dynamics of troponin C(F29W) complexed with the regulatory fragment of troponin I (troponin I(96-148)) and (b) the calcium sensitivity of force production. Troponin I(96-148) was an accurate mimic of intact troponin I for measuring the calcium dynamics of the troponin C(F29W)-troponin I complexes. The calcium affinities of the troponin C(F29W)-troponin I(96-148) complexes varied approximately 243-fold, whereas the calcium association and dissociation rates varied approximately 38- and approximately 33-fold, respectively. Interestingly, the effect of the mutations on the calcium sensitivity of force development could be better predicted from the calcium affinities of the troponin C(F29W)-troponin I(96-148) complexes than from that of the isolated troponin C(F29W) mutants. Most of the mutations did not dramatically affect the affinity of calcium-saturated troponin C(F29W) for troponin I(96-148). However, the Phe(26) to Gln and Ile(62) to Gln mutations led to >10-fold lower affinity of calcium-saturated troponin C(F29W) for troponin I(96-148), causing a drastic reduction in force recovery, even though these troponin C(F29W) mutants still bound to the thin filaments. In conclusion, elucidating the determinants of calcium binding and exchange with troponin C in the presence of troponin I provides a deeper understanding of how troponin C controls signal transduction.
Collapse
Affiliation(s)
- Jonathan P Davis
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
13
|
Oliveira DCSG, Reinach FC. The calcium-induced switch in the troponin complex probed by fluorescent mutants of troponin I. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2937-44. [PMID: 12846826 DOI: 10.1046/j.1432-1033.2003.03659.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Ca2+-induced transition in the troponin complex (Tn) regulates vertebrate striated muscle contraction. Tn was reconstituted with recombinant forms of troponin I (TnI) containing a single intrinsic 5-hydroxytryptophan (5HW). Fluorescence analysis of these mutants of TnI demonstrate that the regions in TnI that respond to Ca2+ binding to the regulatory N-domain of TnC are the inhibitory region (residues 96-116) and a neighboring region that includes position 121. Our data confirms the role of TnI as a modulator of the Ca2+ affinity of TnC; we show that point mutations and incorporation of 5HW in TnI can affect both the affinity and the cooperativity of Ca2+ binding to TnC. We also discuss the possibility that the regulatory sites in the N-terminal domain of TnC might be the high affinity Ca2+-binding sites in the troponin complex.
Collapse
|
14
|
Tripet B, De Crescenzo G, Grothe S, O'Connor-McCourt M, Hodges RS. Kinetic analysis of the interactions between troponin C (TnC) and troponin I (TnI) binding peptides: evidence for separate binding sites for the 'structural' N-terminus and the 'regulatory' C-terminus of TnI on TnC. J Mol Recognit 2003; 16:37-53. [PMID: 12557238 DOI: 10.1002/jmr.606] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The Ca(2+)/Mg(2+)-dependent interactions between TnC and TnI play a critical role in regulating the 'on' and 'off' states of muscle contraction as well as maintaining the structural integrity of the troponin complex in the off state. In the present study, we have investigated the binding interactions between the N-terminus of TnI (residues 1-40 of skeletal TnI) and skeletal TnC in the presence of Ca(2+) ions, Mg(2+) ions and in the presence of the C-terminal regulatory region peptides: TnI(96-115), TnI(96-131) and TnI(96-139). Our results show the N-terminus of TnI can bind to TnC with high affinity in the presence of Ca(2+) or Mg(2+) ions with apparent equilibrium dissociation constants of K(d(Ca(2+) ) ) = 48 nM and K(d(Mg(2+) ) ) = 29 nM. The apparent association and dissociation rate constants for the interactions were, k(on) = 4.8 x 10(5) M (-1) s(-1), 3.4 x 10(5) M (-1) s(-1) and k(off) = 2.3 x 10(-2) s(-1), 1.0 x 10(-2) s(-1) for TnC(Ca(2+)) and TnC(Mg(2+)) states, respectively. Competition studies between each of the TnI regions and TnC showed that both TnI regions can bind simultaneously to TnC while native gel electrophoresis and SEC confirmed the formation of stable ternary complexes between TnI(96-139) (or TnI(96-131)) and TnC-TnI(1-40). Further analysis of the binding interactions in the ternary complex showed the binding of the TnI regulatory region to TnC was critically dependent upon the presence of both TnC binding sites (i.e. TnI(96-115) and TnI(116-131)) and the presence of Ca(2+). Furthermore, the presence of TnI(1-40) slightly weakened the affinity of the regulatory peptides for TnC. Taken together, these results support the model for TnI-TnC interaction where the N-terminus of TnI remains bound to the C-domain of TnC in the presence of high and low Ca(2+) levels while the TnI regulatory region (residues 96-139) switches in its binding interactions between the actin-tropomyosin thin filament and its own sites on the N- and C-domain of TnC at high Ca(2+) levels, thus regulating muscle contraction.
Collapse
Affiliation(s)
- Brian Tripet
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | |
Collapse
|
15
|
Davis JP, Rall JA, Reiser PJ, Smillie LB, Tikunova SB. Engineering competitive magnesium binding into the first EF-hand of skeletal troponin C. J Biol Chem 2002; 277:49716-26. [PMID: 12397067 DOI: 10.1074/jbc.m208488200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The goal of this study was to examine the mechanism of magnesium binding to the regulatory domain of skeletal troponin C (TnC). The fluorescence of Trp(29), immediately preceding the first calcium-binding loop in TnC(F29W), was unchanged by addition of magnesium, but increased upon calcium binding with an affinity of 3.3 microm. However, the calcium-dependent increase in TnC(F29W) fluorescence could be reversed by addition of magnesium, with a calculated competitive magnesium affinity of 2.2 mm. When a Z acid pair was introduced into the first EF-hand of TnC(F29W), the fluorescence of G34DTnC(F29W) increased upon addition of magnesium or calcium with affinities of 295 and 1.9 microm, respectively. Addition of 3 mm magnesium decreased the calcium sensitivity of TnC(F29W) and G34DTnC(F29W) approximately 2- and 6-fold, respectively. Exchange of G34DTnC(F29W) into skinned psoas muscle fibers decreased fiber calcium sensitivity approximately 1.7-fold compared with TnC(F29W) at 1 mm [magnesium](free) and approximately 3.2-fold at 3 mm [magnesium](free). Thus, incorporation of a Z acid pair into the first EF-hand allows it to bind magnesium with high affinity. Furthermore, the data suggests that the second EF-hand, but not the first, of TnC is responsible for the competitive magnesium binding to the regulatory domain.
Collapse
Affiliation(s)
- Jonathan P Davis
- Departments of Physiology and Cell Biology, The Ohio State University, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
16
|
Tripet B, De Crescenzo G, Grothe S, O'Connor-McCourt M, Hodges RS. Kinetic analysis of the interactions between troponin C and the C-terminal troponin I regulatory region and validation of a new peptide delivery/capture system used for surface plasmon resonance. J Mol Biol 2002; 323:345-62. [PMID: 12381325 DOI: 10.1016/s0022-2836(02)00883-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Using surface plasmon resonance (SPR)-based biosensor analysis and fluorescence spectroscopy, the apparent kinetic constants, k(on) and k(off), and equilibrium dissociation constant, K(d), have been determined for the binding interaction between rabbit skeletal troponin C (TnC) and rabbit skeletal troponin I (TnI) regulatory region peptides: TnI(96-115), TnI(96-131) and TnI(96-139). To carry out SPR analysis, a new peptide delivery/capture system was utilized in which the TnI peptides were conjugated to the E-coil strand of a de novo designed heterodimeric coiled-coil domain. The TnI peptide conjugates were then captured via dimerization to the opposite strand (K-coil), which was immobilized on the biosensor surface. TnC was then injected over the biosensor surface for quantitative binding analysis. For fluorescence spectroscopy analysis, the environmentally sensitive fluoroprobe 5-((((2-iodoacetyl)amino)ethyl)amino) naphthalene-1-sulfonic acid (1,5-IAEDANS) was covalently linked to Cys98 of TnC and free TnI peptides were added. SPR analysis yielded equilibrium dissociation constants for TnC (plus Ca(2+)) binding to the C-terminal TnI regulatory peptides TnI(96-131) and TnI(96-139) of 89nM and 58nM, respectively. The apparent association and dissociation rate constants for each interaction were k(on)=2.3x10(5)M(-1)s(-1), 2.0x10(5)M(-1)s(-1) and k(off)=2.0x10(-2)s(-1), 1.2x10(-2)s(-1) for TnI(96-131) and TnI(96-139) peptides, respectively. These results were consistent with those obtained by fluorescence spectroscopy analysis: K(d) being equal to 130nM and 56nM for TnC-TnI(96-131) and TnC-TnI(96-139), respectively. Interestingly, although the inhibitory region peptide (TnI(96-115)) was observed to bind with an affinity similar to that of TnI(96-131) by fluorescence analysis (K(d)=380nM), its binding was not detected by SPR. Subsequent investigations examining salt effects suggested that the binding mechanism for the inhibitory region peptide is best characterized by an electrostatically driven fast on-rate ( approximately 1x10(8) to 1x10(9)M(-1)s(-1)) and a fast off-rate ( approximately 1x10(2)s(-1)). Taken together, the determination of these kinetic rate constants permits a clearer view of the interactions between the TnC and TnI proteins of the troponin complex.
Collapse
Affiliation(s)
- Brian Tripet
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, 4200 East 9th Avenue, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
17
|
Dargis R, Pearlstone JR, Barrette-Ng I, Edwards H, Smillie LB. Single mutation (A162H) in human cardiac troponin I corrects acid pH sensitivity of Ca2+-regulated actomyosin S1 ATPase. J Biol Chem 2002; 277:34662-5. [PMID: 12151382 DOI: 10.1074/jbc.c200419200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In contrast to skeletal muscle, the efficiency of the contractile apparatus of cardiac tissue has long been known to be severely compromised by acid pH as in the ischemia of myocardial infarction and other cardiac myopathies. Recent reports (Westfall, M. V., and Metzger, J. M. (2001) News Physiol. Sci. 16, 278-281; Li, G., Martin, A. F., and Solaro, R. J. (2001) J. Mol. Cell. Cardiol. 33, 1309-1320) have indicated that the reduced Ca(2+) sensitivity of cardiac contractility at low pH (<or=pH 6.5) is attributable to structural difference(s) in the cardiac and skeletal inhibitory components (TnIs) of their troponins. Here, using a reconstituted Ca(2+)-regulated human cardiac troponin-tropomyosin actomyosin S1 ATPase assay, we report that a single TnI mutation, A162H, restores Ca(2+) sensitivity at pH 6.5 to that at pH 7.0. Levels of inhibition (pCa 7.0), activation (pCa 4.0), and cooperativity of ATPase activity were minimally affected. Two other mutations (Q155R and E164V) also previously suggested by us (Pearlstone, J. R., Sykes, B. D., and Smillie, L. B. (1997) Biochemistry 36, 7601-7606) and involving charged residues showed no such effects. With fast skeletal muscle troponin, a single TnI H130A mutation reduced Ca(2+) sensitivity at pH 6.5 to levels approaching the cardiac system at pH 6.5. These observations provide structural insight into long-standing physiological and clinical phenomena and are of potential relevance to therapeutic treatments of heart disease by gene transfer, stem cell, and cell transplantation approaches.
Collapse
Affiliation(s)
- Roland Dargis
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
18
|
Chen FC, Hsieh YH. Porcine troponin I: a thermostable species marker protein. Meat Sci 2002; 61:55-60. [DOI: 10.1016/s0309-1740(01)00162-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2001] [Revised: 07/18/2001] [Accepted: 07/18/2001] [Indexed: 11/26/2022]
|
19
|
Li Z, Gergely J, Tao T. Proximity relationships between residue 117 of rabbit skeletal troponin-I and residues in troponin-C and actin. Biophys J 2001; 81:321-33. [PMID: 11423417 PMCID: PMC1301514 DOI: 10.1016/s0006-3495(01)75702-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We used resonance energy transfer and site-directed photo-cross-linking to probe the Ca(2+)-dependent proximity relationships between residue 117 next to the C-terminus of the inhibitory region in rabbit skeletal troponin-I (TnI) and residues in troponin-C (TnC) and in actin. A mutant TnI that contains a single cysteine at position 117 (I117) was constructed, and the distance between TnI residue 117 and TnC residue 98 was measured with the following results: for both the binary TnC-TnI complex and the ternary troponin complex, this distance was 30 and 41 A in the presence and absence of Ca(2+), respectively. The distance between TnI residue 117 and Cys374 of actin was 48 and 41 A in the presence and absence of Ca(2+), respectively. Six additional distances from this TnI residue to cysteines in TnC mutants were measured and used to localize this residue with respect to the crystal structure of TnC. The results show that in the presence of Ca(2+) it is localized near the B and C helices of TnC's N-terminal domain. In the absence of Ca(2+) this residue moves away from this location by approximately 8 A. Photo-cross-linking experiments show that I117 labeled with 4-maleimidobenzophenone photo-cross-linked to TnC but not to actin in both the presence and absence of Ca(2+). Taken together these results provide independent experimental support for the proposal (Y. Luo, J. L. Wu, B. Li, K. Langsetmo, J. Gergely, and T. Tao, 2000, J. Mol. Biol. 296:899-910) that upon Ca(2+) removal the region comprising TnI residues 114-125 triggers the movements of residues 89-113 and 130-150 toward actin, but does not itself interact with actin.
Collapse
Affiliation(s)
- Z Li
- Muscle and Motility Group, Boston Biomedical Research Institute, Watertown, Massachusetts 02472, USA
| | | | | |
Collapse
|
20
|
Tung CS, Wall ME, Gallagher SC, Trewhella J. A model of troponin-I in complex with troponin-C using hybrid experimental data: the inhibitory region is a beta-hairpin. Protein Sci 2000; 9:1312-26. [PMID: 10933496 PMCID: PMC2144674 DOI: 10.1110/ps.9.7.1312] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We present a model for the skeletal muscle troponin-C (TnC)/troponin-I (TnI) interaction, a critical molecular switch that is responsible for calcium-dependent regulation of the contractile mechanism. Despite concerted efforts by multiple groups for more than a decade, attempts to crystallize troponin-C in complex with troponin-I, or in the ternary troponin-complex, have not yet delivered a high-resolution structure. Many groups have pursued different experimental strategies, such as X-ray crystallography, NMR, small-angle scattering, chemical cross-linking, and fluorescent resonance energy transfer (FRET) to gain insights into the nature of the TnC/TnI interaction. We have integrated the results of these experiments to develop a model of the TnC/TnI interaction, using an atomic model of TnC as a scaffold. The TnI sequence was fit to each of two alternate neutron scattering envelopes: one that winds about TnC in a left-handed sense (Model L), and another that winds about TnC in a right-handed sense (Model R). Information from crystallography and NMR experiments was used to define segments of the models. Tests show that both models are consistent with available cross-linking and FRET data. The inhibitory region TnI(95-114) is modeled as a flexible beta-hairpin, and in both models it is localized to the same region on the central helix of TnC. The sequence of the inhibitory region is similar to that of a beta-hairpin region of the actin-binding protein profilin. This similarity supports our model and suggests the possibility of using an available profilin/actin crystal structure to model the TnI/actin interaction. We propose that the beta-hairpin is an important structural motif that communicates the Ca2+-activated troponin regulatory signal to actin.
Collapse
Affiliation(s)
- C S Tung
- Theoretical Division, Los Alamos National Laboratory, New Mexico 87545, USA
| | | | | | | |
Collapse
|
21
|
Abbott MB, Dvoretsky A, Gaponenko V, Rosevear PR. Cardiac troponin I inhibitory peptide: location of interaction sites on troponin C. FEBS Lett 2000; 469:168-72. [PMID: 10713265 DOI: 10.1016/s0014-5793(00)01271-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cardiac troponin I(129-149) binds to the calcium saturated cardiac troponin C/troponin I(1-80) complex at two distinct sites. Binding of the first equivalent of troponin I(129-149) was found to primarily affect amide proton chemical shifts in the regulatory domain, while the second equivalent perturbed amide proton chemical shifts within the D/E linker region. Nitrogen-15 transverse relaxation rates showed that binding the first equivalent of inhibitory peptide to the regulatory domain decreased conformational exchange in defunct calcium binding site I and that addition of the second equivalent of inhibitory peptide decreased flexibility in the D/E linker region. No interactions between the inhibitory peptide and the C-domain of cardiac troponin C were detected by these methods demonstrating that the inhibitory peptide cannot displace cTnI(1-80) from the C-domain.
Collapse
Affiliation(s)
- M B Abbott
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, College of Medicine, 231 Bethesda Ave., Cincinnati, OH 45267, USA
| | | | | | | |
Collapse
|
22
|
Szczesna D, Zhang R, Zhao J, Jones M, Potter JD. The role of the NH(2)- and COOH-terminal domains of the inhibitory region of troponin I in the regulation of skeletal muscle contraction. J Biol Chem 1999; 274:29536-42. [PMID: 10506219 DOI: 10.1074/jbc.274.41.29536] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of the inhibitory region of troponin (Tn) I in the regulation of skeletal muscle contraction was studied with three deletion mutants of its inhibitory region: 1) complete (TnI-(Delta96-116)), 2) the COOH-terminal domain (TnI-(Delta105-115)), and 3) the NH(2)-terminal domain (TnI-(Delta95-106)). Measurements of Ca(2+)-regulated force and relaxation were performed in skinned skeletal muscle fibers whose endogenous TnI (along with TnT and TnC) was displaced with high concentrations of added troponin T. Reconstitution of the Tn-displaced fibers with a TnI.TnC complex restored the Ca(2+) sensitivity of force; however, the levels of relaxation and force development varied. Relaxation of the fibers (pCa 8) was drastically impaired with two of the inhibitory region deletion mutants, TnI-(Delta96-116).TnC and TnI-(Delta105-115).TnC. The TnI-(Delta95-106).TnC mutant retained approximately 55% relaxation when reconstituted in the Tn-displaced fibers. Activation in skinned skeletal muscle fibers was enhanced with all TnI mutants compared with wild-type TnI. Interestingly, all three mutants of TnI increased the Ca(2+) sensitivity of contraction. None of the TnI deletion mutants, when reconstituted into Tn, could inhibit actin-tropomyosin-activated myosin ATPase in the absence of Ca(2+), and two of them (TnI-(Delta96-116) and TnI-(Delta105-115)) gave significant activation in the absence of Ca(2+). These results suggest that the COOH terminus of the inhibitory region of TnI (residues 105-115) is much more critical for the biological activity of TnI than the NH(2)-terminal region, consisting of residues 95-106. Presumably, the COOH-terminal domain of the inhibitory region of TnI is a part of the Ca(2+)-sensitive molecular switch during muscle contraction.
Collapse
Affiliation(s)
- D Szczesna
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | | | | | | | |
Collapse
|
23
|
Tao T, Gong BJ, Grabarek Z, Gergely J. Conformational changes induced in troponin I by interaction with troponin T and actin/tropomyosin. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1450:423-33. [PMID: 10395953 DOI: 10.1016/s0167-4889(99)00050-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Troponin I (TnI) is the inhibitory component of the striated muscle Ca2+ regulatory protein troponin (Tn). The other two components of Tn are troponin C (TnC), the Ca2+-binding component, and troponin T (TnT), the tropomyosin-binding component. We have used limited chymotryptic digestion to probe the local conformation of TnI in the free state, the binary TnC*TnI complex, the ternary TnC*. TnI*TnT (Tn) complex, and in the reconstituted Tn*tropomyosin*F-actin filament. The digestion of TnI alone or in the TnC*TnI complex produced initially two major fragments via a cleavage of the peptide bond between Phe100 and Asp101 in the so-called inhibitory region. In the ternary Tn complex cleavage occurred at a new site between Leu140 and Lys141. In the absence of Ca2+ this was followed by digestion of the 1-140 fragment at Leu122 and Met116. In the reconstituted thin filament the same fragments as in the case of the ternary complex were produced, but the rate of digestion was slower in the absence than in the presence of Ca2+. These results indicate firstly that in both free TnI and TnI complexed with TnC there is an exposed and flexible site in the inhibitory region. Secondly, TnT affects the conformation of TnI in the inhibitory region and also in the region that contains the 140-141 bond. Thirdly, the 140-141 region of TnI is likely to interact with actin in the reconstituted thin filament when Ca2+ is absent. These findings are discussed in terms of the role of TnI in the mechanism of thin filament regulation, and in light of our previous results [Y. Luo, J.-L. Wu, J. Gergely, T. Tao, Biochemistry 36 (1997) 13449-13454] on the global conformation of TnI.
Collapse
Affiliation(s)
- T Tao
- Muscle Research Group, Boston Biomedical Research Institute, 20 Staniford Street, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
24
|
Ramos CH. Mapping subdomains in the C-terminal region of troponin I involved in its binding to troponin C and to thin filament. J Biol Chem 1999; 274:18189-95. [PMID: 10373418 DOI: 10.1074/jbc.274.26.18189] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Troponin I (TnI) is the inhibitory component of troponin, the ternary complex that regulates skeletal and cardiac muscle contraction. Previous work showed that the C-terminal region of TnI, when linked to the "inhibitory region" (residues 98-116), possesses the major regulatory functions of the molecule (Farah, C. S., Miyamoto, C. A., Ramos, C. H. I., Silva, A. C. R., Quaggio, R. B., Fujimori, K., Smillie, L. B., and Reinach, F. C. (1994) J. Biol. Chem. 269, 5230-5240). To investigate these functions in more detail, serial deletion mutants of the C-terminal region of TnI were constructed. These experiments showed that longer C-terminal deletions result in lower inhibition of the actomyosin ATPase activity and weaken the interaction with the N-terminal domain of troponin C (TnC), consistent with the antiparallel model for the interaction between these two proteins. The conclusion is that the whole C-terminal region of TnI is necessary for its full regulatory activity. The region between residues 137 and 144, which was shown to have homology with residues 108-115 in the inhibitory region (Farah, C. S., and Reinach, F. C. (1995) FASEB J. 9, 755-767), is involved in the binding to TnC. The region between residues 98 and 129 is involved in modulating the affinity of TnC for calcium. The C-terminal residues 166-182 are involved in the binding of TnI to thin filament. A model for the function of TnI is discussed.
Collapse
Affiliation(s)
- C H Ramos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, São Paulo, SP 05599-970 Brazil.
| |
Collapse
|
25
|
Abstract
The contraction of vertebrate striated muscle contraction, and hence its work output, is controlled by Ca2+, which binds to troponin (Tn) associated with tropomyosin (TM) and actin in the thin filaments. Tn consists of three subunits: TnC, the Ca(2+)-receptor; TnI, an inhibitor of actomyosin activity; and TnT, anchoring Tn to TM. Of the four Ca(2+)-binding sites, I and II in the N-terminal domain are Ca-specific sites, while sites III and IV, the high affinity Ca-Mg sites, are in the C-domain. The former are recognized as the functionally important triggering sites. TnC, whose structure has been solved by X-ray crystallography and recently by high-resolution NMR, contains two homologous globular domains connected by an unusual single alpha-helix. The C-terminal domain exhibits an open hydrophobic area regardless of whether Ca2+ or Mg2+ is bound to sites III and IV. In contrast, the N-terminal domain is a closed structure that opens a hydrophobic patch upon Ca(2+)-binding to its two "triggering" sites producing a TnI binding area. Crosslinking and fragment binding studies indicate that, in the main, the two polypeptide chains run in opposite directions in the complex of TnC with Tn. A model of TnC-TnI interactions based on low angle X-ray and neutron scattering is discussed in light of biochemical and other physico-chemical studies. The opening of the structure in the N-terminal domain of TnC may be regarded as a molecular switch. It activates a molecular switch in TnI, reflected in the movement of portions of its C-terminal half, including Cys 133, away from actin and closer to TnC, as well as other structural changes in TnI. Finally the role of TnT in switching and transmitting the Ca(2+)-signal is discussed.
Collapse
Affiliation(s)
- J Gergely
- Muscle Research Group, Boston Biomedical Research Institute, Massachusetts General Hospital, USA
| |
Collapse
|
26
|
Stone DB, Timmins PA, Schneider DK, Krylova I, Ramos CH, Reinach FC, Mendelson RA. The effect of regulatory Ca2+ on the in situ structures of troponin C and troponin I: a neutron scattering study. J Mol Biol 1998; 281:689-704. [PMID: 9710540 DOI: 10.1006/jmbi.1998.1965] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of regulatory amounts of Ca2+ on the in situ structures of troponin C (TnC) and troponin I (TnI) in whole troponin have been investigated by neutron scattering. In separate difference experiments, 97% deuterated TnC and TnI within whole troponin were studied +/-Ca2+ in 41.6% 2H2O buffers in which protonated subunits were rendered "invisible". We found that the radius of gyration (Rg) of TnI decreased by approximately 10% upon addition of regulatory Ca2+ indicating that it was significantly more compact in the presence of Ca2+. The apparent cross-sectional radius of gyration (Rc) of TnI increased by about 9% when regulatory Ca2+ was bound to TnC. Modeling studies showed that the high-Q scattering patterns of TnI could be fit by a TnI which consisted of two subdomains: one, a highly oblate ellipsoid of revolution containing about 65% of the mass and the other, a highly prolate ellipsoid of revolution consisting of about 35% of the mass. No other fits could be found with this class of models. Best fits were achieved when the axes of revolution of these ellipsoids were steeply inclined with respect to each other. Ca2+ addition decreased the center of mass separation by about 1.5 nm. The Rg of TnI, its high-Q scattering pattern, and the resultant structure were different from previous results on neutron scattering by TnI in the (+Ca2+) TnC.TnI complex. The Rg of TnC indicated that it was elongate in situ. The Rg of TnC was not sensitive to the Ca2+ occupancy of its regulatory sites. However, Rc increased upon Ca2+ addition in concert with expectations from NMR and crystallography of isolated TnC. The present observations indicate that TnI acts like a molecular switch which is controlled by smaller Ca2+-induced changes in TnC.
Collapse
Affiliation(s)
- D B Stone
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143-0130, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Leszyk J, Tao T, Nuwaysir LM, Gergely J. Identification of the photocrosslinking sites in troponin-I with 4-maleimidobenzophenone labelled mutant troponin-Cs having single cysteines at positions 158 and 21. J Muscle Res Cell Motil 1998; 19:479-90. [PMID: 9682135 DOI: 10.1023/a:1005352324741] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Our previous studies have shown that 4-maleimidobenzophenone (BP-Mal) attached to troponin-C (TnC) mutants with single cysteines at positions 12, 57, 89 and 98 forms crosslinks to troponin-I (TnI), and the identified crosslinking regions indicate an antiparallel course of the two interacting polypeptide chains, in agreement with other studies using fragments of TnC and TnI. In this work we extended the mapping of the TnC-TnI interface by analysing photocrosslinking between TnI and BP-Mal labelled TnC mutants with single Cys residues at positions 21 (TnC21) and 158 (TnC158). We determined the sites of these photocrosslinks in TnI by progressive proteolysis of the crosslinked product, followed by N-terminal sequencing and mass spectrophotometric analyses. The results show that whereas TnC158 forms a specific crosslink with Met-21, TnC21 forms multiple crosslinks in the range of residues 96 to 134 of TnI. The results are discussed in light of the antiparallel model of the TnI-TnC complex and a structural model derived from low-angle X-ray and neutron scattering studies.
Collapse
Affiliation(s)
- J Leszyk
- Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545, USA
| | | | | | | |
Collapse
|
28
|
Luo Y, Wu JL, Gergely J, Tao T. Localization of Cys133 of rabbit skeletal troponin-I with respect to troponin-C by resonance energy transfer. Biophys J 1998; 74:3111-9. [PMID: 9635764 PMCID: PMC1299651 DOI: 10.1016/s0006-3495(98)78017-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have used the technique of resonance energy transfer in conjunction with distance geometry analysis to localize Cys133 of troponin-I (TnI) with respect to troponin-C (TnC) in the ternary troponin complex and the binary TnC.TnI complex in the presence and absence of Ca2+. Cys133 of TnI was chosen because our previous work has shown that the region of TnI containing this residue undergoes Ca2+-dependent movements between actin and TnC, and may play an important role in the regulatory function of troponin. For this purpose, a TnI mutant with a single Cys at position 133, and TnC mutants, each with a single Cys at positions 5, 12, 21, 41, 49, 89, 98, 133, and 158, were constructed by site-directed mutagenesis. The distances between TnI Cys133 and each of the nine residues in TnC were then measured. Using a least-squares minimization procedure, we determined the position of TnI Cys133 in the coordinate system of the crystal structure of TnC. Our results show that in the presence of Ca2+, TnI Cys133 is located near residue 12 beneath the N-terminal lobe of TnC, and moves away by 12.6 A upon the removal of Ca2+. TnI Cys133 and the region of TnC that undergoes major change in conformation in response to Ca2+ are located roughly on opposite sides of TnC's central helix. This suggests that the region in TnI that undergoes Ca2+-dependent interaction with TnC is distinct from that interacting with actin.
Collapse
Affiliation(s)
- Y Luo
- Muscle Research Group, Boston Biomedical Research Institute, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
29
|
Vassylyev DG, Takeda S, Wakatsuki S, Maeda K, Maéda Y. Crystal structure of troponin C in complex with troponin I fragment at 2.3-A resolution. Proc Natl Acad Sci U S A 1998; 95:4847-52. [PMID: 9560191 PMCID: PMC20176 DOI: 10.1073/pnas.95.9.4847] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Troponin (Tn), the complex of three subunits (TnC, TnI, and TnT), plays a key role in Ca2+-dependent regulation of muscle contraction. To elucidate the interactions between the Tn subunits and the conformation of TnC in the Tn complex, we have determined the crystal structure of TnC (two Ca2+ bound state) in complex with the N-terminal fragment of TnI (TnI1-47). The structure was solved by the single isomorphous replacement method in combination with multiple wavelength anomalous dispersion data. The refinement converged to a crystallographic R factor of 22.2% (Rfree = 32.6%). The central, connecting alpha-helix observed in the structure of uncomplexed TnC (TnCfree) is unwound at the center (residues Ala-87, Lys-88, Gly-89, Lys-90, and Ser-91) and bent by 90 degrees. As a result, TnC in the complex has a compact globular shape with direct interactions between the N- and C-terminal lobes, in contrast to the elongated dumb-bell shaped molecule of uncomplexed TnC. The 31-residue long TnI1-47 alpha-helix stretches on the surface of TnC and stabilizes its compact conformation by multiple contacts with both TnC lobes. The amphiphilic C-end of the TnI1-47 alpha-helix is bound in the hydrophobic pocket of the TnC C-lobe through 38 van der Waals interactions. The results indicate the major difference between Ca2+ receptors integrated with the other proteins (TnC in Tn) and isolated in the cytosol (calmodulin). The TnC/TnI1-47 structure implies a mechanism of how Tn regulates the muscle contraction and suggests a unique alpha-helical regulatory TnI segment, which binds to the N-lobe of TnC in its Ca2+ bound conformation.
Collapse
Affiliation(s)
- D G Vassylyev
- International Institute for Advanced Research, Central Research Laboratories, Matsushita Electric Industrial Co., Ltd., 3-4 Hikaridai, Seika, Kyoto, 619-02, Japan
| | | | | | | | | |
Collapse
|
30
|
Barth A, Martin SR, Bayley PM. Specificity and symmetry in the interaction of calmodulin domains with the skeletal muscle myosin light chain kinase target sequence. J Biol Chem 1998; 273:2174-83. [PMID: 9442059 DOI: 10.1074/jbc.273.4.2174] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The specificity of interaction of the isolated N- and C-terminal domains of calmodulin with peptide WFFp (Ac-KRRWKKNFIAVSAANRFK-amide) and variants of the target sequence of skeletal muscle myosin light chain kinase was investigated using CD and fluorescence. Titrations show that two molecules of either domain bind to 18-residue target peptides. For WFFp, the C-domain binds with 4-fold higher affinity to the native compared with the non-native site; the N-domain shows similar affinity for either site. The selectivity of the C-domain suggests that it promotes occupancy of the correct binding site for intact calmodulin on the target sequence. Far UV CD spectra show the extra helicity induced in forming the 2:1 C-domain-peptide or the 1:1:1 C-domain-N-domain-peptide complex is similar to that induced by calmodulin itself; binding of the C-domain to the Trp-4 site is essential for developing the full helicity. Calmodulin-MLCK-peptide complexes show an approximate two-fold rotational relationship between the two highly homologous domains, and the 2:1 C (or N)-domain-peptide complexes evidently have a similar rotational symmetry. This implies that a given domain can bind sequences with opposite peptide polarities, significantly increasing the possible range of conformations of calmodulin in its complexes, and extending the versatility and diversity of calmodulin-target interactions.
Collapse
Affiliation(s)
- A Barth
- Division of Physical Biochemistry, National Institute for Medical Research, London, United Kingdom
| | | | | |
Collapse
|
31
|
The Crystal Structure of Troponin C in Complex with N-Terminal Fragment of Troponin I. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998. [DOI: 10.1007/978-1-4684-6039-1_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
32
|
McKay RT, Tripet BP, Hodges RS, Sykes BD. Interaction of the second binding region of troponin I with the regulatory domain of skeletal muscle troponin C as determined by NMR spectroscopy. J Biol Chem 1997; 272:28494-500. [PMID: 9353310 DOI: 10.1074/jbc.272.45.28494] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Two dimensional 1H,15N-heteronuclear single quantum correlation NMR was used to monitor the resonance frequency changes of the backbone amide groups belonging to the 15N-labeled regulatory domain of calcium saturated troponin C (N-TnC) upon addition of synthetic skeletal N-acetyl-troponin I 115-131-amide peptide (TnI115-131). Utilizing the change in amide chemical shifts, the dissociation constant for 1:1 binding of TnI115-131 to N-TnC in low salt and 100 mM KCl samples was determined to be 28 +/- 4 and 24 +/- 4 microM, respectively. The off rate of TnI115-131 was determined to be 300 s-1 from observed N-TnC backbone amide 1H,15N-heteronuclear single quantum correlation cross-peak line widths, which is on the order of the calcium off rates (Li, M. X., Gagné, S. M., Tsuda, S., Kay, C. M., Smillie, L. B., and Sykes, B. D. (1995) Biochemistry 34, 8330-8340), and agrees with kinetic expectations for biological regulation of muscle contraction. The TnI115-131 binding site on N-TnC was determined by mapping of chemical shift changes onto the N-TnC NMR structure and was demonstrated to be in the "hydrophobic pocket" (Gagné, S. M., Tsuda, S., Li, M. X., Smillie, L. B., and Sykes, B. D. (1995) Nat. Struct. Biol. 2, 784-789).
Collapse
Affiliation(s)
- R T McKay
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|
33
|
Rarick HM, Tu XH, Solaro RJ, Martin AF. The C terminus of cardiac troponin I is essential for full inhibitory activity and Ca2+ sensitivity of rat myofibrils. J Biol Chem 1997; 272:26887-92. [PMID: 9341121 DOI: 10.1074/jbc.272.43.26887] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although the C terminus of troponin I is known to be important in myofilament Ca2+ regulation in skeletal muscle, the regulatory function of this region of cardiac troponin I (cTnI) has not been defined. To address this question, the following recombinant proteins were expressed in Escherichia coli and purified: mouse wild-type cTnI (WT cTnI; 211 residues), cTnI-(1-199) (missing 12 residues), cTnI-(1-188) (missing 23 residues), and cTnI-(1-151) (missing 60 residues). The inhibitory activity of cTnI and the mutants was tested in myofibrils, from which cTnI.cTnC was extracted by exchanging endogenous cardiac troponin with exogenous cTnT causing the Ca2+ sensitivity of the myofibrils to be lost. Addition of increasing amounts of exogenous WT cTnI or cTnI-(1-199) to cTnT-treated myofibrils at pCa 8 caused a concentration-dependent inhibition of the maximum ATPase activity. However, cTnI-(1-188) and cTnI-(1-151) inhibited this activity to about 75% and 50% of that of the WT cTnI, respectively. We also formed a complex of either WT cTnI or each of the mutants with cTnC, reconstituted the complex into the cTnT-treated myofibrils, and measured the Mg2+-ATPase activity as a function of pCa. We found that the cTnI-(1-188).cTnC complex only partially restored Ca2+ sensitivity, whereas the cTnI-(1-151).cTnC complex did not restore any Ca2+ sensitivity. Each cTnI C-terminal deletion mutant was able to bind to cTnC, as shown by urea-polyacrylamide gel-shift analysis and size exclusion chromatography. Each mutant also co-sedimented with actin. Our results indicate that residues 152-199 (C-terminal to the inhibitory region) of cTnI are essential for full inhibitory activity and Ca2+ sensitivity of myofibrillar ATPase activity in the heart.
Collapse
Affiliation(s)
- H M Rarick
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612-7342, USA
| | | | | | | |
Collapse
|
34
|
Strynadka NC, Cherney M, Sielecki AR, Li MX, Smillie LB, James MN. Structural details of a calcium-induced molecular switch: X-ray crystallographic analysis of the calcium-saturated N-terminal domain of troponin C at 1.75 A resolution. J Mol Biol 1997; 273:238-55. [PMID: 9367759 DOI: 10.1006/jmbi.1997.1257] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have solved and refined the crystal and molecular structures of the calcium-saturated N-terminal domain of troponin C (TnC) to 1.75 A resolution. This has allowed for the first detailed analysis of the calcium binding sites of this molecular switch in the calcium-loaded state. The results provide support for the proposed binding order and qualitatively, for the affinity of calcium in the two regulatory calcium binding sites. Based on a comparison with the high-resolution apo-form of TnC we propose a possible mechanism for the calcium-mediated exposure of a large hydrophobic surface that is central to the initiation of muscle contraction within the cell.
Collapse
Affiliation(s)
- N C Strynadka
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|