1
|
Huang Y, Soliakov A, Le Brun AP, Macdonald C, Johnson CL, Solovyova AS, Waller H, Moore GR, Lakey JH. Helix N-Cap Residues Drive the Acid Unfolding That Is Essential in the Action of the Toxin Colicin A. Biochemistry 2019; 58:4882-4892. [PMID: 31686499 PMCID: PMC6899464 DOI: 10.1021/acs.biochem.9b00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/31/2019] [Indexed: 11/28/2022]
Abstract
Numerous bacterial toxins and other virulence factors use low pH as a trigger to convert from water-soluble to membrane-inserted states. In the case of colicins, the pore-forming domain of colicin A (ColA-P) has been shown both to undergo a clear acidic unfolding transition and to require acidic lipids in the cytoplasmic membrane, whereas its close homologue colicin N shows neither behavior. Compared to that of ColN-P, the ColA-P primary structure reveals the replacement of several uncharged residues with aspartyl residues, which upon replacement with alanine induce an unfolded state at neutral pH. Here we investigate ColA-P's structural requirement for these critical aspartyl residues that are largely situated at the N-termini of α helices. As previously shown in model peptides, the charged carboxylate side chain can act as a stabilizing helix N-Cap group by interacting with free amide hydrogen bond donors. Because this could explain ColA-P destabilization when the aspartyl residues are protonated or replaced with alanyl residues, we test the hypothesis by inserting asparagine, glutamine, and glutamate residues at these sites. We combine urea (fluorescence and circular dichroism) and thermal (circular dichroism and differential scanning calorimetry) denaturation experiments with 1H-15N heteronuclear single-quantum coherence nuclear magnetic resonance spectroscopy of ColA-P at different pH values to provide a comprehensive description of the unfolding process and confirm the N-Cap hypothesis. Furthermore, we reveal that, in urea, the single domain ColA-P unfolds in two steps; low pH destabilizes the first step and stabilizes the second.
Collapse
Affiliation(s)
- Yan Huang
- Institute
for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, U.K.
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, People’s Republic of China
| | - Andrei Soliakov
- Institute
for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, U.K.
| | - Anton P. Le Brun
- Institute
for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, U.K.
- Australian
Centre for Neutron Scattering, Australian
Nuclear Science and Technology Organisation, Kirrawee DC, NSW 2232, Australia
| | - Colin Macdonald
- Department
of Chemistry Centre for Structural & Molecular Biology, School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Christopher L. Johnson
- Institute
for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, U.K.
| | - Alexandra S. Solovyova
- Institute
for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, U.K.
| | - Helen Waller
- Institute
for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, U.K.
| | - Geoffrey R. Moore
- Department
of Chemistry Centre for Structural & Molecular Biology, School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Jeremy H. Lakey
- Institute
for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, U.K.
| |
Collapse
|
2
|
Resolving the 3D spatial orientation of helix I in the closed state of the colicin E1 channel domain by FRET. Insights into the integration mechanism. Arch Biochem Biophys 2016; 608:52-73. [DOI: 10.1016/j.abb.2016.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/27/2016] [Accepted: 08/08/2016] [Indexed: 11/13/2022]
|
3
|
Abstract
Principles behind quenching of tryptophan (Trp) fluorescence are updated and extended in light of recent 100-ns and 1-μs molecular dynamics (MD) trajectories augmented with quantum mechanical (QM) calculations that consider electrostatic contributions to wavelength shifts and quenching. Four studies are summarized, including (1) new insight into the single exponential decay of NATA, (2) a study revealing how unsuspected rotamer transitions affect quenching of Trp when used as a probe of protein folding, (3) advances in understanding the origin of nonexponential decay from 100-ns simulations on 19 Trps in 16 proteins, and (4) the correlation of wavelength with lifetime for decay-associated spectra (DAS). Each study strongly reinforces the concept that-for Trp-electron transfer-based quenching is controlled much more by environment electrostatic factors affecting the charge transfer (CT) state energy than by distance dependence of electronic coupling. In each case, water plays a large role in unexpected ways.
Collapse
|
4
|
Prieto L, Lazaridis T. Computational studies of colicin insertion into membranes: the closed state. Proteins 2010; 79:126-41. [PMID: 20941706 DOI: 10.1002/prot.22866] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/02/2010] [Accepted: 08/23/2010] [Indexed: 11/05/2022]
Abstract
Colicins are water-soluble toxins that, upon interaction with membranes, undergo a conformational change, insert, and form pores in them. Pore formation activity is localized in a bundle of 10 α-helices named the pore-forming domain (PFD). There is evidence that colicins attach to the membrane via a hydrophobic hairpin embedded in the core of the PFD. Two main models have been suggested for the membrane-bound state: penknife and umbrella, differing in regard to the orientation of the hydrophobic hairpin with respect to the membrane. The arrangement of the amphipathic helices has been described as either a compact three-dimensional structure or a two-dimensional array of loosely interacting helices on the membrane surface. Using molecular dynamics simulations with an implicit membrane model, we studied the structure and stability of the conformations proposed earlier for four colicins. We find that colicins are initially driven towards the membrane by electrostatic interactions between basic residues and the negatively charged membrane surface. They do not have a unique binding orientation, but in the predominant orientations the central hydrophobic hairpin is parallel to the membrane. In the inserted state, the estimated free energy tends to be lower for the compact arrangements of the amphipathic helix, but the more expanded ones are in better agreement with experimental distance distributions. The difference in energy between penknife and umbrella conformations is small enough for equilibrium to exist between them. Elongation of the hydrophobic hairpin helices and membrane thinning were found unable to produce stabilization of the transmembrane configuration of the hydrophobic hairpin.
Collapse
Affiliation(s)
- Lidia Prieto
- Department of Chemistry, The City College of CUNY, New York, New York 10031, USA
| | | |
Collapse
|
5
|
Ho D, Merrill AR. Evidence for the Amphipathic Nature and Tilted Topology of Helices 4 and 5 in the Closed State of the Colicin E1 Channel. Biochemistry 2009; 48:1369-80. [DOI: 10.1021/bi801906v] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Derek Ho
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - A. Rod Merrill
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
6
|
Zhang Y, Liu S, Lajoie G, Merrill AR. The role of the diphthamide-containing loop within eukaryotic elongation factor 2 in ADP-ribosylation by Pseudomonas aeruginosa exotoxin A. Biochem J 2008; 413:163-74. [PMID: 18373493 DOI: 10.1042/bj20071083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
eEF2 (eukaryotic elongation factor 2) contains a post-translationally modified histidine residue, known as diphthamide, which is the specific ADP-ribosylation target of diphtheria toxin, cholix toxin and Pseudomonas aeruginosa exotoxin A. Site-directed mutagenesis was conducted on residues within the diphthamide-containing loop (Leu693-Gly703) of eEF2 by replacement with alanine. The purified yeast eEF2 mutant proteins were then investigated to determine the role of this loop region in ADP-ribose acceptor activity of elongation factor 2 as catalysed by exotoxin A. A number of single alanine substitutions in the diphthamide-containing loop caused a significant reduction in the eEF2 ADP-ribose acceptor activities, including two strictly conserved residues, His694 and Asp696. Analysis by MS revealed that all of these mutant proteins lacked the 2'-modification on the His699 residue and that eEF2 is acetylated at Lys509. Furthermore, it was revealed that the imidazole ring of Diph699 (diphthamide at position 699) still functions as an ADP-ribose acceptor (albeit poorly), even without the diphthamide modification on the His699. Therefore, this diphthamide-containing loop plays an important role in the ADP-ribosylation of eEF2 catalysed by toxin and also for modification of His699 by the endogenous diphthamide modification machinery.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Molecular and Cellular Biology, Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada
| | | | | | | |
Collapse
|
7
|
|
8
|
Fujiwara K, Tenno T, Sugasawa K, Jee JG, Ohki I, Kojima C, Tochio H, Hiroaki H, Hanaoka F, Shirakawa M. Structure of the ubiquitin-interacting motif of S5a bound to the ubiquitin-like domain of HR23B. J Biol Chem 2003; 279:4760-7. [PMID: 14585839 DOI: 10.1074/jbc.m309448200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitination, a modification in which single or multiple ubiquitin molecules are attached to a protein, serves signaling functions that control several cellular processes. The ubiquitination signal is recognized by downstream effectors, many of which carry a ubiquitin-interacting motif (UIM). Such interactions can be modulated by regulators carrying a ubiquitin-like (UbL) domain, which binds UIM by mimicking ubiquitination. Of them, HR23B regulates the proteasomal targeting of ubiquitinated substrates, DNA repair factors, and other proteins. Here we report the structure of the UIM of the proteasome subunit S5a bound to the UbL domain of HR23B. The UbL domain presents one hydrophobic and two polar contact sites for interaction with UIM. The residues in these contact sites are well conserved in ubiquitin, but ubiquitin also presents a histidine at the interface. The pH-dependent protonation of this residue interferes with the access of ubiquitin to the UIM and the ubiquitin-associated domain (UBA), and its mutation to a smaller residue increases the affinity of ubiquitin for UIM.
Collapse
Affiliation(s)
- Kenichiro Fujiwara
- Graduate School of Integrated Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Musse AA, Merrill AR. The molecular basis for the pH-activation mechanism in the channel-forming bacterial colicin E1. J Biol Chem 2003; 278:24491-9. [PMID: 12714593 DOI: 10.1074/jbc.m302371200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The in vitro activity of the channel-forming bacteriocins such as colicin E1 in model membranes requires the specific activation of the protein by an acidic environment in the presence of a membrane potential. Acid activation of the C-terminal domain results in the formation of an insertion-competent intermediate with an enhanced ability to penetrate and perforate cell membranes. We report novel findings of this activation process through the design and study of mutant proteins involving the replacement of conserved Asp residues Asp-408, Asp-410, and Asp-423 within helices 5a and 4 in the colicin E1 channel domain that resulted in enhanced membrane binding, bilayer insertion rates, and ion channel activities at near neutral pH values. This activation process involves the destabilization of a critical salt bridge (Asp-410 and Lys-406) and H-bonds (Asp-408 and Ser-405 main chain; Asp-423 and Lys-420 main chain). The helix-to-coil transition of this motif was identified previously by time-resolved Trp fluorescence measurements (Merrill, A. R., Steer, B. A., Prentice, G. A., Weller, M. J., and Szabo, A. G. (1997) Biochemistry 36, 6874-6884), and here we use this approach to demonstrate that disruption of the helical structure of helices 4 and 5a results in a shift in this equilibrium to favor the coil state. Finally, we show that the essential components of the pH trigger motif are conserved among the channel-forming colicins and that it likely exists within other bacterial proteins and may even have evolved into more sophisticated devices in a number of microbial species.
Collapse
Affiliation(s)
- Abdiwahab A Musse
- Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry and Biochemistry, University of Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|
10
|
Tory MC, Merrill AR. Determination of membrane protein topology by red-edge excitation shift analysis: application to the membrane-bound colicin E1 channel peptide. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1564:435-48. [PMID: 12175927 DOI: 10.1016/s0005-2736(02)00493-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A new approach for the determination of the bilayer location of Trp residues in proteins has been applied to the study of the membrane topology of the channel-forming bacteriocin, colicin E1. This method, red-edge excitation shift (REES) analysis, was initially applied to the study of 12 single Trp-containing channel peptides of colicin E1 in the soluble state in aqueous medium. Notably, REES was observed for most of the channel peptides in aqueous solution upon low pH activation. The extent of REES was subsequently characterized using a model membrane system composed of the tripeptide, Lys-Trp-Lys, bound to dimyristoyl-sn-glycerol-3-phosphatidylserine liposomes. Subsequently, data accrued from the model peptide-lipid system was used to interpret information obtained on the channel peptides when bound to dioleoyl-sn-glycerol-3-phosphatidylcholine/dioleoyl-sn-glycerol-3-phosphatidylglycerol membrane vesicles. The single Trp mutant peptides were divided into three categories based on the change in the REES values observed for the Trp residues when the peptides were bound to liposomes as compared to the REES values measured for the soluble peptides. F-404 W, F-413 W, F-443 W, F-484 W, and W-495 peptides exhibited small and/or insignificant REES changes (Delta REES) whereas W-424, F-431 W, and Y-507 W channel peptides possessed modest REES changes (3 nm< or = Delta REES< or = 7 nm). In contrast, wild-type, Y-367 W, W-460, Y-478 W, and I-499 W channel peptides showed large Delta REES values upon membrane binding (7 nm< Delta REES< or =12 nm). The REES data for the membrane-bound structure of the colicin E1 channel peptide proved consistent with previous data for the topology of the closed channel state, which lends further credence to the currently proposed channel model. In conclusion, the REES method provides another source of topological data for assignment of the bilayer location for Trp residues within membrane-associated proteins; however, it also requires careful interpretation of spectral data in combination with structural information on the proteins being investigated.
Collapse
Affiliation(s)
- Monica C Tory
- Department of Chemistry and Biochemistry, Guelph-Waterloo Centre for Graduate Work in Chemistry, University of Guelph, Guelph, ON, Canada N1G 2W1
| | | |
Collapse
|
11
|
Ortega A, Lambotte S, Bechinger B. Calorimetric investigations of the structural stability and interactions of colicin B domains in aqueous solution and in the presence of phospholipid bilayers. J Biol Chem 2001; 276:13563-72. [PMID: 11278359 DOI: 10.1074/jbc.m007675200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effects of pH and temperature on the stability of interdomain interactions of colicin B have been studied by differential-scanning calorimetry, circular dichroism, and fluorescence spectroscopy. The calorimetric properties were compared with those of the isolated pore-forming fragment. The unfolding profile of the full-length toxin is consistent with two endothermic transitions. Whereas peak A (T(m) = 55 degrees C) most likely corresponds to the receptor/translocation domain, peak B (T(m) = 59 degrees C) is associated with the pore-forming domain. By lowering the pH from 7 to 3.5, the transition temperature of peaks A and B are reduced by 25 and 18 degrees C, respectively, due to proton exchange upon denaturation. The isolated pore-forming fragment unfolds at much higher temperatures (T(m) = 65 degrees C) and is stable throughout a wide pH range, indicating that intramolecular interactions between the different colicin B domains result in a less stable protein conformation. In aqueous solution circular dichroism spectra have been used to estimate the content of helical secondary structure of colicin B ( approximately 40%) or its pore-forming fragment ( approximately 80%). Upon heating, the ellipticities at 222 nm strongly decrease at the transition temperature. In the presence of lipid vesicles the differential-scanning calorimetry profiles of the pore-forming fragment exhibit a low heat of transition multicomponent structure. The heat of transition of membrane-associated colicin B (T(m) = 54 degrees C at pH 3.5) is reduced and its secondary structure is conserved even at intermediate temperatures indicating incomplete unfolding due to strong protein-lipid interactions.
Collapse
Affiliation(s)
- A Ortega
- Departamento de Bioquimica, Facultad de Medicina, Universidad Nacional Autónoma de México, México City 04510, Mexico
| | | | | |
Collapse
|
12
|
Abstract
During the past several years there has been debate about the origins of nonexponential intensity decays of intrinsic tryptophan (trp) fluorescence of proteins, especially for single tryptophan proteins (STP). In this review we summarize the data from diverse sources suggesting that time-dependent spectral relaxation is a ubiquitous feature of protein fluorescence. For most proteins, the observations from numerous laboratories have shown that for trp residues in proteins (1) the mean decay times increase with increasing observation wavelength; (2) decay associated spectra generally show longer decay times for the longer wavelength components; and (3) collisional quenching of proteins usually results in emission spectral shifts to shorter wavelengths. Additional evidence for spectral relaxation comes from the time-resolved emission spectra that usually shows time-dependent shifts to longer wavelengths. These overall observations are consistent with spectral relaxation in proteins occurring on a subnanosecond timescale. These results suggest that spectral relaxation is a significant if not dominant source of nonexponential decay in STP, and should be considered in any interpretation of nonexponential decay of intrinsic protein fluorescence.
Collapse
Affiliation(s)
- J R Lakowicz
- University of Maryland School of Medicine, Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, Baltimore, USA
| |
Collapse
|
13
|
Abstract
Cytotoxic peptides are relatively small cationic molecules such as those found 1) in venoms, e.g., melittin in bee, scorpion toxins in scorpion, pilosulin 1 in jumper ant, and lycotoxin I and II in wolf spider; 2) in skin secretions (e.g., magainin I and II from Xenopus laevis, dermaseptin from frog, antimicrobials from carp) and cells of the immune system (e.g., insect, scorpion, and mammalian defensins and cryptdins); 3) as autocytotoxicity peptides, e.g., amylin cytotoxic to pancreatic beta-cells, prion peptide fragment 106-126 [PrP-(106-126)], and amyloid beta-protein (AbetaP) cytotoxic to neurons; and 4) as designed synthetic peptides based on the sequences and properties of naturally occurring cytotoxic peptides. The small cytotoxic peptides are composed of beta-sheets, e.g., mammalian defensins, AbetaP, amylin, and PrP-(106-126), whereas the larger cytotoxic peptides have several domains composed of both alpha-helices and beta-sheets stabilized by cysteine bonds, e.g., scorpion toxins, scorpion, and insect defensins. Electrophysiological and molecular biology techniques indicate that these structures modify cell membranes via 1) interaction with intrinsic ion transport proteins and/or 2) formation of ion channels. These two nonexclusive mechanisms of action lead to changes in second messenger systems that further augment the abnormal electrical activity and distortion of the signal transduction causing cell death.
Collapse
Affiliation(s)
- J I Kourie
- Membrane Transport Group, Department of Chemistry, The Australian National University, Canberra City, Australian Capital Territory, 0200 Australia.
| | | |
Collapse
|
14
|
Tory MC, Merrill AR. Adventures in membrane protein topology. A study of the membrane-bound state of colicin E1. J Biol Chem 1999; 274:24539-49. [PMID: 10455117 DOI: 10.1074/jbc.274.35.24539] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular aggregate size of the closed state of the colicin E1 channel was determined by fluorescence resonance energy transfer experiments involving a fluorescence donor (three tryptophans, wild-type protein) and a fluorescence acceptor (5-(((acetyl)amino)ethyl)aminonaphthalene-1-sulfonic acid (AEDANS), Trp-deficient protein). There was no evidence of energy transfer between the donor and acceptor species when bound to membrane large unilamellar vesicles. These experiments led to the conclusion that the colicin E1 channel is monomeric in the membrane-bound closed channel state. Experiments were also conducted to study the membrane topology of the closed colicin channel in membrane large unilamellar vesicles using acrylamide as the membrane-impermeant, nonionic quencher of tryptophan fluorescence in a battery of single tryptophan mutant proteins. Furthermore, additional fluorescence parameters, including fluorescence emission maximum, fluorescence quantum yield, and fluorescence decay times, were used to assist in mapping the topology of the closed channel. Results suggest that the closed channel comprises most of the polypeptide of the channel domain and that the hydrophobic anchor domain does not transverse the membrane bilayer but nonetheless is deeply embedded within the hydrocarbon core of the membrane. Finally, a model is proposed which features at least two states that are in rapid equilibrium with each other and in which one state is more heavily populated than the other.
Collapse
Affiliation(s)
- M C Tory
- Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | |
Collapse
|
15
|
Kourie JI. Characterization of a C-type natriuretic peptide (CNP-39)-formed cation-selective channel from platypus (Ornithorhynchus anatinus) venom. J Physiol 1999; 518 ( Pt 2):359-69. [PMID: 10381585 PMCID: PMC2269427 DOI: 10.1111/j.1469-7793.1999.0359p.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. The lipid bilayer technique is used to characterize the biophysical and pharmacological properties of a novel, fast, cation-selective channel formed by incorporating platypus (Ornithorhynchus anatinus) venom (OaV) into lipid membranes. 2. A synthetic C-type natriuretic peptide OaCNP-39, which is identical to that present in platypus venom, mimics the conductance, kinetics, selectivity and pharmacological properties of the OaV-formed fast cation-selective channel. The N-terminal fragment containing residues 1-17, i.e. OaCNP-39(1-17), induces the channel activity. 3. The current amplitude of the TEACl-insensitive fast cation-selective channel is dependent on cytoplasmic K+, [K+]cis. The increase in the current amplitude, as a function of increasing [K+]cis, is non-linear and can be described by the Michaelis-Menten equation. At +140 mV, the values of gammamax and KS are 63.1 pS and 169 mM, respectively, whereas at 0 mV the values of gammamax and KS are 21.1 pS and 307 mM, respectively. gammamax and KS are maximal single channel conductance and concentration for half-maximal gamma, respectively. The calculated permeability ratios, PK:PRb:PNa:PCs:PLi, were 1:0.76:0.21:0.09:0.03, respectively. 4. The probability of the fast channel being open, Po, increases from 0.15 at 0 mV to 0.75 at +140 mV. In contrast, the channel frequency, Fo, decreases from 400 to 180 events per second for voltages between 0 mV and +140. The mean open time, To, increases as the bilayer is made more positive, between 0 and +140 mV. The mean values of the voltage-dependent kinetic parameters, Po, Fo, To and mean closed time (Tc), are independent of [KCl]cis between 50 and 750 mM (P > 0. 05). 5. It is proposed that some of the symptoms of envenomation by platypus venom may be caused partly by changes in cellular functions mediated via the OaCNP-39-formed fast cation-selective channel, which affects signal transduction.
Collapse
Affiliation(s)
- J I Kourie
- Membrane Transport Group, Department of Chemistry, The Faculties, The Australian National University, Canberra City, ACT 0200, Australia.
| |
Collapse
|
16
|
Beattie BK, Merrill AR. A fluorescence investigation of the active site of Pseudomonas aeruginosa exotoxin A. J Biol Chem 1999; 274:15646-54. [PMID: 10336461 DOI: 10.1074/jbc.274.22.15646] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Single tryptophan mutant proteins of a catalytically active domain III recombinant protein (PE24) from Pseudomonas aeruginosa exotoxin A were prepared by site-directed mutagenesis. The binding of the dinucleotide substrate, NAD+, to the PE24 active site was studied by exploiting intrinsic tryptophan fluorescence for the wild-type, single Trp, and tryptophan-deficient mutant proteins. Various approaches were used to study the substrate binding process, including dynamic quenching, CD spectroscopy, steady-state fluorescence emission analysis, NAD+-glycohydrolase activity, NAD+ binding analysis, protein denaturation experiments, fluorescence lifetime analysis, steady-state anisotropy measurement, stopped flow fluorescence spectroscopy, and quantum yield determination. It was found that the conservative replacement of tryptophan residues with phenylalanine had little or no effect on the folded stability and enzyme activity of the PE24 protein. Dynamic quenching experiments indicated that when bound to the active site of the enzyme, the NAD+ substrate protected Trp-558 from solvent to a large extent but had no effect on the degree of solvent exposure for tryptophans 417 and 466. Also, upon substrate binding, the anisotropy of the Trp-417(W466F/W558F) protein showed the largest increase, followed by Trp-466(W417F/W558F), and there was no effect on Trp-558(W417F/W466F). Furthermore, the intrinsic tryptophan fluorescence exhibited the highest degree of substrate-induced quenching for the wild-type protein, followed in decreasing order by Trp-417(W466F/W558F), Trp-558(W417F/W466F), and Trp-466(W417F/W558F). These data provide evidence for a structural rearrangement in the enzyme domain near Trp-417 invoked by the binding of the NAD+ substrate.
Collapse
Affiliation(s)
- B K Beattie
- Guelph-Waterloo Centre for Graduate Work in Chemistry, Department of Chemistry and Biochemistry, University of Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|
17
|
Abstract
We report the first evidence that synthetic human C-type natriuretic peptide-22 and the OaC-type natriuretic peptide-39(18-39), a 22 amino acid fragment of the OaC-type natriuretic peptide-39 from platypus venom, can function directly by forming a novel voltage-gated weakly cation-selective channel in negatively charged artificial lipid bilayer membranes. The channel activity is characterized by a tendency for inactivation at negative voltages, e.g. -60 and -70 mV, whereas at positive voltages the channel is fully open. The channel has a maximal cord conductance of 546+/-23 pS (n = 16) and shows weak outward rectification. The sequence and the permeability ratios were P(K)+: P(Cs)+: P(Na)+: P(choline)+ 1:0.88:0.76:0.13, respectively. The addition of 50 mM TEA+ cis (a blocker of outwardly rectifying K+ channels), 20 mM Cs+ cis (a blocker of inwardly rectifying K+ channels) or 0.5 mM glibenclamide cis (a blocker of ATP-sensitive K+ channels) to the cis chamber did not affect the conductance or the kinetics of the OaC-type natriuretic peptide-39(18-39)-formed channels (n = 2-5). It is concluded that the weak cation selectivity, large conductance and high open probability as well as their voltage dependency are consistent with the ability of these peptides to cause that loss of compartmentation of the membrane, which is a characteristic feature of adverse conditions that cause C-type natriuretic peptide-related pathologies.
Collapse
Affiliation(s)
- J I Kourie
- Department of Chemistry, The Faculties, The Australian National University, Canberra.
| |
Collapse
|
18
|
Abstract
Several features of ion-channel-forming colicins have been illuminated by recent revelations: its four-domain structure, the mechanism and thermodynamics of binding to the gating loop of outer membrane porins, the mechanism of translocation, competition for the transperiplasmic excursion facilitated by the Tol or Ton transperiplasmic proteins, and the formation of a waisted, funnel-shaped transmembrane channel of well-characterized shape.
Collapse
Affiliation(s)
- R M Stroud
- Department of Biochemistry and Biophysics, University of California, San Francisco School of Medicine 94143-0448, USA.
| | | | | | | |
Collapse
|