1
|
Sakamoto A, Grogan A, Kawakami R, Finn A, Shah P, Nair D, Batra K, Bailen C, Sakamoto M, Virmani R, Finn AV. Role of Hemoglobin-Stimulated Macrophages and Intraplaque Hemorrhage in the Development of Vascular Diseases. Arterioscler Thromb Vasc Biol 2025. [PMID: 40308195 DOI: 10.1161/atvbaha.125.321439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Intraplaque hemorrhage plays a critical role in the life of advancing atherosclerotic plaques, not only by triggering an acute increase in lesion size but also by attracting macrophages to the site. Lysis of erythrocytes in these areas is thought to be caused by oxidative stress, which induces the release of free Hb (hemoglobin), which is quickly bound by haptoglobin to form Hb-haptoglobin complexes. Macrophages are the only cells in the body capable of scavenging these complexes through the CD (cluster of differentiation) 163 scavenger receptor, which mediates Hb-haptoglobin ingestion, driving their differentiation. Emerging data suggest that these Hb-stimulated macrophages play an essential role in responding to intraplaque hemorrhage through mediating iron metabolism and influencing other cell types, including endothelial and smooth muscle cells. This review focuses on the role of Hb-stimulated macrophages in promoting atherogenesis through their effects on (1) endothelial activation, neoangiogenesis, and vascular permeability; (2) endothelial-to-mesenchymal cell transition and subsequent apoptosis; and (3) the prevention of smooth muscle cell osteogenic transformation and calcification. These functions may also be relevant to other vascular diseases where erythrocyte accumulation drives the formation of Hb-stimulated macrophages, which is a fundamental response to hemorrhage no matter the clinical setting.
Collapse
Affiliation(s)
- Atsushi Sakamoto
- CVPath Institute, Inc, Gaithersburg, MD (A.S., A.G., R.K., A.F., P.S., D.N., K.B., C.B., M.S., R.V., A.V.F.)
- Hamamatsu University School of Medicine, Shizuoka, Japan (A.S.)
| | - Alyssa Grogan
- CVPath Institute, Inc, Gaithersburg, MD (A.S., A.G., R.K., A.F., P.S., D.N., K.B., C.B., M.S., R.V., A.V.F.)
| | - Rika Kawakami
- CVPath Institute, Inc, Gaithersburg, MD (A.S., A.G., R.K., A.F., P.S., D.N., K.B., C.B., M.S., R.V., A.V.F.)
| | - Alexandra Finn
- CVPath Institute, Inc, Gaithersburg, MD (A.S., A.G., R.K., A.F., P.S., D.N., K.B., C.B., M.S., R.V., A.V.F.)
| | - Palak Shah
- CVPath Institute, Inc, Gaithersburg, MD (A.S., A.G., R.K., A.F., P.S., D.N., K.B., C.B., M.S., R.V., A.V.F.)
| | - Diya Nair
- CVPath Institute, Inc, Gaithersburg, MD (A.S., A.G., R.K., A.F., P.S., D.N., K.B., C.B., M.S., R.V., A.V.F.)
| | - Krish Batra
- CVPath Institute, Inc, Gaithersburg, MD (A.S., A.G., R.K., A.F., P.S., D.N., K.B., C.B., M.S., R.V., A.V.F.)
| | - Caroline Bailen
- CVPath Institute, Inc, Gaithersburg, MD (A.S., A.G., R.K., A.F., P.S., D.N., K.B., C.B., M.S., R.V., A.V.F.)
| | - Mirai Sakamoto
- CVPath Institute, Inc, Gaithersburg, MD (A.S., A.G., R.K., A.F., P.S., D.N., K.B., C.B., M.S., R.V., A.V.F.)
| | - Renu Virmani
- CVPath Institute, Inc, Gaithersburg, MD (A.S., A.G., R.K., A.F., P.S., D.N., K.B., C.B., M.S., R.V., A.V.F.)
| | - Aloke V Finn
- CVPath Institute, Inc, Gaithersburg, MD (A.S., A.G., R.K., A.F., P.S., D.N., K.B., C.B., M.S., R.V., A.V.F.)
- University of Maryland School of Medicine, Baltimore (A.V.F.)
| |
Collapse
|
2
|
Moon CE, Lee JK, Kim H, Kwon JM, Kang Y, Han J, Ji YW, Seo Y. Proteomic analysis of CD29+ Müller cells reveals metabolic reprogramming in rabbit myopia model. Sci Rep 2024; 14:24072. [PMID: 39402218 PMCID: PMC11473955 DOI: 10.1038/s41598-024-75637-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
The prevalence of myopia is rapidly increasing, significantly impacting the quality of life of affected individuals. Prior research by our group revealed reactive gliosis in Müller cells within myopic retina, prompting further investigation of their role in myopia, which remains unclear. In this study, we analyzed protein expression changes in CD29+ Müller cells isolated from a form deprivation-induced rabbit model of myopia using magnetic activated cell sorting to investigate the role of these cells in myopia. As the principal glial cells in the retina, Müller cells exhibited significant alterations in the components of metabolic pathways, particularly glycolysis and angiogenesis, including the upregulation of glycolytic enzymes, such as lactate dehydrogenase A and pyruvate kinase, implicated in the adaptation to increased metabolic demands under myopic stress. Additionally, a decrease in the expression of proteins associated with oxygen transport suggested enhanced vulnerability to oxidative stress. These findings highlight the proactive role of CD29+ Müller cells in modifying the retinal environment in response to myopic stress and provide valuable insights into mechanisms that could help mitigate myopia progression.
Collapse
Affiliation(s)
- Chae-Eun Moon
- Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei‑ro, Seodaemun‑gu, Seoul, 03722, Republic of Korea
| | - Jun-Ki Lee
- Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei‑ro, Seodaemun‑gu, Seoul, 03722, Republic of Korea
| | - Hyunjin Kim
- Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei‑ro, Seodaemun‑gu, Seoul, 03722, Republic of Korea
| | - Ji-Min Kwon
- Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei‑ro, Seodaemun‑gu, Seoul, 03722, Republic of Korea
| | - Yujin Kang
- Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei‑ro, Seodaemun‑gu, Seoul, 03722, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jinu Han
- Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211, Eounju-ro, Gangnam-gu, Seoul, 03722, Republic of Korea
| | - Yong Woo Ji
- Department of Ophthalmology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si, 16995, Gyeonggi-do, Republic of Korea.
| | - Yuri Seo
- Department of Ophthalmology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si, 16995, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
3
|
Tao J, Liu L, Huang X, Tu C, Zhang L, Yang S, Bai Y, Li L, Qin Z. FerrylHb induces inflammation and cell death in grass carp (Ctenopharyngodon idella) hepatocytes. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109474. [PMID: 38513914 DOI: 10.1016/j.fsi.2024.109474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/20/2024] [Accepted: 03/03/2024] [Indexed: 03/23/2024]
Abstract
Grass carp hemorrhagic disease is a significant problem in grass carp aquaculture. It releases highly oxidizing hemoglobin (Hb) into tissues, induces rapid autooxidation, and subsequently discharges cytotoxic reactive oxygen species (ROS). However, the mechanism underlying Hb damage to the teleost remains unclear. Here, we employed ferrylHb and heme to incubate L8824 (grass carp liver) cells and quantitatively analyzed the corresponding molecular regulation using the RNA-seq method. Based on the RNA-seq analysis data, after 12 h of incubation of the L8824 cells with ferrylHb, a total of 3738 differentially expressed genes (DEGs) were identified, 1824 of which were upregulated, and 1914 were downregulated. A total of 4434 DEGs were obtained in the heme treated group, with 2227 DEGs upregulated and 2207 DEGs downregulated. KEGG enrichment analysis data revealed that the incubation of ferrylHb and heme significantly activated the pathways related to Oxidative Phosphorylation, Autophagy, Mitophagy and Protein Processing in Endoplasmic Reticulum. The genes associated with NF-κB, autophagy and apoptosis pathways were selected for further validation by quantitative real-time RT-PCR (qRT-PCR). The results were consistent with the RNA-seq data. Taken together, the incubation of Hb and heme induced the molecular regulation of L8824, which consequently led to programmed cell death through multiple pathways.
Collapse
Affiliation(s)
- Junjie Tao
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Lihan Liu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Xiaoman Huang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Chenming Tu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Linpeng Zhang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Shiyi Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Yanhan Bai
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Lin Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| |
Collapse
|
4
|
Delanghe JR, Delrue C, Speeckaert R, Speeckaert MM. Unlocking the link between haptoglobin polymorphism and noninfectious human diseases: insights and implications. Crit Rev Clin Lab Sci 2024; 61:275-297. [PMID: 38013410 DOI: 10.1080/10408363.2023.2285929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Haptoglobin (Hp) is a polymorphic protein that was initially described as a hemoglobin (Hb)-binding protein. The major functions of Hp are to scavenge Hb, prevent iron loss, and prevent heme-based oxidation. Hp regulates angiogenesis, nitric oxide homeostasis, immune responses, and prostaglandin synthesis. Genetic polymorphisms in the Hp gene give rise to different phenotypes, including Hp 1-1, Hp 2-1, and Hp 2-2. Extensive research has been conducted to investigate the association between Hp polymorphisms and several medical conditions including cardiovascular disease, inflammatory bowel disease, cancer, transplantation, and hemoglobinopathies. Generally, the Hp 2-2 phenotype is associated with increased disease risk and poor outcomes. Over the years, the Hp 2 allele has spread under genetic pressures. Individuals with the Hp 2-2 phenotype generally exhibit lower levels of CD163 expression in macrophages. The decreased expression of CD163 may be associated with the poor antioxidant capacity in the serum of subjects carrying the Hp 2-2 phenotype. However, the Hp 1-1 phenotype may confer protection in some cases. The Hp1 allele has strong antioxidant, anti-inflammatory, and immunomodulatory properties. It is important to note that the benefits of the Hp1 allele may vary depending on genetic and environmental factors as well as the specific disease or condition under consideration. Therefore, the Hp1 allele may not necessarily confer advantages in all situations, and its effects may be context-dependent. This review highlights the current understanding of the role of Hp polymorphisms in cardiovascular disease, inflammatory bowel disease, cancer, transplantation, hemoglobinopathies, and polyuria.
Collapse
Affiliation(s)
- Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | | | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
- Research Foundation-Flanders (FWO), Brussels, Belgium
| |
Collapse
|
5
|
Gáll T, Nagy P, Garai D, Potor L, Balla GJ, Balla G, Balla J. Overview on hydrogen sulfide-mediated suppression of vascular calcification and hemoglobin/heme-mediated vascular damage in atherosclerosis. Redox Biol 2022; 57:102504. [PMID: 36240620 PMCID: PMC9576974 DOI: 10.1016/j.redox.2022.102504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/04/2022] Open
Abstract
Vulnerable atherosclerotic plaques with hemorrhage considerably contribute to cardiovascular morbidity and mortality. Calcification is the main characteristic of advanced atherosclerotic lesions and calcified aortic valve disease (CAVD). Lyses of red blood cells and hemoglobin (Hb) release occur in human hemorrhagic complicated lesions. During the interaction of cell-free Hb with plaque constituents, Hb is oxidized to ferric and ferryl states accompanied by oxidative changes of the globin moieties and heme release. Accumulation of both ferryl-Hb and metHb has been observed in atherosclerotic plaques. The oxidation hotspots in the globin chain are the cysteine and tyrosine amino acids associated with the generation of Hb dimers, tetramers and polymers. Moreover, fragmentation of Hb occurs leading to the formation of globin-derived peptides. A series of these pro-atherogenic cellular responses can be suppressed by hydrogen sulfide (H2S). Since H2S has been explored to exhibit a wide range of physiologic functions to maintain vascular homeostasis, it is not surprising that H2S may play beneficial effects in the progression of atherosclerosis. In the present review, we summarize the findings about the effects of H2S on atherosclerosis and CAVD with a special emphasis on the oxidation of Hb/heme in atherosclerotic plaque development and vascular calcification.
Collapse
Affiliation(s)
- Tamás Gáll
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, 11003, University of Debrecen, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, Hungary; Institute of Oncochemistry, University of Debrecen, Hungary
| | - Dorottya Garai
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, Hungary
| | - László Potor
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, 11003, University of Debrecen, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | | | - György Balla
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, 11003, University of Debrecen, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - József Balla
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, 11003, University of Debrecen, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
6
|
Vallelian F, Buehler PW, Schaer DJ. Hemolysis, free hemoglobin toxicity, and scavenger protein therapeutics. Blood 2022; 140:1837-1844. [PMID: 35660854 PMCID: PMC10653008 DOI: 10.1182/blood.2022015596] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/27/2022] [Indexed: 11/20/2022] Open
Abstract
During hemolysis, erythrophagocytes dispose damaged red blood cells. This prevents the extracellular release of hemoglobin, detoxifies heme, and recycles iron in a linked metabolic pathway. Complementary to this process, haptoglobin and hemopexin scavenge and shuttle the red blood cell toxins hemoglobin and heme to cellular clearance. Pathological hemolysis outpaces macrophage capacity and scavenger synthesis across a diversity of diseases. This imbalance leads to hemoglobin-driven disease progression. To meet a void in treatment options, scavenger protein-based therapeutics are in clinical development.
Collapse
Affiliation(s)
- Florence Vallelian
- Division of Internal Medicine, University Hospital, University of Zurich, Zurich, Switzerland
| | - Paul W. Buehler
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD
- Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD
| | - Dominik J. Schaer
- Division of Internal Medicine, University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Sajib M, Wu H, Fristedt R, Undeland I. Hemoglobin-mediated lipid oxidation of herring filleting co-products during ensilaging and its inhibition by pre-incubation in antioxidant solutions. Sci Rep 2021; 11:19492. [PMID: 34593947 PMCID: PMC8484477 DOI: 10.1038/s41598-021-98997-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/17/2021] [Indexed: 11/09/2022] Open
Abstract
The aims of this study were to investigate the role of hemoglobin (Hb) in lipid oxidation development during ensilaging of herring filleting co-products, and, to inhibit this reaction by pre-incubating the co-products in water or physiological salt, with/without different antioxidants. Results showed that both peroxide value (PV) and 2-thiobarbituric acid reactive substances (TBARS) gradually increased during 7 days of ensilaging at 22 °C in absence of antioxidants. The increase in TBARS was proportional to the Hb levels present, while PV was less affected. A Hb-fortified Tris-buffer model system adjusted to pH 3.50 confirmed that Hb changed immediately from its native oxyHb to the metHb state, which facilitated heme group release and thus probably explains the increased PV and TBARS during ensilaging. Pre-incubating the co-products for 30 s in a solution containing 0.5% rosemary extract was the most promising strategy to inhibit lipid oxidation both in the co-products during pre-processing storage and during the actual ensilaging. The solution could be re-used up to ten times without losing its activity, illustrating that this methodology can be a scalable and cost-effective strategy to extend the oxidative stability of herring co-products allowing for further value adding e.g., into a high-quality silage.
Collapse
Affiliation(s)
- Mursalin Sajib
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden.
| | - Haizhou Wu
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Rikard Fristedt
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Ingrid Undeland
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| |
Collapse
|
8
|
Ferryl Hemoglobin and Heme Induce A 1-Microglobulin in Hemorrhaged Atherosclerotic Lesions with Inhibitory Function against Hemoglobin and Lipid Oxidation. Int J Mol Sci 2021; 22:ijms22136668. [PMID: 34206377 PMCID: PMC8268598 DOI: 10.3390/ijms22136668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
Infiltration of red blood cells into atheromatous plaques and oxidation of hemoglobin (Hb) and lipoproteins are implicated in the pathogenesis of atherosclerosis. α1-microglobulin (A1M) is a radical-scavenging and heme-binding protein. In this work, we examined the origin and role of A1M in human atherosclerotic lesions. Using immunohistochemistry, we observed a significant A1M immunoreactivity in atheromas and hemorrhaged plaques of carotid arteries in smooth muscle cells (SMCs) and macrophages. The most prominent expression was detected in macrophages of organized hemorrhage. To reveal a possible inducer of A1M expression in ruptured lesions, we exposed aortic endothelial cells (ECs), SMCs and macrophages to heme, Oxy- and FerrylHb. Both heme and FerrylHb, but not OxyHb, upregulated A1M mRNA expression in all cell types. Importantly, only FerrylHb induced A1M protein secretion in aortic ECs, SMCs and macrophages. To assess the possible function of A1M in ruptured lesions, we analyzed Hb oxidation and heme-catalyzed lipid peroxidation in the presence of A1M. We showed that recombinant A1M markedly inhibited Hb oxidation and heme-driven oxidative modification of low-density lipoproteins as well plaque lipids derived from atheromas. These results demonstrate the presence of A1M in atherosclerotic plaques and suggest its induction by heme and FerrylHb in the resident cells.
Collapse
|
9
|
Mina PR, Kumar S, Agarwal K, Kumar R, Pal A, Tandon S, Yadav SK, Yadav S, Darokar MP. 4-chloro eugenol interacts synergistically with artesunate against drug resistant P. falciparum inducing oxidative stress. Biomed Pharmacother 2021; 137:111311. [PMID: 33524782 DOI: 10.1016/j.biopha.2021.111311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/10/2021] [Accepted: 01/21/2021] [Indexed: 11/29/2022] Open
Abstract
4-chloro eugenol (4CE), a semisynthetic analog of phytomolecule eugenol exhibited potent antiplasmodial activity with IC50 in the range of 1.5-5 μM against sensitive as well as drug resistant strain of P. falciparum. This analog also showed synergy with a clinically used antimalarial drug artesunate and was able to curtail the IC50 of artesunate up to 4-5 folds. Although, 4CE did not show any effect on heme polymerization, the most common drug target in the malaria parasite, it could increase the level of reactive oxygen species (ROS) and reactive nitrogen species (RNS) alone as well as in combination with artesunate. Further, 4CE induced oxidative stress was observed to affect the macromolecules in terms of DNA damage, protein carbonylation and lipid peroxidation. At the physiological level, cellular organelles like mitochondria and endoplasmic reticulum were observed to be get affected by 4CE in terms of membrane depolarization and calcium ion leakage respectively. These observations could be validated by expression analysis of oxidative stress responsive genes and proteins. Further, in in vivo assay, 4CE showed significant chemo-suppression of parasitemia as well as an increase in mean survival time in the murine malaria model. Interestingly, in combination with artesunate, 4CE showed higher chemo-suppression as well as enhanced mean survival time at a much lower concentrations of both the partners as compared to an individual dose of artesunate and 4CE. A combination of 4CE and artesunate was also observed to attenuate cerebral malaria pathogenesis.
Collapse
Affiliation(s)
- Pooja Rani Mina
- Bioprospectionand Product Development Division, CSIR- Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Saurabh Kumar
- Bioprospectionand Product Development Division, CSIR- Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Karishma Agarwal
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Ravi Kumar
- Bioprospectionand Product Development Division, CSIR- Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Anirban Pal
- Bioprospectionand Product Development Division, CSIR- Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Sudeep Tandon
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Sanjeev Kumar Yadav
- Developmental Toxicology Laboratory, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Sanjay Yadav
- Developmental Toxicology Laboratory, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Mahendra P Darokar
- Bioprospectionand Product Development Division, CSIR- Central Institute of Medicinal and Aromatic Plants, Lucknow, India.
| |
Collapse
|
10
|
Gáll T, Pethő D, Nagy A, Balla G, Balla J. Therapeutic Potential of Carbon Monoxide (CO) and Hydrogen Sulfide (H 2S) in Hemolytic and Hemorrhagic Vascular Disorders-Interaction between the Heme Oxygenase and H 2S-Producing Systems. Int J Mol Sci 2020; 22:ijms22010047. [PMID: 33374506 PMCID: PMC7793096 DOI: 10.3390/ijms22010047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023] Open
Abstract
Over the past decades, substantial work has established that hemoglobin oxidation and heme release play a pivotal role in hemolytic/hemorrhagic disorders. Recent reports have shown that oxidized hemoglobins, globin-derived peptides, and heme trigger diverse biological responses, such as toll-like receptor 4 activation with inflammatory response, reprogramming of cellular metabolism, differentiation, stress, and even death. Here, we discuss these cellular responses with particular focus on their mechanisms that are linked to the pathological consequences of hemorrhage and hemolysis. In recent years, endogenous gasotransmitters, such as carbon monoxide (CO) and hydrogen sulfide (H2S), have gained a lot of interest in connection with various human pathologies. Thus, many CO and H2S-releasing molecules have been developed and applied in various human disorders, including hemolytic and hemorrhagic diseases. Here, we discuss our current understanding of oxidized hemoglobin and heme-induced cell and tissue damage with particular focus on inflammation, cellular metabolism and differentiation, and endoplasmic reticulum stress in hemolytic/hemorrhagic human diseases, and the potential beneficial role of CO and H2S in these pathologies. More detailed mechanistic insights into the complex pathology of hemolytic/hemorrhagic diseases through heme oxygenase-1/CO as well as H2S pathways would reveal new therapeutic approaches that can be exploited for clinical benefit.
Collapse
Affiliation(s)
- Tamás Gáll
- Division of Nephrology, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.G.); (D.P.); (A.N.)
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, University of Debrecen, 4032 Debrecen, Hungary;
| | - Dávid Pethő
- Division of Nephrology, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.G.); (D.P.); (A.N.)
- Faculty of Medicine, University of Debrecen, Kálmán Laki Doctoral School, 4032 Debrecen, Hungary
| | - Annamária Nagy
- Division of Nephrology, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.G.); (D.P.); (A.N.)
- Faculty of Medicine, University of Debrecen, Kálmán Laki Doctoral School, 4032 Debrecen, Hungary
| | - György Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, University of Debrecen, 4032 Debrecen, Hungary;
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - József Balla
- Division of Nephrology, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.G.); (D.P.); (A.N.)
- Correspondence: ; Tel.: +36-52-255-500/55004
| |
Collapse
|
11
|
Thoman ME, McKarns SC. Metabolomic Profiling in Neuromyelitis Optica Spectrum Disorder Biomarker Discovery. Metabolites 2020; 10:metabo10090374. [PMID: 32961928 PMCID: PMC7570337 DOI: 10.3390/metabo10090374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/04/2020] [Accepted: 09/12/2020] [Indexed: 12/21/2022] Open
Abstract
There is no specific test for diagnosing neuromyelitis optica spectrum disorder (NMOSD), a disabling autoimmune disease of the central nervous system. Instead, diagnosis relies on ruling out other related disorders with overlapping clinical symptoms. An urgency for NMOSD biomarker discovery is underscored by adverse responses to treatment following misdiagnosis and poor prognosis following the delayed onset of treatment. Pathogenic autoantibiotics that target the water channel aquaporin-4 (AQP4) and myelin oligodendrocyte glycoprotein (MOG) contribute to NMOSD pathology. The importance of early diagnosis between AQP4-Ab+ NMOSD, MOG-Ab+ NMOSD, AQP4-Ab− MOG-Ab− NMOSD, and related disorders cannot be overemphasized. Here, we provide a comprehensive data collection and analysis of the currently known metabolomic perturbations and related proteomic outcomes of NMOSD. We highlight short chain fatty acids, lipoproteins, amino acids, and lactate as candidate diagnostic biomarkers. Although the application of metabolomic profiling to individual NMOSD patient care shows promise, more research is needed.
Collapse
Affiliation(s)
- Maxton E. Thoman
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA;
- Laboratory of TGF-β Biology, Epigenetics, and Cytokine Regulation, Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Susan C. McKarns
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA;
- Laboratory of TGF-β Biology, Epigenetics, and Cytokine Regulation, Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Department of Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Correspondence:
| |
Collapse
|
12
|
Bozza MT, Jeney V. Pro-inflammatory Actions of Heme and Other Hemoglobin-Derived DAMPs. Front Immunol 2020; 11:1323. [PMID: 32695110 PMCID: PMC7339442 DOI: 10.3389/fimmu.2020.01323] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Damage associated molecular patterns (DAMPs) are endogenous molecules originate from damaged cells and tissues with the ability to trigger and/or modify innate immune responses. Upon hemolysis hemoglobin (Hb) is released from red blood cells (RBCs) to the circulation and give a rise to the production of different Hb redox states and heme which can act as DAMPs. Heme is the best characterized Hb-derived DAMP that targets different immune and non-immune cells. Heme is a chemoattractant, activates the complement system, modulates host defense mechanisms through the activation of innate immune receptors and the heme oxygenase-1/ferritin system, and induces innate immune memory. The contribution of oxidized Hb forms is much less studied, but some evidence show that these species might play distinct roles in intravascular hemolysis-associated pathologies independently of heme release. This review aims to summarize our current knowledge about the formation and pro-inflammatory actions of heme and other Hb-derived DAMPs.
Collapse
Affiliation(s)
- Marcelo T Bozza
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Viktória Jeney
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
13
|
Formation and Detection of Highly Oxidized Hemoglobin Forms in Biological Fluids during Hemolytic Conditions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8929020. [PMID: 32377310 PMCID: PMC7196973 DOI: 10.1155/2020/8929020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
Hemolytic diseases are characterized by an accelerated breakdown of red blood cells (RBCs) and the release of hemoglobin (Hb). Following, RBC lysis Hb oxidation occurs with the formation of different redox states of Hb (metHb and ferrylHb) and the release of heme. ferrylHb is unstable and decomposes to metHb with the concomitant formation of globin radicals and eventually covalently crosslinked Hb multimers. The goal of the present study was to determine the concentrations of the different redox states of Hb in biological samples during hemolytic conditions. We used plasma and urine samples of mice with intravascular hemolysis and human cerebrospinal fluid (CSF) samples following intraventricular hemorrhage. Because ferrylHb is highly unstable, we also addressed the fate of this species. metHb and free heme time-dependently accumulate in plasma and CSF samples following intravascular hemolysis and intraventricular hemorrhage, respectively. ferrylHb is hardly detectable in the biological samples during hemolytic conditions. Under in vitro conditions, ferrylHb decomposes quickly to metHb, which process is associated with the formation of covalently crosslinked Hb multimers. We detected these covalently crosslinked Hb multimers in plasma, urine, and CSF samples during hemolytic conditions. Because globin modification is specific for these Hb forms, we propose to call this heterogeneous form of Hb produced during ferrylHb decomposition as globin-modified oxidized Hb (gmoxHb). Understanding the formation and the contribution of gmoxHb species to the pathogenesis of hemolytic conditions could have therapeutic implications in the treatment of hemolytic diseases.
Collapse
|
14
|
Nasir N, Raji S, Mustafa F, Rizvi TA, Al Natour Z, Hilal-Alnaqbi A, Al Ahmad M. Electrical detection of blood cells in urine. Heliyon 2019; 6:e03102. [PMID: 31909269 PMCID: PMC6938827 DOI: 10.1016/j.heliyon.2019.e03102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/21/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
Available methods for detecting blood in the urine (hematuria) can be problematic since results can be influenced by many factors in patients and in the lab settings, resulting in false positive or false negative results. This necessitates the development of new, accurate and easy-access methods that save time and effort. This study demonstrates a label-free and accurate method for detecting the presence of red and white blood cells (RBCs and WBCs) in urine by measuring the changes in the dielectric properties of urine upon increasing concentrations of both cell types. The current method could detect changes in the electrical properties of fresh urine over a short time interval, making this method suitable for detecting changes that cannot be recognized by conventional methods. Correcting for these changes enabled the detection of a minimum cell concentration of 102 RBCs per ml which is not possible by conventional methods used in the labs except for the semi-quantitative method that can detect 50 RBCs per ml, but it is a lengthy and involved procedure, not suitable for high volume labs. This ability to detect very small amount of both types of cells makes the proposed technique an attractive tool for detecting hematuria, the presence of which is indicative of problems in the excretory system.
Collapse
Affiliation(s)
- Nida Nasir
- Department of Electrical Engineering, College of Engineering, United Arab Emirates University (UAEU), Al Ain, 15551, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, United Arab Emirates
| | - Shaima Raji
- Department of Electrical Engineering, College of Engineering, United Arab Emirates University (UAEU), Al Ain, 15551, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, United Arab Emirates
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine & Health Sciences, United Arab Emirates University (UAEU), Al Ain, 15551, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, United Arab Emirates
| | - Tahir A Rizvi
- Department of Microbiology and Immunology, College of Medicine & Health Sciences, United Arab Emirates University (UAEU), Al Ain, 15551, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, United Arab Emirates
| | - Zeina Al Natour
- Department of Electrical Engineering, College of Engineering, United Arab Emirates University (UAEU), Al Ain, 15551, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, United Arab Emirates
| | - Ali Hilal-Alnaqbi
- Department of Mechanical Engineering, College of Engineering, United Arab Emirates University (UAEU), Al Ain, 15551, United Arab Emirates.,Abu Dhabi Polytechnic, Abu Dhabi, 1114999, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, United Arab Emirates
| | - Mahmoud Al Ahmad
- Department of Electrical Engineering, College of Engineering, United Arab Emirates University (UAEU), Al Ain, 15551, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, United Arab Emirates
| |
Collapse
|
15
|
Nyakundi BB, Tóth A, Balogh E, Nagy B, Erdei J, Ryffel B, Paragh G, Cordero MD, Jeney V. Oxidized hemoglobin forms contribute to NLRP3 inflammasome-driven IL-1β production upon intravascular hemolysis. Biochim Biophys Acta Mol Basis Dis 2018; 1865:464-475. [PMID: 30389578 DOI: 10.1016/j.bbadis.2018.10.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/16/2018] [Accepted: 10/26/2018] [Indexed: 12/17/2022]
Abstract
Damage associated molecular patterns (DAMPs) are released form red blood cells (RBCs) during intravascular hemolysis (IVH). Extracellular heme, with its pro-oxidant, pro-inflammatory and cytotoxic effects, is sensed by innate immune cells through pattern recognition receptors such as toll-like receptor 4 and nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3), while free availability of heme is strictly controlled. Here we investigated the involvement of different hemoglobin (Hb) forms in hemolysis-associated inflammatory responses. We found that after IVH most of the extracellular heme molecules are localized in oxidized Hb forms. IVH was associated with caspase-1 activation and formation of mature IL-1β in plasma and in the liver of C57BL/6 mice. We showed that ferrylHb (FHb) induces active IL-1β production in LPS-primed macrophages in vitro and triggered intraperitoneal recruitment of neutrophils and monocytes, caspase-1 activation and active IL-1β formation in the liver of C57BL/6 mice. NLRP3 deficiency provided a survival advantage upon IVH, without influencing the extent of RBC lysis or the accumulation of oxidized Hb forms. However, both hemolysis-induced and FHb-induced pro-inflammatory responses were largely attenuated in Nlrp3-/- mice. Taken together, FHb is a potent trigger of NLRP3 activation and production of IL-1β in vitro and in vivo, suggesting that FHb may contribute to hemolysis-induced inflammation. Identification of RBC-derived DAMPs might allow us to develop new therapeutic approaches for hemolytic diseases.
Collapse
Affiliation(s)
- Benard Bogonko Nyakundi
- Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Tóth
- Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Enikő Balogh
- Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Béla Nagy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Erdei
- Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bernhard Ryffel
- Experimental and Molecular Immunology and Neurogenetics, The National Center for Scientific Research, Orleans, France; Institute of Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - György Paragh
- Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mario D Cordero
- Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, Biomedical Research Center, University of Granada, Granada, Spain
| | - Viktória Jeney
- Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
16
|
Lu DY, Lin CP, Wu CH, Cheng TM, Pan JP. Plasma haptoglobin level can augment NT-proBNP to predict poor outcome in patients with severe acute decompensated heart failure. J Investig Med 2018; 67:20-27. [PMID: 30287475 DOI: 10.1136/jim-2018-000710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2018] [Indexed: 12/31/2022]
Abstract
To evaluate the use of plasma haptoglobin (Hp) levels and N-terminal pro-B-type natriuretic peptide (NT-proBNP) in predicting survival in patients with severe acute decompensated heart failure (AHF). Management of AHF is challenging. Identifying markers associated with patient prognosis in this disease is clinically important. In this prospective observational study, plasma Hp and NT-proBNP levels were measured. Receiver operating characteristic (ROC) curves were used to identify cut-offs of Hp and NT-proBNP with the greatest specificity and sensitivity for predicting overall survival and cardiovascular-related survival. The cut-off values were tested in patients with AHF (n=41). The cut-off value with the greatest specificity and sensitivity with respect to overall survival and for cardiovascular-related survival for Hp was 177. 1 ng/mL for both outcomes and for NT-proBNP was 34 246.0 pg/mL and 11 848.5 ng/mL, respectively. Using these cut-off values, this study found that patients with lower baseline Hp levels (<177. 1 ng/mL) or higher baseline NT-proBNP (≥34 246 pg/mL) were more likely to have shorter overall survival. Similarly, patients with <177. 1 ng/mL of Hp and ≥11 848.5 pg/mL of NT-proBNP had the highest risk of death related to cardiovascular disease. Our findings indicate that Hp and NT-proBNP using specific cut-off values for AHF can be used to determine risk of survival in these patients.
Collapse
Affiliation(s)
- Dai-Yin Lu
- Divisionof Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.,Schoolof Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Chih-Pei Lin
- Institute of Biotechnology in Medicine, National Yang-Ming University, Taipei, Taiwan, ROC.,Section of Central Laboratory, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Cheng-Hsueh Wu
- Schoolof Medicine, National Yang-Ming University, Taipei, Taiwan, ROC.,Department of Critical Care, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Tsai-Mu Cheng
- Graduate Institute of Translational Medicine, College of Medicine and Technology Taipei Medical University, Taipei, Taiwan, ROC
| | - Ju-Pin Pan
- Divisionof Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.,Schoolof Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| |
Collapse
|
17
|
Yalamanoglu A, Deuel JW, Hunt RC, Baek JH, Hassell K, Redinius K, Irwin DC, Schaer DJ, Buehler PW. Depletion of haptoglobin and hemopexin promote hemoglobin-mediated lipoprotein oxidation in sickle cell disease. Am J Physiol Lung Cell Mol Physiol 2018; 315:L765-L774. [PMID: 30047285 DOI: 10.1152/ajplung.00269.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Intravascular sickling and lysis of red blood cells, a hallmark feature of sickle cell disease (SCD), releases hemoglobin (Hb) into the circulation. Increased cell-free Hb has been linked to vasculopathy and in vitro lipid oxidation. Scavenger plasma proteins haptoglobin (Hp) and hemopexin (Hpx) can attenuate cell-free Hb and total plasma heme lipid-oxidative capacity but are depleted in SCD. Here, we isolated lipids from BERK-SS mice, guinea pigs (GP) infused with heme-albumin, and patients with SCD undergoing regular exchange transfusion therapy and evaluated the level of lipid oxidation. Malondialdehyde formation, an end product of lipid peroxidation, was increased in BERK-SS mice, purified lipid fractions of the heme-albumin infused GP, and patients with SCD compared with controls. In humans, the extent of lipid oxidation was associated with the absence of Hp as well as decreased Hpx in plasma samples. Postmortem pulmonary tissue obtained from patients with SCD demonstrated oxidized LDL deposition in the pulmonary artery. The relationship between no Hp and low Hpx levels with greater LDL and HDL oxidation demonstrates the loss of protection against cell-free Hb and total plasma heme-mediated lipid oxidation and tissue injury in SCD. Strategies to protect against plasma lipid oxidation by cell-free Hb and total plasma heme (e.g., therapeutic Hp and Hpx replacement) may diminish the deleterious effects of cell-free Hb and total plasma heme toward the vascular system in SCD.
Collapse
Affiliation(s)
- Ayla Yalamanoglu
- Laboratory of Biochemistry and Vascular Biology, United States Food and Drug Administration, Silver Spring, Maryland
| | - Jeremy W Deuel
- Division of Internal Medicine, University Hospital of Zurich , Zurich , Switzerland
| | - Ryan C Hunt
- Division of Plasma Protein Therapeutics, United States Food and Drug Administration , Silver Spring, Maryland
| | - Jin Hyen Baek
- Laboratory of Biochemistry and Vascular Biology, United States Food and Drug Administration, Silver Spring, Maryland
| | - Kathryn Hassell
- Division of Hematology, University of Colorado , Aurora, Colorado
| | - Katie Redinius
- Cardiovascular and Pulmonary Research Laboratory, University of Colorado, Aurora, Colorado
| | - David C Irwin
- Cardiovascular and Pulmonary Research Laboratory, University of Colorado, Aurora, Colorado
| | - Dominik J Schaer
- Division of Internal Medicine, University Hospital of Zurich , Zurich , Switzerland
| | - Paul W Buehler
- Laboratory of Biochemistry and Vascular Biology, United States Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
18
|
Orekhova NA. Hematological indicators in pygmy wood mouse Apodemus uralensis (Muridae, Rodentia) populations as markers of the environmental radiation exposure: East Urals radioactive trace (Russia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16144-16166. [PMID: 29594908 DOI: 10.1007/s11356-018-1787-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
The hematological effects of chronic radiation exposure in males of the pygmy wood mouse (Apodemus uralensis Pall., 1811) from the East Urals radioactive trace (EURT) area were assessed, taking into account population abundance and reproductive status (immature, ripening, and mature yearlings). For this purpose, we analyzed the morpho-functional characteristics of erythrocytes (red cell indices [MCV, MCH, MCHC], red cell count, activity of antioxidant enzymes [GSH-Px, CAT], lipid peroxidation, glycolysis, osmotic resistance, methaemoglobin content) and blood plasma components (free hemoglobin, total lipids, total cholesterol, and glucose) in the background territory and the EURT area; these areas have a density of soil contamination with 90Sr of 12,851 and 198 kBq × m-2, respectively (four and two order of magnitude higher than the background value). The data indicate the "hyperfunctional" state of the erythrocyte, aimed at activation of the gas transport function of blood in the radioactive environment. This, as a consequence, determines the insufficiency of energy supply of the cell defense system necessary to maintain the structural integrity of the membrane. Intensification of membrane lipid peroxidation, reduction of osmotic resistance and GSH-Px activity in red cells, an increase in the degree of intravascular hemolysis, and tendency towards erythropenia indicate the processes of accelerated aging of erythrocytes and their more pronounced destruction in the circulatory bed. The level of the hematological response increased with increasing radiation burden and was more pronounced with a large population size. The interaction effect of "overpopulation" and "radioactive pollution" was observed to a lesser degree for ripening males, and was very small for sexually mature animals. Immature males from the EURT head part with internal whole-body radiation doses of 0.0045-0.35 mGy/day can be considered as the most sensitive group to the factors synergy, including radiation damage and overabundance population.
Collapse
Affiliation(s)
- Natal'ya A Orekhova
- Institute of Plant and Animal Ecology, Ural Division of Russian Academy of Sciences, ul. Vos'mogo Marta 202, Yekaterinburg, 620144, Russia.
| |
Collapse
|
19
|
Blackburn SL, Kumar PT, McBride D, Zeineddine HA, Leclerc J, Choi HA, Dash PK, Grotta J, Aronowski J, Cardenas JC, Doré S. Unique Contribution of Haptoglobin and Haptoglobin Genotype in Aneurysmal Subarachnoid Hemorrhage. Front Physiol 2018; 9:592. [PMID: 29904350 PMCID: PMC5991135 DOI: 10.3389/fphys.2018.00592] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/02/2018] [Indexed: 01/12/2023] Open
Abstract
Survivors of cerebral aneurysm rupture are at risk for significant morbidity and neurological deficits. Much of this is related to the effects of blood in the subarachnoid space which induces an inflammatory cascade with numerous downstream consequences. Recent clinical trials have not been able to reduce the toxic effects of free hemoglobin or improve clinical outcome. One reason for this may be the inability to identify patients at high risk for neurologic decline. Recently, haptoglobin genotype has been identified as a pertinent factor in diabetes, sickle cell, and cardiovascular disease, with the Hp 2-2 genotype contributing to increased complications. Haptoglobin is a protein synthesized by the liver that binds free hemoglobin following red blood cell lysis, and in doing so, prevents hemoglobin induced toxicity and facilitates clearance. Clinical studies in patients with subarachnoid hemorrhage indicate that Hp 2-2 patients may be a high-risk group for hemorrhage related complications and poor outcome. We review the relevance of haptoglobin in subarachnoid hemorrhage and discuss the effects of genotype and expression levels on the known mechanisms of early brain injury (EBI) and cerebral ischemia after aneurysm rupture. A better understanding of haptoglobin and its role in preventing hemoglobin related toxicity should lead to novel therapeutic avenues.
Collapse
Affiliation(s)
- Spiros L Blackburn
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Peeyush T Kumar
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Devin McBride
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Hussein A Zeineddine
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Jenna Leclerc
- Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, FL, United States
| | - H Alex Choi
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Pramod K Dash
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - James Grotta
- Department of Neurology, The University of Texas Health Sciences Center, Houston, TX, United States
| | - Jaroslaw Aronowski
- Department of Neurology, The University of Texas Health Sciences Center, Houston, TX, United States
| | - Jessica C Cardenas
- Department of Surgery, Division of Acute Care Surgery and Center for Translational Injury Research, The University of Texas Health Science Center, Houston, TX, United States
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, FL, United States.,Departments of Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience, University of Florida, McKnight Brain Institute, Gainesville, FL, United States
| |
Collapse
|
20
|
Abstract
Erythrocytes regulate vascular function through the modulation of oxygen delivery and the scavenging and generation of nitric oxide (NO). First, hemoglobin inside the red blood cell binds oxygen in the lungs and delivers it to tissues throughout the body in an allosterically regulated process, modulated by oxygen, carbon dioxide and proton concentrations. The vasculature responds to low oxygen tensions through vasodilation, further recruiting blood flow and oxygen carrying erythrocytes. Research has shown multiple mechanisms are at play in this classical hypoxic vasodilatory response, with a potential role of red cell derived vasodilatory molecules, such as nitrite derived nitric oxide and red blood cell ATP, considered in the last 20 years. According to these hypotheses, red blood cells release vasodilatory molecules under low oxygen pressures. Candidate molecules released by erythrocytes and responsible for hypoxic vasodilation are nitric oxide, adenosine triphosphate and S-nitrosothiols. Our research group has characterized the biochemistry and physiological effects of the electron and proton transfer reactions from hemoglobin and other ferrous heme globins with nitrite to form NO. In addition to NO generation from nitrite during deoxygenation, hemoglobin has a high affinity for NO. Scavenging of NO by hemoglobin can cause vasoconstriction, which is greatly enhanced by cell free hemoglobin outside of the red cell. Therefore, compartmentalization of hemoglobin inside red blood cells and localization of red blood cells in the blood stream are important for healthy vascular function. Conditions where erythrocyte lysis leads to cell free hemoglobin or where erythrocytes adhere to the endothelium can result in hypertension and vaso constriction. These studies support a model where hemoglobin serves as an oxido-reductase, inhibiting NO and promoting higher vessel tone when oxygenated and reducing nitrite to form NO and vasodilate when deoxygenated.
Collapse
Affiliation(s)
- Christine C Helms
- Physics Department, University of Richmond, Richmond, VA, United States
| | - Mark T Gladwin
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States.,Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Daniel B Kim-Shapiro
- Physics Department, Wake Forest University, Winston-Salem, NC, United States.,Translational Science Center, Wake Forest University, Winston-Salem, NC, United States
| |
Collapse
|
21
|
Abstract
Damage-associated molecular patterns (DAMPs) or alarmins are endogenous danger signals that are derived from damaged cells and extracellular matrix degradation, capable of triggering innate immune response to promote tissue damage repair. Hemolytic or hemorrhagic episodes are often associated with inflammation, even when infectious agents are absent, suggesting that damaged red blood cells (RBCs) release DAMPs.Hemoglobin (Hb) composes 96% of the dry weight of RBCs; therefore upon hemolysis, tremendous amounts of Hb are released into the extracellular milieu. Hb oxidation occurs outside the protective environment of RBCs, leading to the formation of different Hb oxidation products and heme. Heme acts as a prototypic DAMP participating in toll-like receptor as well as intracellular nucleotide-binding oligomerization domain-like receptor signaling. Oxidized Hb forms also possess some inflammatory actions independently of their heme releasing capability. Non-Hb-derived DAMPs such as ATP, interleukin-33, heat shock protein 70, as well as RBC membrane-derived microparticles might also contribute to the innate immune response triggered by hemolysis/hemorrhage.In this chapter we will discuss the inflammatory properties of RBC-derived DAMPs with a particular focus on Hb derivatives, as well as therapeutic potential of the endogenous Hb and heme-binding proteins haptoglobin and hemopexin in the prevention of hemolysis/hemorrhage-associated inflammation.
Collapse
Affiliation(s)
- Viktória Jeney
- Faculty of Medicine, Department of Internal Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
22
|
Bamm VV, Henein MEL, Sproul SLJ, Lanthier DK, Harauz G. Potential role of ferric hemoglobin in MS pathogenesis: Effects of oxidative stress and extracellular methemoglobin or its degradation products on myelin components. Free Radic Biol Med 2017; 112:494-503. [PMID: 28863941 DOI: 10.1016/j.freeradbiomed.2017.08.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/22/2017] [Accepted: 08/28/2017] [Indexed: 10/19/2022]
Abstract
There is a well-documented relationship between cerebral vasculature and multiple sclerosis (MS) lesions: abnormal accumulations of iron have been found in the walls of the dilated veins in cerebral MS plaques. The source of this iron is unknown, but could be related to the recognized phenomenon of capillary and venous hemorrhages leading to blood extravasation. In turn, hemorrhaging leading to hemolysis results in extracellular release of hemoglobin, a reactive molecule that could induce local oxidative stress, inflammation, and tissue damage. Our previous studies with a reduced form of hemoglobin (oxyHb) have demonstrated its ability to cause extensive lipid and protein oxidation in vitro, which would result in membrane destabilization. Here, we investigated in further detail the mechanism by which the more abundant oxidized form of extracellular hemoglobin (metHb), and dissociated hemin, cause direct oxidative damage to myelin components, specifically membrane-mimetic lipid vesicles and myelin basic protein (MBP), a highly-abundant protein in the CNS. Oxidation of lipids was assessed by the formation of conjugated diene/triene and malondialdehyde, and oxidation of MBP was demonstrated by the bityrosine formation and by the change in protein mass. Our results show that metHb causes oxidative damage to MBP and myelin lipids, partly by transferring its hemin moiety to protein and lipid, but mostly as an intact protein possibly via formation of a ferryl radical. These results elucidating the mechanism of extracellular hemoglobin-induced oxidative damage to myelin components support the need for further research into vascular pathology in MS pathogenesis, to gain insight into the role of iron deposits and/or in stimulation of different comorbidities associated with the disease.
Collapse
Affiliation(s)
- Vladimir V Bamm
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Mary E L Henein
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1; Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Shannon L J Sproul
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1; Department of Cell and Developmental Biology, University of British Columbia, Vancouver, BC, Canada
| | - Danielle K Lanthier
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1.
| |
Collapse
|
23
|
Hlaváčková A, Štikarová J, Pimková K, Chrastinová L, Májek P, Kotlín R, Čermák J, Suttnar J, Dyr JE. Enhanced plasma protein carbonylation in patients with myelodysplastic syndromes. Free Radic Biol Med 2017; 108:1-7. [PMID: 28300669 DOI: 10.1016/j.freeradbiomed.2017.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/01/2017] [Accepted: 03/11/2017] [Indexed: 12/18/2022]
Abstract
Myelodysplastic syndromes (MDS) represent a heterogeneous group of pre-leukemic disorders, characterized by ineffective hematopoiesis and the abnormal blood cell development of one or more lineages. Oxidative stress, as an important factor in the carcinogenesis of onco-hematological diseases, is also one of the known factors involved in the pathogenesis of MDS. An increase of reactive oxygen species (ROS) may lead to the oxidation of DNA, lipids, and proteins, thereby causing cell damage. Protein carbonylation caused by ROS is defined as an irreversible post-translational oxidative modification of amino acid side chains, and could play an important role in signaling processes. The detection of protein carbonyl groups is a specific useful marker of oxidative stress. In this study, we examined 32 patients divided into three different subtypes of MDS according to the World Health Organization (WHO) classification criteria as refractory anemia with ringed sideroblasts (RARS), refractory cytopenia with multilineage dysplasia (RCMD), refractory anemia with excess blasts-1,2 (RAEB-1,2). We found significant differences in protein carbonylation between the group of all MDS patients and healthy controls (P=0.0078). Furthermore, carbonylated protein levels were significantly elevated in RARS patients compared to healthy donors (P=0.0013) and to RCMD patients (P=0.0277). We also found a significant difference in the total iron binding capacity (TIBC) between individual subgroups of MDS patients (P=0.0263). Moreover, TIBC was decreased in RARS patients compared to RCMD patients (P=0.0203). TIBC moderately negatively correlated with carbonyl levels (r=-0.5978, P=0.0054) in the MDS patients as a whole. Additionally we observed changes in the carbonylated proteins of RARS patients in comparison with healthy controls and their negative controls. Using tandem mass spectrometry (LC-MS/MS) we identified 27 uniquely carbonylated proteins of RARS patients, which were generated by ROS and could influence the pathophysiology of low-risk MDS. These data indicate that increased protein carbonylation is related with RARS as low-risk MDS subgroup. We suggest that this type of post-translational modification in MDS disease is not "only" a consequence of oxidative stress, but also plays an active role in the pathophysiology and iron metabolism within the RARS subgroup of MDS. Measurement of plasma carbonyl levels and the isolation of carbonylated plasma proteins, followed by their identification, could serve as a potential diagnostic and prognostic tool in MDS.
Collapse
Affiliation(s)
- Alžběta Hlaváčková
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 00 Prague 2, Czechia.
| | - Jana Štikarová
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 00 Prague 2, Czechia
| | - Kristýna Pimková
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 00 Prague 2, Czechia
| | - Leona Chrastinová
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 00 Prague 2, Czechia
| | - Pavel Májek
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 00 Prague 2, Czechia
| | - Roman Kotlín
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 00 Prague 2, Czechia
| | - Jaroslav Čermák
- Clinical Department, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 00 Prague 2, Czechia
| | - Jiří Suttnar
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 00 Prague 2, Czechia
| | - Jan Evangelista Dyr
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 00 Prague 2, Czechia
| |
Collapse
|
24
|
Hu H, Xu S, Hu S, Xu W, Shui H. The clinical characteristics of posterior reversible encephalopathy syndrome in patients with chronic renal failure. Exp Ther Med 2017; 14:881-887. [PMID: 28673014 DOI: 10.3892/etm.2017.4570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 03/23/2017] [Indexed: 11/05/2022] Open
Abstract
Few studies have investigated posterior reversible encephalopathy syndrome (PRES) in patients with chronic renal failure (CRF). The present study analyzed the clinical manifestations, laboratory examinations and imaging features of PRES in patients with CRF. A total of 42 patients with CRF with or without PRES were recruited in the current retrospective case-control study. Patient data taken prior to the onset of PRES in patients with CRF and PRES (n=21) were collected and analyzed. At the same time, data from patients with CRF but without PRES (n=21) were also analyzed. Brain magnetic resonance imaging (MRI) scans were collected from patients in the PRES group. The mean blood pressure of patients in the PRES group was significantly higher than that of the control group (systolic blood pressure: 172±15 mmHg vs. 135±14 mmHg, P<0.01; diastolic blood pressure: 95±16 mmHg vs. 64±13 mmHg, P<0.01). Furthermore, compared with the control group, mean serum albumin (Alb) and hemoglobin (Hb) concentrations in the PRES group were significantly lower (Alb: 29.1±5.3 g/l vs. 34.6±6.1 g/l, P=0.001; Hb: 74±16 g/l vs. 89±28 g/l, P=0.037). By contrast, mean LDH concentration was significantly higher in the PRES group (LDH: 336±141 U/l vs. 235±89 U/l, P=0.004). In the PRES group, 24 h urine volume was significantly lower in the PRES group than in the control group (24 h urine volume: 651±520 ml vs. 982±518 ml, P=0.046). No significant differences in levels of serum potassium (4.5±0.6 mmol/l vs. 4.4±0.5 mmol/l, P=0.377), sodium (138.3±4.9 mmol/l vs. 139.0±6.8 mmol/l, P=0.325), calcium (2.0±0.24 mmol/l vs. 1.9±0.24 mmol/l, P=0.673), alanine aminotransferase; (24±14 U/l vs. 18±8 U/l, P=0.975); aspartate aminotransferase (29±11 U/l vs. 24±9 U/l, P=0.619) and uric acid (448±148 µmol/l vs. 378±116 µmol/l, P=0.599) were found between the two groups. PRES is a relatively common nervous system complication arising in patients with CRF. Certain biochemical markers, including Hb and Alb, may be associated with PRES. Diagnosing PRES is difficult as computed tomography (CT) brain scans may be normal and MRI scans, which are more sensitive than CT scans at diagnosing PRES, are not always performed in patients with CRF. Thus, brain MRI scans should be taken first in such patients when PRES is suspected.
Collapse
Affiliation(s)
- Hongtao Hu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Shen Xu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Shuang Hu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Weijia Xu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China.,Department of Nephrology, Taihe Hospital, Shiyan, Hubei 442000, P.R. China
| | - Hua Shui
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
25
|
Andersen CBF, Stødkilde K, Sæderup KL, Kuhlee A, Raunser S, Graversen JH, Moestrup SK. Haptoglobin. Antioxid Redox Signal 2017; 26:814-831. [PMID: 27650279 DOI: 10.1089/ars.2016.6793] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Haptoglobin (Hp) is an abundant human plasma protein that tightly captures hemoglobin (Hb) during hemolysis. The Hb-Hp complex formation reduces the oxidative properties of heme/Hb and promotes recognition by the macrophage scavenger receptor CD163. This leads to Hb-Hp breakdown and heme catabolism by heme oxygenase and biliverdin reductase. Gene duplications of a part of or the entire Hp gene in the primate evolution have led to variant Hp gene products that collectively may be designated "the haptoglobins (Hps)" as they all bind Hb. These variant products include the human-specific multimeric Hp phenotypes in individuals, which are hetero- or homozygous for an Hp2 gene allele. The Hp-related protein (Hpr) is another Hp duplication product in humans and other primates. Alternative functions of the variant Hps are indicated by numerous reports on association between Hp phenotypes and disease as well as the elucidation of a specific role of Hpr in the innate immune defense. Recent Advances: Recent functional and structural information on Hp and receptor systems for Hb removal now provides insight on how Hp carries out essential functions such as the Hb detoxification/removal, and how Hpr, by acting as an Hp-lookalike, can sneak a lethal toxin into trypanosome parasites that cause mammalian sleeping sickness. Critical Issues and Future Directions: The new structural insight may facilitate ongoing attempts of developing Hp derivatives for prevention of Hb toxicity in hemolytic diseases such as sickle cell disease and other hemoglobinopathies. Furthermore, the new structural knowledge may help identifying yet unknown functions based on other disease-relevant biological interactions involving Hps. Antioxid. Redox Signal. 26, 814-831.
Collapse
Affiliation(s)
| | | | - Kirstine Lindhardt Sæderup
- 2 Cancer and Inflammation, Department of Molecular Medicine, University of Southern Denmark , Odense C, Denmark
| | - Anne Kuhlee
- 3 Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology , Dortmund, Germany
| | - Stefan Raunser
- 3 Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology , Dortmund, Germany
| | - Jonas H Graversen
- 2 Cancer and Inflammation, Department of Molecular Medicine, University of Southern Denmark , Odense C, Denmark
| | - Søren Kragh Moestrup
- 1 Department of Biomedicine, University of Aarhus , Aarhus C, Denmark .,2 Cancer and Inflammation, Department of Molecular Medicine, University of Southern Denmark , Odense C, Denmark .,4 Department of Clinical Biochemistry and Pharmacology, Odense University Hospital , Odense C, Denmark
| |
Collapse
|
26
|
Bamm VV, Geist AM, Harauz G. Correlation of geographic distributions of haptoglobin alleles with prevalence of multiple sclerosis (MS) - a narrative literature review. Metab Brain Dis 2017; 32:19-34. [PMID: 27807673 DOI: 10.1007/s11011-016-9923-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/19/2016] [Indexed: 12/15/2022]
Abstract
We have proposed that the myelin damage observed in multiple sclerosis (MS) may be partly mediated through the long-term release and degradation of extracellular hemoglobin (Hb) and the products of its oxidative degradation [Cellular and Molecular Life Sciences, 71, 1789-1798, 2014]. The protein haptoglobin (Hpt) binds extracellular Hb as a first line of defense, and can serve as a vascular antioxidant. Humans have two different Hpt alleles: Hpt1 and Hpt2, giving either homozygous Hpt1-1 or Hpt2-2 phenotypes, or a heterozygous Hpt1-2 phenotype. We questioned whether those geographic regions with higher frequency of the Hpt2 allele (conversely, lower frequency of Hpt1 allele) would correlate with an increased incidence of MS, because different Hpt phenotypes will have variable anti-oxidative potentials in protecting myelin from damage inflicted by extracellular Hb and its degradation products. To test this hypothesis, we undertook a systematic analysis of the literature on reported geographic distributions of Hpt alleles to compare them with data reported in the World Health Organization Atlas of worldwide MS prevalence. We found the frequency of the Hpt1 allele to be low in European and North American countries with a high prevalence of MS, consistent with our hypothesis. However, this correlation was not observed in China and India, countries with the lowest Hpt1 frequencies, yet low reported prevalence of MS. Nevertheless, this work shows the need for continued refinement of geographic patterns of MS prevalence, including data on ethnic or racial origin, and for new clinical studies to probe the observed correlation and evaluate Hpt phenotype as a predictor of disease variability and progression, severity, and/or comorbidity with cardiovascular disorders.
Collapse
Affiliation(s)
- Vladimir V Bamm
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Arielle M Geist
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
27
|
Minai-Tehrani D, Toofani S, Yazdi F, Minai-Tehrani A, Mollasalehi H, Bakhtiari Ziabari K. Inhibition of pseudoperoxiadse activity of human red blood cell hemoglobin by methocarbamol. Int J Biol Macromol 2016; 94:788-792. [PMID: 27645932 DOI: 10.1016/j.ijbiomac.2016.09.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 06/08/2016] [Accepted: 09/15/2016] [Indexed: 11/17/2022]
Abstract
After red blood cells lysis, hemoglobin is released to blood circulation. Hemoglobin is carried in blood by binding to haptoglobin. In normal individuals, no free hemoglobin is observed in the blood, because most of the hemoglobin is in the form of haptoglobin complex. In some diseases that are accompanied by hemolysis, the amount of released hemoglobin is higher than its complementary haptoglobin. As a result, free hemoglobin appears in the blood, which is a toxic compound for these patients and may cause renal failure, hypertensive response and risk of atherogenesis. Free hemoglobin has been determined to have peroxidase activity and considered a pseudoenzyme. In this study, the effect of methocarbamol on the peroxidase activity of human hemoglobin was investigated. Our results showed that the drug inhibited the pseudoenzyme by un-competitive inhibition. Both Km and Vmax decreased by increasing the drug concentration. Ki and IC50 values were determined as 6 and 10mM, respectively. Docking results demonstrated that methocarbamol did not attach to heme group directly. A hydrogen bond linked NH2 of carbamate group of methocarbamol to the carboxyl group of Asp126 side chain. Two other hydrogen bonds could be also observed between hydroxyl group of the drug and Ser102 and Ser133 residues of the pseudoenzyme.
Collapse
Affiliation(s)
- Dariush Minai-Tehrani
- BioResearch Lab, Faculty of Biological Sciences, Shahid Beheshti University, G.C., Iran.
| | - Sara Toofani
- Department of Pharmacology & Toxicology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Fatemeh Yazdi
- Department of Pharmacology & Toxicology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Arash Minai-Tehrani
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | | | | |
Collapse
|
28
|
Draaisma AM, Molicki JS, Verbeet N, Munneke R, Huysmans HA, Berger HM, Hazekamp MG. Increasing the antioxidative capacity of neonatal cardiopulmonary bypass prime solution: anin vitro study. Perfusion 2016; 18:357-62. [PMID: 14714771 DOI: 10.1191/0267659103pf693oa] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Inflammation and oxidative damage are believed to play an important role in the postoperative complications after cardiopulmonary bypass (CPB) in neonates. During the preparation of the prime, red blood cells (RBCs) release non-protein-bound iron (NPBI) and free haemoglobin/haem (Hb/haem). The presence of these prooxidants in the prime solution may increase oxidative stress in neonates undergoing CPB. The solution used as the basis of the prime solution may influence the degree of this oxidative stress. We investigated the NPBI and the Hb/haem binding capacities of two different prime solutions: a prime based on pasteurized human albumin and a prime based on fresh frozen plasma. The presence of NPBI and free Hb/haem were measured during and after the preparation of the prime solution. Only in the albumin prime was NPBI detectable. However, in both primes, the concentrations of free Hb/haem increased. Thus, to reduce the prooxidative effects of NPBI and free Hb/haem, RBCs should be added to the prime at the last possible moment. Adding fresh frozen plasma should be considered, as this would result in no detectable NPBI in the prime solution.
Collapse
Affiliation(s)
- Anjo M Draaisma
- Department of Extracorporeal Circulation, Leiden University Medical Centre, Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
29
|
Bonomini M, Sirolli V, Pieroni L, Felaco P, Amoroso L, Urbani A. Proteomic Investigations into Hemodialysis Therapy. Int J Mol Sci 2015; 16:29508-21. [PMID: 26690416 PMCID: PMC4691132 DOI: 10.3390/ijms161226189] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/26/2015] [Accepted: 12/02/2015] [Indexed: 01/07/2023] Open
Abstract
The retention of a number of solutes that may cause adverse biochemical/biological effects, called uremic toxins, characterizes uremic syndrome. Uremia therapy is based on renal replacement therapy, hemodialysis being the most commonly used modality. The membrane contained in the hemodialyzer represents the ultimate determinant of the success and quality of hemodialysis therapy. Membrane's performance can be evaluated in terms of removal efficiency for unwanted solutes and excess fluid, and minimization of negative interactions between the membrane material and blood components that define the membrane's bio(in)compatibility. Given the high concentration of plasma proteins and the complexity of structural functional relationships of this class of molecules, the performance of a membrane is highly influenced by its interaction with the plasma protein repertoire. Proteomic investigations have been increasingly applied to describe the protein uremic milieu, to compare the blood purification efficiency of different dialyzer membranes or different extracorporeal techniques, and to evaluate the adsorption of plasma proteins onto hemodialysis membranes. In this article, we aim to highlight investigations in the hemodialysis setting making use of recent developments in proteomic technologies. Examples are presented of why proteomics may be helpful to nephrology and may possibly affect future directions in renal research.
Collapse
Affiliation(s)
- Mario Bonomini
- Nephrology and Dialysis Institute, Department of Medicine, G. d'Annunzio University, Chieti-Pescara, SS. Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy.
| | - Vittorio Sirolli
- Nephrology and Dialysis Institute, Department of Medicine, G. d'Annunzio University, Chieti-Pescara, SS. Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy.
| | - Luisa Pieroni
- Proteomics and Metabonomics Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) S. Lucia Foundation, 00179 Rome, Italy.
- Department of Surgery and Experimental Medicine, Tor Vergata University, 00134 Rome, Italy.
| | - Paolo Felaco
- Nephrology and Dialysis Institute, Department of Medicine, G. d'Annunzio University, Chieti-Pescara, SS. Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy.
| | - Luigi Amoroso
- Nephrology and Dialysis Institute, Department of Medicine, G. d'Annunzio University, Chieti-Pescara, SS. Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy.
| | - Andrea Urbani
- Proteomics and Metabonomics Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) S. Lucia Foundation, 00179 Rome, Italy.
- Department of Surgery and Experimental Medicine, Tor Vergata University, 00134 Rome, Italy.
| |
Collapse
|
30
|
Delasoud S, Minai-Tehrani D, Mollasalehi H. Enhancing effect of cimetidine on peroxidase activity of human erythrocyte hemoglobin. Drug Metab Pers Ther 2015; 30:189-93. [PMID: 26167985 DOI: 10.1515/dmpt-2014-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 06/03/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Hemoglobin is released to the serum after erythrocyte lyses. Haptoglobin is responsible for carrying hemoglobin into the serum. In hemolytic disease, the amount of hemoglobin which is released to the serum is high; however, the amount of haptoglobin is not enough for binding all the released hemoglobins. Free hemoglobin has peroxidase activity (a pseudoenzyme) and has been indicated to be harmful for patients. This study is focused on the effect of cimetidine on peroxidase activity of hemoglobin. METHODS Erythrocytes were lysed to obtain hemoglobin. Peroxidase activity of hemoglobin was detected using o-dianisidine and H(2)O(2) as substrates. RESULTS Our results showed that the drug operated as an activator for the pseudoenzyme. Cimetidine bound to the pseudoperoxidase in an un-competitive manner and decreased the Km. Half maximal effective concentration (EC(50)) of cimetidine was determined to be about 12.5 mM. Alkaline pH increased the rate of reaction. Arrhenius plot showed that the activation energies of reactions in the absence and presence of drug were about 10.5 kJ/mol and 7.65 kJ/mol, respectively. CONCLUSIONS The results demonstrated that cimetidine activates the peroxidase activity of free hemoglobin. Hence, it is suggested that the prescription of cimetidine for the patients with hemolyses diseases may enhance the harmful effects of free hemoglobin in these patients.
Collapse
|
31
|
Schaer DJ, Vinchi F, Ingoglia G, Tolosano E, Buehler PW. Haptoglobin, hemopexin, and related defense pathways-basic science, clinical perspectives, and drug development. Front Physiol 2014; 5:415. [PMID: 25389409 PMCID: PMC4211382 DOI: 10.3389/fphys.2014.00415] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 10/08/2014] [Indexed: 12/13/2022] Open
Abstract
Hemolysis, which occurs in many disease states, can trigger a diverse pathophysiologic cascade that is related to the specific biochemical activities of free Hb and its porphyrin component heme. Normal erythropoiesis and concomitant removal of senescent red blood cells (RBC) from the circulation occurs at rates of approximately 2 × 106 RBCs/second. Within this physiologic range of RBC turnover, a small fraction of hemoglobin (Hb) is released into plasma as free extracellular Hb. In humans, there is an efficient multicomponent system of Hb sequestration, oxidative neutralization and clearance. Haptoglobin (Hp) is the primary Hb-binding protein in human plasma, which attenuates the adverse biochemical and physiologic effects of extracellular Hb. The cellular receptor target of Hp is the monocyte/macrophage scavenger receptor, CD163. Following Hb-Hp binding to CD163, cellular internalization of the complex leads to globin and heme metabolism, which is followed by adaptive changes in antioxidant and iron metabolism pathways and macrophage phenotype polarization. When Hb is released from RBCs within the physiologic range of Hp, the potential deleterious effects of Hb are prevented. However, during hyper-hemolytic conditions or with chronic hemolysis, Hp is depleted and Hb readily distributes to tissues where it might be exposed to oxidative conditions. In such conditions, heme can be released from ferric Hb. The free heme can then accelerate tissue damage by promoting peroxidative reactions and activation of inflammatory cascades. Hemopexin (Hx) is another plasma glycoprotein able to bind heme with high affinity. Hx sequesters heme in an inert, non-toxic form and transports it to the liver for catabolism and excretion. In the present review we discuss the components of physiologic Hb/heme detoxification and their potential therapeutic application in a wide range of hemolytic conditions.
Collapse
Affiliation(s)
- Dominik J Schaer
- Division of Internal Medicine, University of Zurich Zurich, Switzerland
| | - Francesca Vinchi
- Department of Molecular Biotechnology and Health Sciences, University of Torino Torino, Italy
| | - Giada Ingoglia
- Department of Molecular Biotechnology and Health Sciences, University of Torino Torino, Italy
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, University of Torino Torino, Italy
| | - Paul W Buehler
- Division of Hematology, Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration Bethesda, MD, USA
| |
Collapse
|
32
|
Bamm VV, Lanthier DK, Stephenson EL, Smith GST, Harauz G. In vitro study of the direct effect of extracellular hemoglobin on myelin components. Biochim Biophys Acta Mol Basis Dis 2014; 1852:92-103. [PMID: 25463632 DOI: 10.1016/j.bbadis.2014.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/26/2014] [Accepted: 10/09/2014] [Indexed: 01/04/2023]
Abstract
There is a relationship between cerebral vasculature and multiple sclerosis (MS) lesions: abnormal accumulations of iron have been found in the walls of dilated veins in MS plaques. The sources of this iron can be varied, but capillary and venous hemorrhages leading to blood extravasation have been recorded, and could result in the release of hemoglobin extracellularly. Extracellular hemoglobin oxidizes quickly and is known to become a reactive molecule that triggers low-density lipoprotein oxidation and plays a pivotal role in atherogenesis. In MS, it could lead to local oxidative stress, inflammation, and tissue damage. Here, we investigated whether extracellular hemoglobin and its breakdown products can cause direct oxidative damage to myelin components in a peroxidative environment such as occurs in inflamed tissue. Oxidation of lipids was assessed by the formation of fluorescent peroxidized lipid-protein covalent adducts, by the increase in conjugated diene and malondialdehyde. Oxidation of proteins was analyzed by the change in protein mass. The results suggest that the globin radical could be a trigger of myelin basic protein oxidative cross-linking, and that heme transferred to the lipids is involved in lipid peroxidation. This study provides new insight into the mechanism by which hemoglobin exerts its pathological oxidative activity towards myelin components. This work supports further research into the vascular pathology in MS, to gain insight into the origin and role of iron deposits in disease pathogenesis, or in stimulation of different comorbidities such as cardiovascular disease.
Collapse
Affiliation(s)
- Vladimir V Bamm
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Danielle K Lanthier
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Erin L Stephenson
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Graham S T Smith
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
33
|
Laborde CM, Alonso-Orgaz S, Mourino-Alvarez L, Moreu J, Vivanco F, Padial LR, Barderas MG. The plasma proteomic signature as a strategic tool for early diagnosis of acute coronary syndrome. Proteome Sci 2014; 12:43. [PMID: 26038678 PMCID: PMC4451929 DOI: 10.1186/1477-5956-12-43] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/29/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acute coronary syndrome is the major cause of death in developed countries. Despite its high prevalence, there is still a strong need for new biomarkers which permit faster and more accurate diagnostics and new therapeutic drugs. The basis for this challenge lay in improving our understanding of the whole atherosclerotic process from atherogenesis to atherothrombosis. In this study, we conducted two different proteomic analyses of peripheral blood plasma from non-ST elevation acute coronary syndrome and ST elevation acute coronary syndrome patients vs healthy controls. RESULTS Two-dimensional Fluorescence Difference in Gel Electrophoresis and mass spectrometry permitted the identification of 31 proteins with statistical differences (p < 0.05) between experimental groups. Additionally, validation by Western blot and Selected Reaction Monitoring permitted us to confirm the identification of a different and characteristic plasma proteomic signature for NSTEACS and STEACS patients. CONCLUSIONS We purpose the severity of hypoxia as the cornerstone for explaining the differences observed between both groups.
Collapse
Affiliation(s)
- Carlos M Laborde
- Laboratory of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Sergio Alonso-Orgaz
- Laboratory of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Laura Mourino-Alvarez
- Laboratory of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - José Moreu
- Department of Hemodynamic, Hospital Virgen de la Salud, SESCAM, Toledo, Spain
| | - Fernando Vivanco
- Department of Immunology, IIS-Fundación Jiménez Diaz, Madrid, Spain ; Department of Biochemistry and Molecular Biology I, Universidad Complutense, Madrid, Spain
| | - Luis R Padial
- Department of Cardiology, Hospital Virgen de la Salud, Toledo, Spain
| | - María G Barderas
- Laboratory of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| |
Collapse
|
34
|
Jeney V, Balla G, Balla J. Red blood cell, hemoglobin and heme in the progression of atherosclerosis. Front Physiol 2014; 5:379. [PMID: 25324785 PMCID: PMC4183119 DOI: 10.3389/fphys.2014.00379] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/13/2014] [Indexed: 01/02/2023] Open
Abstract
For decades plaque neovascularization was considered as an innocent feature of advanced atherosclerotic lesions, but nowadays growing evidence suggest that this process triggers plaque progression and vulnerability. Neovascularization is induced mostly by hypoxia, but the involvement of oxidative stress is also established. Because of inappropriate angiogenesis, neovessels are leaky and prone to rupture, leading to the extravasation of red blood cells (RBCs) within the plaque. RBCs, in the highly oxidative environment of the atherosclerotic lesions, tend to lyse quickly. Both RBC membrane and the released hemoglobin (Hb) possess atherogenic activities. Cholesterol content of RBC membrane contributes to lipid deposition and lipid core expansion upon intraplaque hemorrhage. Cell-free Hb is prone to oxidation, and the oxidation products possess pro-oxidant and pro-inflammatory activities. Defense and adaptation mechanisms evolved to cope with the deleterious effects of cell free Hb and heme. These rely on plasma proteins haptoglobin (Hp) and hemopexin (Hx) with the ability to scavenge and eliminate free Hb and heme form the circulation. The protective strategy is completed with the cellular heme oxygenase-1/ferritin system that becomes activated when Hp and Hx fail to control free Hb and heme-mediated stress. These protective molecules have pharmacological potential in diverse pathologies including atherosclerosis.
Collapse
Affiliation(s)
- Viktória Jeney
- Department of Medicine, University of Debrecen Debrecen, Hungary ; MTA-DE Vascular Biology, Thrombosis and Hemostasis Research Group, Hungarian Academy of Sciences Debrecen, Hungary
| | - György Balla
- MTA-DE Vascular Biology, Thrombosis and Hemostasis Research Group, Hungarian Academy of Sciences Debrecen, Hungary ; Department of Pediatrics, University of Debrecen Debrecen, Hungary
| | - József Balla
- Department of Medicine, University of Debrecen Debrecen, Hungary
| |
Collapse
|
35
|
Zhao X, Aronowski J. Nrf2 to pre-condition the brain against injury caused by products of hemolysis after ICH. Transl Stroke Res 2014; 4:71-5. [PMID: 23378859 DOI: 10.1007/s12975-012-0245-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Brain damage caused by intracerebral hemorrhage (ICH) is mediated in part by the toxicity of extravascular blood deposited in brain parenchyma during the hematoma formation. In this paper we discuss the therapeutic benefits and potential mechanisms associated with the activation of transcription factor Nrf2 regarding its role in defending brain tissue against toxicity of blood, a component of secondary injury. We emphasize the pleiotropic capacity of Nrf2 as it recruits multiple pathways aiming at reducing deleterious effects of blood lysis products.
Collapse
Affiliation(s)
- Xiurong Zhao
- University of Texas Medical School - Houston; Department of Neurology, Stroke Program
| | | |
Collapse
|
36
|
Habib A, Finn AV. The role of iron metabolism as a mediator of macrophage inflammation and lipid handling in atherosclerosis. Front Pharmacol 2014; 5:195. [PMID: 25221512 PMCID: PMC4145350 DOI: 10.3389/fphar.2014.00195] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/04/2014] [Indexed: 12/19/2022] Open
Abstract
Iron is an essential mineral needed for normal physiologic processes. While its function in oxygen transport and other important physiologic processes is well known, less is understood about its role in inflammatory diseases such as atherosclerosis. Existing paradigms suggest iron as a driver of atherosclerosis through its actions as a pro-oxidant capable of causing lipid oxidation and tissue damage. Recently we and others have identified hemoglobin (Hb) derived iron as an important factor in determining macrophage differentiation and function in areas of intraplaque hemorrhage within human atherosclerosis. Hb associated macrophages, M(Hb), are distinct from traditional macrophage foam cells because they do not contain large amounts of lipid or inflammatory cytokines, are characterized by high levels of expression of mannose receptor (CD206) and CD163 in addition to producing anti-inflammatory cytokines such as IL-10. Despite the well-known role of iron as an catalyst capable of producing lipid peroxidation through generation of reactive oxygen species (ROS) such as hydroxyl radical, we and others have shown that macrophages in areas of intraplaque hemorrhage demonstrate reduced intracellular iron and ROS which triggers production of anti-inflammatory cytokines as well as genes involved in cholesterol efflux. These data suggest that manipulation of macrophage iron itself may be a promising pharmacologic target for atherosclerosis prevention through its effects on macrophage inflammation and lipid metabolism. In this review we will summarize the current understanding of iron as it relates to plaque inflammation and discuss how further exploration of this subject may lead to new therapies for atherosclerosis.
Collapse
Affiliation(s)
- Anwer Habib
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA USA
| | - Aloke V Finn
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA USA
| |
Collapse
|
37
|
Sher EA, Sholto AY, Shaklai M, Shaklai N. Can gas replace protein function? CO abrogates the oxidative toxicity of myoglobin. PLoS One 2014; 9:e104075. [PMID: 25111140 PMCID: PMC4128816 DOI: 10.1371/journal.pone.0104075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/06/2014] [Indexed: 02/07/2023] Open
Abstract
Outside their cellular environments, hemoglobin (Hb) and myoglobin (Mb) are known to wreak oxidative damage. Using haptoglobin (Hp) and hemopexin (Hx) the body defends itself against cell-free Hb, yet mechanisms of protection against oxidative harm from Mb are unclear. Mb may be implicated in oxidative damage both within the myocyte and in circulation following rhabdomyolysis. Data from the literature correlate rhabdomyolysis with the induction of Heme Oxygenase-1 (HO-1), suggesting that either the enzyme or its reaction products are involved in oxidative protection. We hypothesized that carbon monoxide (CO), a product, might attenuate Mb damage, especially since CO is a specific ligand for heme iron. Low density lipoprotein (LDL) was chosen as a substrate in circulation and myosin (My) as a myocyte component. Using oxidation targets, LDL and My, the study compared the antioxidant potential of CO in Mb-mediated oxidation with the antioxidant potential of Hp in Hb-mediated oxidation. The main cause of LDL oxidation by Hb was found to be hemin which readily transfers from Hb to LDL. Hp prevented heme transfer by sequestering hemin within the Hp-Hb complex. Hemin barely transferred from Mb to LDL, and oxidation appeared to stem from heme iron redox in the intact Mb. My underwent oxidative crosslinking by Mb both in air and under N2. These reactions were fully arrested by CO. The data are interpreted to suit several circumstances, some physiological, such as high muscle activity, and some pathological, such as rhabdomyolysis, ischemia/reperfusion and skeletal muscle disuse atrophy. It appear that CO from HO-1 attenuates damage by temporarily binding to deoxy-Mb, until free oxygen exchanges with CO to restore the equilibrium.
Collapse
Affiliation(s)
- Elena A. Sher
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alan Y. Sholto
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mati Shaklai
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nurith Shaklai
- Department of Hematology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
38
|
Bamm VV, Harauz G. Hemoglobin as a source of iron overload in multiple sclerosis: does multiple sclerosis share risk factors with vascular disorders? Cell Mol Life Sci 2014; 71:1789-98. [PMID: 24504127 PMCID: PMC11113400 DOI: 10.1007/s00018-014-1570-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 12/12/2022]
Abstract
Although iron is known to be essential for the normal development and health of the central nervous system, abnormal iron deposits are found in and around multiple sclerosis (MS) lesions that themselves are closely associated with the cerebral vasculature. However, the origin of this excess iron is unknown, and it is not clear whether this is one of the primary causative events in the pathogenesis of MS, or simply another consequence of the long-lasting inflammatory conditions. Here, applying a systems biology approach, we propose an additional way for understanding the neurodegenerative component of the disease caused by chronic subclinical extravasation of hemoglobin, in combination with multiple other factors including, but not limited to, dysfunction of different cellular protective mechanisms against extracellular hemoglobin reactivity and oxidative stress. Moreover, such considerations could also shed light on and explain the higher susceptibility of MS patients to a wide range of cardiovascular disorders.
Collapse
Affiliation(s)
- Vladimir V. Bamm
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| | - George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| |
Collapse
|
39
|
Nakyinsige K, Fatimah AB, Aghwan ZA, Zulkifli I, Goh YM, Sazili AQ. Bleeding Efficiency and Meat Oxidative Stability and Microbiological Quality of New Zealand White Rabbits Subjected to Halal Slaughter without Stunning and Gas Stun-killing. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:406-13. [PMID: 25049968 PMCID: PMC4093272 DOI: 10.5713/ajas.2013.13437] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/16/2013] [Accepted: 10/29/2013] [Indexed: 11/27/2022]
Abstract
A study was conducted to compare the effect of halal slaughter without stunning and gas stun killing followed by bleeding on residual blood content and storage stability of rabbit meat. Eighty male New Zealand white rabbits were divided into two groups of 40 animals each and subjected to either halal slaughter without stunning (HS) or gas stun-kill (GK). The volume of blood lost during exsanguination was measured. Residual blood was further quantified by determination of haemoglobin content in Longissimus lumborum (LL) muscle. Storage stability of the meat was evaluated by microbiological analysis and measuring lipid oxidation in terms of thiobarbituric acid reactive substances (TBARS). HS resulted in significantly higher blood loss than GK. HS had significantly lower residual haemoglobin in LL muscle compared to GK. Slaughter method had no effect on rabbit meat lipid oxidation at 0, 1, and 3 d postmortem. However, at 5 and 8 days of storage at 4°C, significant differences (p<0.05) were found, with meat from the GK group exhibiting significantly higher levels of MDA than that from HS. At day 3, greater growth of Pseudomonas aeroginosa and E. coli were observed in the GK group (p<0.05) with B. thermosphacta and total aerobic counts remained unaffected by slaughter method. At days 5 and 7 postmortem, bacterial counts for all tested microbes were affected by slaughter method, with GK exhibiting significantly higher growth than HS. It can be concluded that slaughter method can affect keeping quality of rabbit meat, and HS may be a favourable option compared to GK due to high bleed out.
Collapse
Affiliation(s)
- K. Nakyinsige
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan,
Malaysia
- Department of Food Science and Nutrition, Islamic University in Uganda, P.O. Box 2555, Mbale,
Uganda
| | - A. B. Fatimah
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan,
Malaysia
| | - Z. A. Aghwan
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan,
Malaysia
- Department of Animal Science, University of Mosul, Mosul,
Iraq
| | - I. Zulkifli
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan,
Malaysia
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan,
Malaysia
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan,
Malaysia
| | - Y. M. Goh
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan,
Malaysia
| | - A. Q. Sazili
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan,
Malaysia
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan,
Malaysia
| |
Collapse
|
40
|
Lipiski M, Deuel JW, Baek JH, Engelsberger WR, Buehler PW, Schaer DJ. Human Hp1-1 and Hp2-2 phenotype-specific haptoglobin therapeutics are both effective in vitro and in guinea pigs to attenuate hemoglobin toxicity. Antioxid Redox Signal 2013; 19:1619-33. [PMID: 23418677 PMCID: PMC3809386 DOI: 10.1089/ars.2012.5089] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS Infusion of purified haptoglobin (Hp) functions as an effective hemoglobin (Hb) scavenging therapeutic in animal models of hemolysis to prevent cardiovascular and renal injury. Epidemiologic studies demonstrate the phenotype heterogeneity of human Hp proteins and suggest differing vascular protective potential imparted by the dimeric Hp1-1 and the polymeric Hp2-2. RESULTS In vitro experiments and in vivo studies in guinea pigs were performed to evaluate phenotype-specific differences in Hp therapeutics. We found no differences between the two phenotypes in Hb binding and intravascular compartmentalization of Hb in vivo. Both Hp1-1 and Hp2-2 attenuate Hb-induced blood pressure response and renal iron deposition. These findings were consistent with equal prevention of Hb endothelial translocation. The modulation of oxidative Hb reactions by the two Hp phenotypes was not found to be different. Both phenotypes stabilize the ferryl (Fe(4+)) Hb transition state, provide heme retention within the complex, and prevent Hb-driven low-density lipoprotein (LDL) peroxidation. Hb-mediated peroxidation of LDL resulted in endothelial toxicity, which was equally blocked by the addition of Hp1-1 and Hp2-2. INNOVATION AND CONCLUSION The present data do not provide support for the concept that phenotype-specific Hp therapeutics offer differential efficacy in mitigating acute Hb toxicity.
Collapse
Affiliation(s)
- Miriam Lipiski
- 1 Division of Internal Medicine, University of Zurich , Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
41
|
Schaer CA, Deuel JW, Bittermann AG, Rubio IG, Schoedon G, Spahn DR, Wepf RA, Vallelian F, Schaer DJ. Mechanisms of haptoglobin protection against hemoglobin peroxidation triggered endothelial damage. Cell Death Differ 2013; 20:1569-79. [PMID: 23995229 PMCID: PMC3792434 DOI: 10.1038/cdd.2013.113] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/20/2013] [Accepted: 07/15/2013] [Indexed: 01/30/2023] Open
Abstract
Extracellular hemoglobin (Hb) has been recognized as a disease trigger in hemolytic conditions such as sickle cell disease, malaria, and blood transfusion. In vivo, many of the adverse effects of free Hb can be attenuated by the Hb scavenger acute-phase protein haptoglobin (Hp). The primary physiologic disturbances that can be caused by free Hb are found within the cardiovascular system and Hb-triggered oxidative toxicity toward the endothelium has been promoted as a potential mechanism. The molecular mechanisms of this toxicity as well as of the protective activities of Hp are not yet clear. Within this study, we systematically investigated the structural, biochemical, and cell biologic nature of Hb toxicity in an endothelial cell system under peroxidative stress. We identified two principal mechanisms of oxidative Hb toxicity that are mediated by globin degradation products and by modified lipoprotein species, respectively. The two damage pathways trigger diverse and discriminative inflammatory and cytotoxic responses. Hp provides structural stabilization of Hb and shields Hb's oxidative reactions with lipoproteins, providing dramatic protection against both pathways of toxicity. By these mechanisms, Hp shifts Hb's destructive pseudo-peroxidative reaction to a potential anti-oxidative function during peroxidative stress.
Collapse
Affiliation(s)
- C A Schaer
- Institute of Anesthesiology, University Hospital, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ratanasopa K, Chakane S, Ilyas M, Nantasenamat C, Bulow L. Trapping of human hemoglobin by haptoglobin: molecular mechanisms and clinical applications. Antioxid Redox Signal 2013; 18:2364-74. [PMID: 22900934 DOI: 10.1089/ars.2012.4878] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
SIGNIFICANCE Haptoglobin (Hp) is an abundant plasma protein controlling the fate of hemoglobin (Hb) released from red blood cells after intravascular hemolysis. The complex formed between Hp and Hb is extraordinary strong, and once formed, this protein-protein association can be considered irreversible. RECENT ADVANCES A model of the Hp-Hb complex has been generated and the first steps toward understanding the mechanism behind the shielding effects of Hp have been taken. The clinical potential of the complex for modulating inflammatory reactions and for functioning as an Hb-based oxygen carrier have been described. CRITICAL ISSUES The three-dimensional structure of the Hp-Hb complex is unknown. Moreover, Hp is not a homogeneous protein. There are two common alleles at the Hp genetic locus denoted Hp1 and Hp2, which when analyzed on the protein levels result in differences between their physiological behavior, particularly in their shielding against Hb-driven oxidative stress. Additional cysteine residues on the α-subunit allow Hp2 to form a variety of native multimers, which influence the biophysical and biological properties of Hp. The multimeric conformations, in turn, also modulate the glycosylation patterns of Hp by steric hindrance. FUTURE DIRECTIONS A detailed analysis of the influence of Hp glycosylation will be instrumental to generate a deeper understanding of its biological function. Several pathological conditions also modify the glycan compositions allowing Hp to be potentially used as a marker protein for these disorders.
Collapse
|
43
|
Cooper CE, Schaer DJ, Buehler PW, Wilson MT, Reeder BJ, Silkstone G, Svistunenko DA, Bulow L, Alayash AI. Haptoglobin binding stabilizes hemoglobin ferryl iron and the globin radical on tyrosine β145. Antioxid Redox Signal 2013; 18:2264-73. [PMID: 22702311 PMCID: PMC3638561 DOI: 10.1089/ars.2012.4547] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIM Hemoglobin (Hb) becomes toxic when released from the erythrocyte. The acute phase protein haptoglobin (Hp) binds avidly to Hb and decreases oxidative damage to Hb itself and to the surrounding proteins and lipids. However, the molecular mechanism underpinning Hp protection is to date unclear. The aim of this study was to use electron paramagnetic resonance (EPR) spectroscopy, stopped flow optical spectrophotometry, and site-directed mutagenesis to explore the mechanism and specifically the role of specific tyrosine residues in this protection. RESULTS Following peroxide challenge Hb produces reactive oxidative intermediates in the form of ferryl heme and globin free radicals. Hp binding increases the steady state level of ferryl formation during Hb-catalyzed lipid peroxidation, while at the same time dramatically inhibiting the overall reaction rate. This enhanced ferryl stability is also seen in the absence of lipids and in the presence of external reductants. Hp binding is not accompanied by a decrease in the pK of ferryl protonation; the protonated ferryl species still forms, but is intrinsically less reactive. Ferryl stabilization is accompanied by a significant increase in the concentration of the peroxide-induced tyrosine free radical. EPR spectral parameters and mutagenesis studies suggest that this radical is located on tyrosine 145, the penultimate C-terminal amino acid on the beta Hb subunit. INNOVATION Hp binding decreases both the ferryl iron and free radical reactivity of Hb. CONCLUSION Hp protects against Hb-induced damage in the vasculature, not by preventing the primary reactivity of heme oxidants, but by rendering the resultant protein products less damaging.
Collapse
Affiliation(s)
- Chris E Cooper
- School of Biological Sciences, University of Essex, Essex, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Schaer DJ, Buehler PW. Cell-free hemoglobin and its scavenger proteins: new disease models leading the way to targeted therapies. Cold Spring Harb Perspect Med 2013; 3:cshperspect.a013433. [PMID: 23645855 DOI: 10.1101/cshperspect.a013433] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hemoglobin (Hb) has multiple pathophysiologic effects when released into the intravascular space during hemolysis. The extracellular effects of Hb have resulted in novel models of toxicity, which help to explain endothelial dysfunction and cardiovascular complications that accompany genetic hemolytic anemias, malaria, blood transfusion, and atherosclerosis. The majority of models focus on nitric oxide (NO) depletion; however, in local tissue environments, Hb can also act as a pro-oxidant and inflammatory agent. This can alter cellular differentiation with the potential to deviate immune responses. The understanding of these mechanisms set in the context of natural scavenger and detoxification systems may accelerate the development of novel treatment strategies.
Collapse
Affiliation(s)
- Dominik J Schaer
- Division of Internal Medicine, University Hospital, Zurich CH-8091, Switzerland.
| | | |
Collapse
|
45
|
Natural history of the bruise: formation, elimination, and biological effects of oxidized hemoglobin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:703571. [PMID: 23766858 PMCID: PMC3671564 DOI: 10.1155/2013/703571] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/12/2013] [Indexed: 02/02/2023]
Abstract
Numerous disease states are associated with hemolysis or hemorrhage. Because red cells in the extravascular space tend to lyse quickly, hemoglobin (Hb) is released and is prone to autoxidation producing MetHb. Inorganic and organic peroxides may convert Hb and MetHb to higher oxidation states such as ferrylHb. FerrylHb is not a single chemical entity but is a mixture of globin- and porphyrin-centered radicals and covalently cross-linked Hb multimers. Oxidized Hb species are potent prooxidants caused mainly by heme release from oxidized Hb. Moreover, ferrylHb is a strong proinflammatory agonist that targets vascular endothelial cells. This proinflammatory effect of ferrylHb requires actin polymerization, is characterized by the upregulation of proinflammatory adhesion molecules, and is independent of heme release. Deleterious effects of native Hb are controlled by haptoglobin (Hp) that binds cell-free Hb avidly and facilitates its removal from circulation through the CD163 macrophage scavenger receptor-mediated endocytosis. Under circumstances of Hb oxidation, Hp can prevent heme release from MetHb, but unfortunately the Hp-mediated removal of Hb is severely compromised when Hb is structurally altered such as in ferrylHb allowing deleterious downstream reactions to occur even in the presence of Hp.
Collapse
|
46
|
Atherogenesis may involve the prooxidant and proinflammatory effects of ferryl hemoglobin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:676425. [PMID: 23766856 PMCID: PMC3671302 DOI: 10.1155/2013/676425] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/23/2013] [Indexed: 02/06/2023]
Abstract
Oxidized cell-free hemoglobin (Hb), including covalently cross-linked Hb multimers, is present in advanced atherosclerotic lesions. Oxidation of Hb produces methemoglobin (Fe3+) and ferryl hemoglobin (Fe4+ = O2−). Ferryl iron is unstable and can return to the Fe3+ state by reacting with specific amino acids of the globin chains. In these reactions globin radicals are produced followed by termination reactions yielding covalently cross-linked Hb multimers. Despite the evanescent nature of the ferryl state, herein we refer to this oxidized Hb as “ferryl Hb.” Our aim in this work was to study formation and biological effects of ferrylHb.
We demonstrate that ferrylHb, like metHb, can release its heme group, leading to sensitization of endothelial cells (ECs) to oxidant-mediated killing and to oxidation of low-density lipoprotein (LDL). Furthermore, we observed that both oxidized LDL and lipids derived from human atherosclerotic lesions trigger Hb oxidation and subsequent production of covalently cross-linked ferrylHb multimers. Previously we showed that ferrylHb disrupts EC monolayer integrity and induces expression of inflammatory cell adhesion molecules. Here we show that when exposed to ferrylHb, EC monolayers exhibit increased permeability and enhanced monocyte adhesion. Taken together, interactions between cell-free Hb and atheroma lipids engage in a vicious cycle, amplifying oxidation of plaque lipids and Hb. These processes trigger EC activation and cytotoxicity.
Collapse
|
47
|
Ducolomb Y, González-Márquez H, Fierro R, Jiménez I, Casas E, Flores D, Bonilla E, Salazar Z, Betancourt M. Effect of porcine follicular fluid proteins and peptides on oocyte maturation and their subsequent effect on in vitro fertilization. Theriogenology 2013; 79:896-904. [PMID: 23453254 DOI: 10.1016/j.theriogenology.2013.01.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 01/09/2013] [Accepted: 01/26/2013] [Indexed: 10/27/2022]
Abstract
The follicular fluid (FF) is a microenvironment that contains molecules involved in oocyte maturation, ovulation, and fertilization. Characterizing the proteins and peptides present in the FF could be useful for determining which proteins and peptides to use as a supplement for culture media. Biologically active peptides produced during the maturation or degradation of functional proteins are called cryptides. The aim of this study was to identify the proteins and cryptides in porcine FF that could stimulate porcine oocyte in vitro maturation (IVM) and in vitro fertilization (IVF) when added to culture maturation medium. Five FF protein fractions (F1-F5) were obtained by ionic exchange chromatography, resolved by SDS-PAGE, and identified by tandem mass spectrometry. These fractions had effects on IVM and/or IVF. The F1 fraction, which was composed of immunoglobulin fragments, cytokeratin, transferrin, and plasminogen precursor increased IVM and IVF. The F2, F3, and F4 fractions reduced the percentage of oocytes in first metaphase. Additionally, the F3 fraction, which was composed of immunoglobulins and transthyretin, interfered with germinal vesicle breakdown. The F5 fraction, which was mainly composed of serum albumin and keratin, favored germinal vesicle breakdown and promoted IVM. Most of the 31 proteins which were associated with the immune response and inflammatory processes could be related to oocyte maturation and fertilization. Some of the identified proteins were present in more than one fraction; this could be explained by a change in their isoelectric points, because of the loss of part of the amino acid sequence or a change in the glycosylation status of the protein. Improved oocyte IVM and IVF will increase embryo production, which in turn will contribute to the efficiency of assisted reproduction in various mammalian species.
Collapse
Affiliation(s)
- Yvonne Ducolomb
- Department of Health Sciences, Universidad Autónoma Metropolitana-Iztapalapa, México Distrito Federal, México
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood 2012; 121:1276-84. [PMID: 23264591 DOI: 10.1182/blood-2012-11-451229] [Citation(s) in RCA: 620] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hemolysis occurs in many hematologic and nonhematologic diseases. Extracellular hemoglobin (Hb) has been found to trigger specific pathophysiologies that are associated with adverse clinical outcomes in patients with hemolysis, such as acute and chronic vascular disease, inflammation, thrombosis, and renal impairment. Among the molecular characteristics of extracellular Hb, translocation of the molecule into the extravascular space, oxidative and nitric oxide reactions, hemin release, and molecular signaling effects of hemin appear to be the most critical. Limited clinical experience with a plasma-derived haptoglobin (Hp) product in Japan and more recent preclinical animal studies suggest that the natural Hb and the hemin-scavenger proteins Hp and hemopexin have a strong potential to neutralize the adverse physiologic effects of Hb and hemin. This includes conditions that are as diverse as RBC transfusion, sickle cell disease, sepsis, and extracorporeal circulation. This perspective reviews the principal mechanisms of Hb and hemin toxicity in different disease states, updates how the natural scavengers efficiently control these toxic moieties, and explores critical issues in the development of human plasma-derived Hp and hemopexin as therapeutics for patients with excessive intravascular hemolysis.
Collapse
|
49
|
Hanson MS, Xu H, Flewelen TC, Holzhauer SL, Retherford D, Jones DW, Frei AC, Pritchard KA, Hillery CA, Hogg N, Wandersee NJ. A novel hemoglobin-binding peptide reduces cell-free hemoglobin in murine hemolytic anemia. Am J Physiol Heart Circ Physiol 2012; 304:H328-36. [PMID: 23125208 DOI: 10.1152/ajpheart.00500.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hemolysis can saturate the hemoglobin (Hb)/heme scavenging system, resulting in increased circulating cell-free Hb (CF-Hb) in hereditary and acquired hemolytic disease. While recent studies have suggested a central role for intravascular hemolysis and CF-Hb in the development of vascular dysfunction, this concept has stimulated considerable debate. This highlights the importance of determining the contribution of CF-Hb to vascular complications associated with hemolysis. Therefore, a novel Hb-binding peptide was synthesized and linked to a small fragment of apolipoprotein E (amino acids 141-150) to facilitate endocytic clearance. Plasma clearance of hE-Hb-b10 displayed a rapid phase t(1/2) of 16 min and slow phase t(1/2) of 10 h, trafficking primarily through the liver. Peptide hE-Hb-B10 decreased CF-Hb in mice treated with phenylhydrazine, a model of acute hemolysis. Administration of hE-Hb-B10 also attenuated CF-Hb in two models of chronic hemolysis: Berkeley sickle cell disease (SS) mice and mice with severe hereditary spherocytosis (HS). The hemolytic rate was unaltered in either chronic hemolysis model, supporting the conclusion that hE-Hb-B10 promotes CF-Hb clearance without affecting erythrocyte lysis. Interestingly, hE-Hb-B10 also decreased plasma ALT activity in SS and HS mice. Although acetylcholine-mediated facialis artery vasodilation was not improved by hE-Hb-B10 treatment, the peptide shifted vascular response in favor of NO-dependent vasodilation in SS mice. Taken together, these data demonstrate that hE-Hb-B10 decreases CF-Hb with a concomitant reduction in liver injury and changes in vascular response. Therefore, hE-Hb-B10 can be used to investigate the different roles of CF-Hb in hemolytic pathology and may have therapeutic benefit in the treatment of CF-Hb-mediated tissue damage.
Collapse
Affiliation(s)
- Madelyn S Hanson
- Department of Biophysics and Redox Biology Program, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Structure of the haptoglobin–haemoglobin complex. Nature 2012; 489:456-9. [DOI: 10.1038/nature11369] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/29/2012] [Indexed: 11/08/2022]
|