1
|
Karamitros CS, Murray K, Kumada Y, Johnson KA, D'Arcy S, Georgiou G. Mechanistic conformational and substrate selectivity profiles emerging in the evolution of enzymes via parallel trajectories. Nat Commun 2024; 15:7068. [PMID: 39152129 PMCID: PMC11329768 DOI: 10.1038/s41467-024-51133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 07/30/2024] [Indexed: 08/19/2024] Open
Abstract
Laboratory evolution studies have demonstrated that parallel evolutionary trajectories can lead to genetically distinct enzymes with high activity towards a non-preferred substrate. However, it is unknown whether such enzymes have convergent conformational dynamics and mechanistic features. To address this question, we use as a model the wild-type Homo sapiens kynureninase (HsKYNase), which is of great interest for cancer immunotherapy. Earlier, we isolated HsKYNase_66 through an unusual evolutionary trajectory, having a 410-fold increase in the kcat/KM for kynurenine (KYN) and reverse substrate selectivity relative to HsKYNase. Here, by following a different evolutionary trajectory we generate a genetically distinct variant, HsKYNase_93D9, that exhibits KYN catalytic activity comparable to that of HsKYNase_66, but instead it is a "generalist" that accepts 3'-hydroxykynurenine (OH-KYN) with the same proficiency. Pre-steady-state kinetic analysis reveals that while the evolution of HsKYNase_66 is accompanied by a change in the rate-determining step of the reactions, HsKYNase_93D9 retains the same catalytic mechanism as HsKYNase. HDX-MS shows that the conformational dynamics of the two enzymes are markedly different and distinct from ortholog prokaryotic enzymes with high KYN activity. Our work provides a mechanistic framework for understanding the relationship between evolutionary mechanisms and phenotypic traits of evolved generalist and specialist enzyme species.
Collapse
Affiliation(s)
- Christos S Karamitros
- Department of Chemical Engineering, University of Texas at Austin (UT Austin), Austin, TX, USA
- Research and Clinical Development, Nestlé Health Science, Lausanne, 1000, Switzerland
| | - Kyle Murray
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
- Trajan Scientific America's, Inc. Boston, Massachusetts, MA, USA
| | - Yoichi Kumada
- Department of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Kyoto, Japan
| | - Kenneth A Johnson
- Department of Molecular Biosciences, University of Texas at Austin (UT Austin), Austin, TX, USA
| | - Sheena D'Arcy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin (UT Austin), Austin, TX, USA.
- Department of Molecular Biosciences, University of Texas at Austin (UT Austin), Austin, TX, USA.
- Department of Biomedical Engineering, University of Texas at Austin (UT Austin), Austin, TX, USA.
- Institute for Cellular and Molecular Biology, The University of Texas at Austin (UT Austin), Austin, TX, USA.
| |
Collapse
|
2
|
Karamitros CS, Murray K, Winemiller B, Lamb C, Stone EM, D'Arcy S, Johnson KA, Georgiou G. Leveraging intrinsic flexibility to engineer enhanced enzyme catalytic activity. Proc Natl Acad Sci U S A 2022; 119:e2118979119. [PMID: 35658075 PMCID: PMC9191678 DOI: 10.1073/pnas.2118979119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/01/2022] [Indexed: 11/18/2022] Open
Abstract
Dynamic motions of enzymes occurring on a broad range of timescales play a pivotal role in all steps of the reaction pathway, including substrate binding, catalysis, and product release. However, it is unknown whether structural information related to conformational flexibility can be exploited for the directed evolution of enzymes with higher catalytic activity. Here, we show that mutagenesis of residues exclusively located at flexible regions distal to the active site of Homo sapiens kynureninase (HsKYNase) resulted in the isolation of a variant (BF-HsKYNase) in which the rate of the chemical step toward kynurenine was increased by 45-fold. Mechanistic pre–steady-state kinetic analysis of the wild type and the evolved enzyme shed light on the underlying effects of distal mutations (>10 Å from the active site) on the rate-limiting step of the catalytic cycle. Hydrogen-deuterium exchange coupled to mass spectrometry and molecular dynamics simulations revealed that the amino acid substitutions in BF-HsKYNase allosterically affect the flexibility of the pyridoxal-5′-phosphate (PLP) binding pocket, thereby impacting the rate of chemistry, presumably by altering the conformational ensemble and sampling states more favorable to the catalyzed reaction.
Collapse
Affiliation(s)
| | - Kyle Murray
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX 75080
| | - Brent Winemiller
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
| | - Candice Lamb
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
| | - Everett M. Stone
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX 78712
- LiveSTRONG Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX 78712
| | - Sheena D'Arcy
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX 75080
| | - Kenneth A. Johnson
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX 78712
- LiveSTRONG Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX 78712
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
3
|
Karamitros CS, Murray K, Sugiyama Y, Kumada Y, Johnson KA, Georgiou G, D'Arcy S, Stone EM. Conformational Dynamics Contribute to Substrate Selectivity and Catalysis in Human Kynureninase. ACS Chem Biol 2020; 15:3159-3166. [PMID: 33275413 PMCID: PMC11104311 DOI: 10.1021/acschembio.0c00676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Kynureninases (KYNases) are enzymes that play a key role in tryptophan catabolism through the degradation of intermediate kynurenine and 3'-hydroxy-kynurenine metabolites (KYN and OH-KYN, respectively). Bacterial KYNases exhibit high catalytic efficiency toward KYN and moderate activity toward OH-KYN, whereas animal KYNases are highly selective for OH-KYN, exhibiting only minimal activity toward the smaller KYN substrate. These differences reflect divergent pathways for KYN and OH-KYN utilization in the respective kingdoms. We examined the Homo sapiens and Pseudomonas fluorescens KYNases (HsKYNase and PfKYNase respectively) using pre-steady-state and hydrogen-deuterium exchange mass spectrometry (HDX-MS) methodologies. We discovered that the activity of HsKYNase critically depends on formation of hydrogen bonds with the hydroxyl group of OH-KYN to stabilize the entire active site and allow productive substrate turnover. With the preferred OH-KYN substrate, stabilization is observed at the substrate-binding site and the region surrounding the PLP cofactor. With the nonpreferred KYN substrate, less stabilization occurs, revealing a direct correlation with activity. This correlation holds true for PfKYNases; however there is only a modest stabilization at the substrate-binding site, suggesting that substrate discrimination is simply achieved by steric hindrance. We speculate that eukaryotic KYNases use dynamic mobility as a mechanism of substrate specificity to commit OH-KYN to nicotinamide synthesis and avoid futile hydrolysis of KYN. These findings have important ramifications for the engineering of HsKynase with high KYN activity as required for clinical applications in cancer immunotherapy. Our study shows how homologous enzymes with conserved active sites can use dynamics to discriminate between two highly similar substrates.
Collapse
Affiliation(s)
- Christos S Karamitros
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kyle Murray
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Yusuke Sugiyama
- Department of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Yoichi Kumada
- Department of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Kenneth A Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - George Georgiou
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Oncology, University of Texas Dell Medical School, LiveSTRONG Cancer Institutes, Austin, Texas 78712, United States
| | - Sheena D'Arcy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Everett M Stone
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Oncology, University of Texas Dell Medical School, LiveSTRONG Cancer Institutes, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Phillips RS, Crocker M, Lin R, Idowu OE, McCannon DK, Lima S. The roles of Ser-36, Asp-132 and Asp-201 in the reaction of Pseudomonas fluorescens Kynureninase. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2019; 1867:722-731. [PMID: 31100408 DOI: 10.1016/j.bbapap.2019.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Kynureninase from Pseudomonas fluorescens (Pfkynase) catalyzes the pyridoxal-5'-phosphate (PLP) dependent hydrolytic cleavage of L-kynurenine to give anthranilate and L-alanine. Asp-132 and Asp-201 are located in the structure near the pyridine NH of the PLP, with Asp-201 forming a hydrogen bond. Mutation of Asp-132 to alanine and glutamate and Asp-201 to glutamate results in reduced catalytic activity with L-kynurenine and β-benzoyl-L-alanine, but not O-benzoyl-l-serine. D132A, D132E D201E and S36A mutant Pfkynases all can form quinonoid and vinylogous amide intermediates with β-benzoyl-L-alanine, similar to wild-type enzyme. D132A, D132E, and D201E Pfkynase react more slowly with β-benzoyl-L-alanine and benzaldehyde to form an aldol product absorbing at 490 nm than wild-type, with D132E reacting the slowest. The 1H NMR spectra of wild-type and D201E Pfkynase are very similar in the low field region from 10 to 18 ppm, but that of D132A Pfkynase is missing a resonance at 13.1 ppm. These results show that these residues modulate the reactivity of the PLP at different stages during the reaction cycle. Ser-36 is located near the expected location of the carbonyl oxygen of the substrate. Mutation of Ser-36 to alanine results in a 230-fold reduction of kcat and 30-fold reduction in kcat/Km with L-kynurenine, but very little effect on the reaction of O-benzoyl-l-serine. Thus, the rate-determining step in the reaction of S36A Pfkynase is the Cβ-Cγ bond cleavage. These results support the hypothesis that Ser-36 together with Tyr-226 is part of an oxyanion hole that polarizes the carbonyl of the substrate in the catalytic mechanism of Pfkynase.
Collapse
Affiliation(s)
- Robert S Phillips
- Department of Chemistry, University of Georgia, Athens, GA 30602, United States of America; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, United States of America.
| | - Mori Crocker
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, United States of America
| | - Richard Lin
- Department of Chemistry, University of Georgia, Athens, GA 30602, United States of America
| | - O Elijah Idowu
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, United States of America
| | - David K McCannon
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, United States of America
| | - Santiago Lima
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, United States of America
| |
Collapse
|
5
|
Pemberton TA, Christianson DW. General base-general acid catalysis by terpenoid cyclases. J Antibiot (Tokyo) 2016; 69:486-93. [PMID: 27072285 DOI: 10.1038/ja.2016.39] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/22/2016] [Accepted: 03/02/2016] [Indexed: 01/12/2023]
Abstract
Terpenoid cyclases catalyze the most complex reactions in biology, in that more than half of the substrate carbon atoms often undergo changes in bonding during the course of a multistep cyclization cascade that proceeds through multiple carbocation intermediates. Many cyclization mechanisms require stereospecific deprotonation and reprotonation steps, and most cyclization cascades are terminated by deprotonation to yield an olefin product. The first bacterial terpenoid cyclase to yield a crystal structure was pentalenene synthase from Streptomyces exfoliatus UC5319. This cyclase generates the hydrocarbon precursor of the pentalenolactone family of antibiotics. The structures of pentalenene synthase and other terpenoid cyclases reveal predominantly nonpolar active sites typically lacking amino acid side chains capable of serving general base-general acid functions. What chemical species, then, enables the Brønsted acid-base chemistry required in the catalytic mechanisms of these enzymes? The most likely candidate for such general base-general acid chemistry is the co-product inorganic pyrophosphate. Here, we briefly review biological and nonbiological systems in which phosphate and its derivatives serve general base and general acid functions in catalysis. These examples highlight the fact that the Brønsted acid-base activities of phosphate derivatives are comparable to the Brønsted acid-base activities of amino acid side chains.
Collapse
Affiliation(s)
- Travis A Pemberton
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA.,Radcliffe Institute for Advanced Study, and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
6
|
Phillips RS. Chemistry and diversity of pyridoxal-5'-phosphate dependent enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1167-74. [PMID: 25615531 DOI: 10.1016/j.bbapap.2014.12.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 12/01/2022]
Abstract
Pyridoxal-5'-phosphate (PLP) is a versatile cofactor that enzymes use to catalyze a wide variety of reactions of amino acids, including transamination, decarboxylation, racemization, β- and γ-eliminations and substitutions, retro-aldol and Claisen reactions. These reactions depend on the ability of PLP to stabilize, to a varying degree, α-carbanionic intermediates. Furthermore, oxidative decarboxylations and rearrangements suggest that PLP can stabilize radical intermediates as well. The reaction mechanisms of two PLP-dependent enzymes are discussed, kynureninase and tyrosine phenol-lyase (TPL). Kynureninase catalyzes a retro-Claisen reaction of kynurenine to give anthranilate and alanine. The key step, hydration of the γ-carbonyl, is assisted by acid-base catalysis with the phosphate of the PLP, mediated by a conserved tyrosine, and an oxyanion hole. TPL catalyzes the reversible elimination of phenol, a poor leaving group, from l-tyrosine. In TPL, the Cβ-Cγ bond cleavage is accelerated by ground state strain from the bending of the substrate ring out of the plane with the Cβ-Cγ bond. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.
Collapse
Affiliation(s)
- Robert S Phillips
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
7
|
Phillips RS, Scott I, Paulose R, Patel A, Barron TC. The phosphate of pyridoxal-5'-phosphate is an acid/base catalyst in the mechanism of Pseudomonas fluorescens kynureninase. FEBS J 2014; 281:1100-9. [PMID: 24304904 DOI: 10.1111/febs.12671] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/27/2013] [Accepted: 12/02/2013] [Indexed: 11/28/2022]
Abstract
Kynureninase (L-kynurenine hydrolase, EC 3.7.1.3) catalyzes the hydrolytic cleavage of L-kynurenine to L-alanine and anthranilic acid. The proposed mechanism of the retro-Claisen reaction requires extensive acid/base catalysis. Previous crystal structures showed that Tyr226 in the Pseudomonas fluorescens enzyme (Tyr275 in the human enzyme) hydrogen bonds to the phosphate of the pyridoxal-5'-phosphate (PLP) cofactor. This Tyr residue is strictly conserved in all sequences of kynureninase. The human enzyme complexed with a competitive inhibitor, 3-hydroxyhippuric acid, showed that the ligand carbonyl O is located 3.7 Å from the phenol of Tyr275 (Lima, S., Kumar, S., Gawandi, V., Momany, C. & Phillips, R. S. (2009) J. Med. Chem. 52, 389-396). We prepared a Y226F mutant of P. fluorescens kynureninase to probe the role of this residue in catalysis. The Y226F mutant has approximately 3000-fold lower activity than wild-type, and does not show the pKa values of 6.8 on kcat and 6.5 and 8.8 on k(cat)/K(m) seen for the wild-type enzyme (Koushik, S. V., Moore, J. A. III, Sundararaju, B. & Phillips, R. S. (1998) Biochemistry 37, 1376-1382). Wild-type kynureninase shows a resonance at 4.5 ppm in (31)P-NMR, which is shifted to 5.0, 3.3 and 2.0 ppm when the potent inhibitor 5-bromodihydrokynurenine is added. However, Y226F kynureninase shows resonances at 3.6 and 2.5 ppm, and no change in the peak position is seen when 5-bromodihydrokynurenine is added. Taken together, these results suggest that Tyr226 mediates proton transfer between the substrate and the phosphate, which accelerates formation of external aldimine and gem-diol intermediates. Thus, the phosphate of PLP acts as an acid/base catalyst in the mechanism of kynureninase.
Collapse
Affiliation(s)
- Robert S Phillips
- Department of Biochemistry and Molecular Biology, University Georgia, Athens, GA, USA; Department of Chemistry, University Georgia, Athens, GA, USA
| | | | | | | | | |
Collapse
|
8
|
Phillips RS. Structure and mechanism of kynureninase. Arch Biochem Biophys 2013; 544:69-74. [PMID: 24200862 DOI: 10.1016/j.abb.2013.10.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/26/2013] [Accepted: 10/28/2013] [Indexed: 11/25/2022]
Abstract
The kynurenine pathway is the major pathway of l-tryptophan catabolism in eukaryotes and some bacteria. In this pathway, kynureninase catalyzes the hydrolysis of l-kynurenine (in bacteria) or 3-hydroxy-l-kynurenine (in eukaryotes) to give anthranilic acid or 3-hydroxyanthranilic acid, respectively, and l-alanine. Kynureninase is a member of the aminotransferase superfamily and contains pyridoxal-5'-phosphate (PLP) as cofactor. The enzyme is a dimer of two identical subunits, with the active site containing residues contributed from both subunits. The reaction of kynureninase is formally a retro-Claisen reaction, and thus requires extensive acid-base catalysis. The pH dependence of the reaction of Pseudomonas fluorescens kynureninase shows two pKa's, a base with 6.5 and an acid with 8.8, on kcat/Km, and one pKa of 6.8 on kcat. The effects of mutagenesis of Tyr-226 and (31)P NMR results suggest that the basic group with pKa of 6.5 is the phosphate group of the PLP, which accepts a proton from the amino acid substrate zwitterion to initiate transaldimination. The external aldimine of kynurenine and PLP is then deprotonated by the ε-amino group of Lys-227 to give a quinonoid intermediate, which is reprotonated at C-4' to give a ketimine. Addition of water to the γ-carbonyl, assisted by Lys-227, then gives a gem-diol, which undergoes Cβ-Cγ cleavage to give the first product, anthranilic acid, and an enamine intermediate. The enamine is protonated at the β-carbon, resulting in a pyruvate ketimine. Deprotonation at C-4' and reprotonation of the α-carbon gives the external aldimine of l-alanine, which releases the second product, l-alanine. The reaction specificity of kynureninases is determined in part by active site residues, Trp64, Gly281, and Thr282 in P. fluorescens, and the homologous His102, Ser332, and Asn333 in human kynureninase. Asn333 can form a hydrogen bond to the 3-OH of 3-hydroxykynurenine in the human enzyme. Halogenation of kynurenine at C-5 increases activity with both enzymes, but halogenation at C-3 only increases activity for human kynureninase. The effect of halogenation at C-5 may be due to hydrophobic or van der Waals effects, and the effect of halogenation at C-3 for the human enzyme may be due to halogen bonding.
Collapse
Affiliation(s)
- Robert S Phillips
- Department of Chemistry, University of Georgia, Athens, GA 30602, United States; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
9
|
Maitrani C, Phillips RS. Substituents effects on activity of kynureninase from Homo sapiens and Pseudomonas fluorescens. Bioorg Med Chem 2013; 21:4670-7. [DOI: 10.1016/j.bmc.2013.05.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/02/2013] [Accepted: 05/10/2013] [Indexed: 11/29/2022]
|
10
|
Structure, mechanism, and substrate specificity of kynureninase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:1481-8. [PMID: 21167323 DOI: 10.1016/j.bbapap.2010.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 11/08/2010] [Accepted: 12/02/2010] [Indexed: 02/03/2023]
Abstract
The kynurenine pathway is the major route for tryptophan catabolism in animals and some fungi and bacteria. The procaryotic enzyme preferentially reacts with l-kynurenine, while eucaryotic kynureninases exhibit higher activity with 3-hydroxy-l-kynurenine. Crystallography of kynureninases from Pseudomonas fluorescens (PfKyn) and Homo sapiens (HsKyn) shows that the active sites are nearly identical, except that His-102, Asn-333, and Ser-332 in HsKyn are replaced by Trp-64, Thr-282, and Gly-281 in PfKyn. Site-directed mutagenesis of HsKyn shows that these residues are, at least in part, responsible for the differences in substrate specificity since the H102W/S332G/N333T triple mutant shows activity with kynurenine but not 3-hydroxykynurenine. PfKyn is strongly inhibited by analogs of a proposed gem-diolate intermediate, dihydrokynurenine, and S-(2-aminophenyl)-l-cysteine S,S-dioxide, with K(i) values in the low nanomolar range. Stopped-flow kinetic experiments show that a transient quinonoid intermediate is formed on mixing, which decays to a ketimine at 740 s(-1). Quench experiments show that anthranilate, the first product, is formed in a stoichiometric burst at 50 s(-1) and thus the rate-determining step in the steady-state is the release of the second product, l-Ala. β-Benzoylalanine is also a good substrate for PfKyn but does not show a burst of benzoate formation, indicating that the rate-determining step for this substrate is benzoate release. A Hammett plot of rate constants for substituted β-benzoylalanines is non-linear, suggesting that carbonyl hydration is rate-determining for electron-donating groups, but C(β)-C(γ) cleavage is rate-determining for electron-withdrawing groups. This article is part of a Special Issue entitled: Pyridoxal phosphate Enzymology.
Collapse
|
11
|
Kumar S, Gawandi VB, Capito N, Phillips RS. Substituent effects on the reaction of beta-benzoylalanines with Pseudomonas fluorescens kynureninase. Biochemistry 2010; 49:7913-9. [PMID: 20690660 DOI: 10.1021/bi100955b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Kynureninase is a pyridoxal 5'-phosphate-dependent enzyme that catalyzes the hydrolytic cleavage of l-kynurenine to give l-alanine and anthranilic acid. beta-Benzoyl-l-alanine, the analogue of l-kynurenine lacking the aromatic amino group, was shown to a good substrate for kynureninase from Pseudomonas fluorescens, and the rate-determining step changes from release of the second product, l-Ala, to formation of the first product, benzoate [Gawandi, V. B., et al. (2004) Biochemistry 43, 3230-3237]. In this work, a series of aryl-substituted beta-benzoyl-dl-alanines was synthesized and evaluated for substrate activity with kynureninase from P. fluorescens. Hammett analysis of k(cat) and k(cat)/K(m) for 4-substituted beta-benzoyl-dl-alanines with electron-withdrawing and electron-donating substituents is nonlinear, with a concave downward curvature. This suggests that there is a change in rate-determining step for benzoate formation with different substituents, from gem-diol formation for electron-donating substituents to C(beta)-C(gamma) bond cleavage for electron-withdrawing substituents. Rapid-scanning stopped-flow kinetic experiments demonstrated that substituents have relatively minor effects on formation of the quinonoid and 348 nm intermediates but have a much greater effect on the formation of the aldol product from reaction of benzaldehyde with the 348 nm intermediate. Since there is a kinetic isotope effect on its formation from beta,beta-dideuterio-beta-(4-trifluoromethylbenzoyl)-dl-alanine, the 348 nm intermediate is proposed to be a vinylogous amide derived from abortive beta-deprotonation of the ketimine intermediate. These results provide additional evidence for a gem-diol intermediate in the catalytic mechanism of kynureninase.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, University of Georgia,Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
12
|
|
13
|
Lima S, Khristoforov R, Momany C, Phillips RS. Crystal structure of Homo sapiens kynureninase. Biochemistry 2007; 46:2735-44. [PMID: 17300176 PMCID: PMC2531291 DOI: 10.1021/bi0616697] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Collapse
Affiliation(s)
- Santiago Lima
- Departments of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
14
|
Cellini B, Bertoldi M, Borri Voltattorni C. Treponema denticola cystalysin catalyzes beta-desulfination of L-cysteine sulfinic acid and beta-decarboxylation of L-aspartate and oxalacetate. FEBS Lett 2003; 554:306-10. [PMID: 14623084 DOI: 10.1016/s0014-5793(03)01178-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pyridoxal 5'-phosphate-dependent cystalysin from Treponema denticola catalyzes the beta-displacement of the beta-substituent from both L-aspartate and L-cysteine sulfinic acid. The steady-state kinetic parameters for beta-desulfination of L-cysteine sulfinic acid, k(cat) and K(m), are 89+/-7 s(-1) and 49+/-9 mM, respectively, whereas those for beta-decarboxylation of L-aspartate are 0.8+/-0.1 s(-1) and 280+/-70 mM. Moreover, cystalysin in the pyridoxamine 5'-phosphate form has also been found to catalyze beta-decarboxylation of oxalacetate as shown by consumption of oxalacetate and a concomitant production of pyruvate. The k(cat) and K(m) of this reaction are 0.15+/-0.01 s(-1) and 13+/-2 mM, respectively. Possible mechanistic and physiological implications are discussed.
Collapse
Affiliation(s)
- Barbara Cellini
- Dipartimento di Scienze Neurologiche e della Visione, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università degli Studi di Verona, Strada Le Grazie, 8, 37134 Verona, Italy.
| | | | | |
Collapse
|
15
|
Fitzgerald DH, Muirhead KM, Botting NP. A comparative study on the inhibition of human and bacterial kynureninase by novel bicyclic kynurenine analogues. Bioorg Med Chem 2001; 9:983-9. [PMID: 11354681 DOI: 10.1016/s0968-0896(00)00318-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A series of novel bicyclic analogues of kynurenine were synthesised as inhibitors of kynureninase. The tryptophan-induced bacterial enzyme from Pseudomonas. fluorescens was compared to the constitutive recombinant human enzyme expressed in a baculovirus/insect cell system, with regard to their inhibition by these compounds. All the compounds studied were found to be simple competitive, reversible inhibitors of kynureninase. It was found that altering the size of the second ring of the inhibitor affected the observed Ki values for both enzymes. The addition of an oxygen atom into the second ring had little effect on binding to the bacterial enzyme but gave a more potent inhibitor of human kynureninase. Of the compounds tested, a naphthyl analogue of desaminokynurenine was found to be the most potent inhibitor for both enzymes with Ki values of 5 and 22 microM for bacterial and human enzyme respectively. This report also describes an alternative system for the expression of recombinant human kynureninase which is more convenient for expression in mammalian cells and produces a relatively greater quantity of enzyme.
Collapse
|
16
|
Li K, Horanyi PS, Collins R, Phillips RS, Eriksson KE. Investigation of the role of 3-hydroxyanthranilic acid in the degradation of lignin by white-rot fungus Pycnoporus cinnabarinus. Enzyme Microb Technol 2001; 28:301-307. [PMID: 11240183 DOI: 10.1016/s0141-0229(00)00332-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An aminophenol, 3-hydroxyanthranilic acid (3-HAA), has been proposed to play important roles in lignin degradation. Production of 3-HAA in Pycnoporus cinnabarinus was completely inhibited by a combination of tryptophan and S-(2-aminophenyl)-L-cysteine S,S-dioxide (APCD) while the fungus grew well and produced high amounts of laccase. The biosynthesis of 3-HAA is mainly through the metabolism of tryptophan in the kynurenine pathway. A minor pathway for 3-HAA synthesis is through the hydroxylation of anthranilic acid during the biosynthesis of tryptophan in the shikimic acid pathway. Through UV irradiation of wild-type P. cinnabarinus (WT-Pc) spores, a 3-HAA-less mutant was produced. Both WT-Pc, under the inhibitory culture condition, and the 3-HAA-less mutant were found to degrade lignin in unbleached kraft pulp as efficiently as the WT-Pc, which unambiguously demonstrated that 3-HAA does not play an important role in the fungal degradation of lignin.
Collapse
Affiliation(s)
- K Li
- Department of Forest Products, Oregon State University, 97331, Corvallis, OR, USA
| | | | | | | | | |
Collapse
|
17
|
Cyr LV, Newton MG, Phillips RS. Stereospecificity of Pseudomonas fluorescens kynureninase for diastereomers of beta-methylkynurenine. Bioorg Med Chem 1999; 7:1497-503. [PMID: 10482441 DOI: 10.1016/s0968-0896(99)00088-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The diastereomers of beta-methyl-L-kynurenine were prepared by preparative ozonolysis of the respective diastereomers of beta-methyl-L-tryptophan. A practical method for preparative enzymatic resolution of the diastereomers of beta-methyltryptophan was developed using carboxypeptidase A digestion of the N-trifluoroacetyl derivatives. The stereochemical assignment was confirmed by X-ray crystal structure determination of (2S, 3R)-threo-beta-methyl-L-tryptophan. (2S,3S)-erythro-beta-Methyl-L-kynurenine is a slow substrate for kynureninase from Pseudomonas fluorescens (k(cat)/K(m) = 0.1% that of L-kynurenine), producing anthranilic acid, while (2S,3R)-threo-L-kynurenine is about 390-fold less reactive than erythro. Rapid-scanning stopped-flow measurements show that beta-methyl substitution affects the rate of alpha-deprotonation of the L-kynurenine-pyridoxal-5'-phosphate Schiffs base. This is consistent with the stereoelectronic requirements of the reaction. These results are the first demonstration that beta-substituted kynurenines can be substrates for kynureninase, and may be useful in the design of mechanism-based inhibitors.
Collapse
Affiliation(s)
- L V Cyr
- Department of Chemistry, Center for Metalloenzyme Studies, University of Georgia, Athens 30602-2556, USA
| | | | | |
Collapse
|