1
|
Sherry D, Pandian R, Sayed Y. Non-active site mutations in the HIV protease: Diminished drug binding affinity is achieved through modulating the hydrophobic sliding mechanism. Int J Biol Macromol 2022; 217:27-41. [PMID: 35817239 DOI: 10.1016/j.ijbiomac.2022.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/17/2022] [Accepted: 07/05/2022] [Indexed: 11/27/2022]
Abstract
The global HIV/AIDS epidemic still currently affects approximately 38 million individuals globally. The protease enzyme of the human immunodeficiency virus is a major drug target in antiviral therapy, however, under the influence of reverse transcriptase and in the context of drug pressure, the rapid PR mutation rate contributes significantly to clinical failure. The set of cooperative non-active site mutations, I13V/I62V/V77I, have been associated with reduced inhibitor susceptibility and are the focus of the current study. When compared to the wild-type protease the mutant protease exhibited decreased binding affinities towards ATV and DRV by 64- and 12-fold, respectively, and decreased the overall favourable Gibbs free energy for ATV, DRV, RTV and SQV. Moreover, these mutations decreased the thermal stability of the protease when in complex with ATV and DRV by approximately 6.4 and 4.2 °C, respectively. The crystal structure of the mutant protease revealed that the location of these mutations and their effect on the hydrophobic sliding mechanism may be crucial in their role in resistance.
Collapse
Affiliation(s)
- Dean Sherry
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Ramesh Pandian
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Yasien Sayed
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
2
|
Sherry D, Worth R, Sayed Y. Elasticity-Associated Functionality and Inhibition of the HIV Protease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1371:79-108. [PMID: 34351572 DOI: 10.1007/5584_2021_655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HIV protease plays a critical role in the life cycle of the virus through the generation of mature and infectious virions. Detailed knowledge of the structure of the enzyme and its substrate has led to the development of protease inhibitors. However, the development of resistance to all currently available protease inhibitors has contributed greatly to the decreased success of antiretroviral therapy. When therapy failure occurs, multiple mutations are found within the protease sequence starting with primary mutations, which directly impact inhibitor binding, which can also negatively impact viral fitness and replicative capacity by decreasing the binding affinity of the natural substrates to the protease. As such, secondary mutations which are located outside of the active site region accumulate to compensate for the recurrently deleterious effects of primary mutations. However, the resistance mechanism of these secondary mutations is not well understood, but what is known is that these secondary mutations contribute to resistance in one of two ways, either through increasing the energetic penalty associated with bringing the protease into the closed conformation, or, through decreasing the stability of the protein/drug complex in a manner that increases the dissociation rate of the drug, leading to diminished inhibition. As a result, the elasticity of the enzyme-substrate complex has been implicated in the successful recognition and catalysis of the substrates which may be inferred to suggest that the elasticity of the enzyme/drug complex plays a role in resistance. A realistic representation of the dynamic nature of the protease may provide a more powerful tool in structure-based drug design algorithms.
Collapse
Affiliation(s)
- Dean Sherry
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Roland Worth
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Yasien Sayed
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
3
|
Lockbaum GJ, Leidner F, Royer WE, Kurt Yilmaz N, Schiffer CA. Optimizing the refinement of merohedrally twinned P6 1 HIV-1 protease-inhibitor cocrystal structures. Acta Crystallogr D Struct Biol 2020; 76:302-310. [PMID: 32133994 PMCID: PMC7057220 DOI: 10.1107/s2059798320001989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/11/2020] [Indexed: 11/10/2022] Open
Abstract
Twinning is a crystal-growth anomaly in which protein monomers exist in different orientations but are related in a specific way, causing diffraction reflections to overlap. Twinning imposes additional symmetry on the data, often leading to the assignment of a higher symmetry space group. Specifically, in merohedral twinning, reflections from each monomer overlap and require a twin law to model unique structural data from overlapping reflections. Neglecting twinning in the crystallographic analysis of quasi-rotationally symmetric homo-oligomeric protein structures can mask the degree of structural non-identity between monomers. In particular, any deviations from perfect symmetry will be lost if higher than appropriate symmetry is applied during crystallographic analysis. Such cases warrant choosing between the highest symmetry space group possible or determining whether the monomers have distinguishable structural asymmetries and thus require a lower symmetry space group and a twin law. Using hexagonal cocrystals of HIV-1 protease, a C2-symmetric homodimer whose symmetry is broken by bound ligand, it is shown that both assigning a lower symmetry space group and applying a twin law during refinement are critical to achieving a structural model that more accurately fits the electron density. By re-analyzing three recently published HIV-1 protease structures, improvements in nearly every crystallographic metric are demonstrated. Most importantly, a procedure is demonstrated where the inhibitor can be reliably modeled in a single orientation. This protocol may be applicable to many other homo-oligomers in the PDB.
Collapse
Affiliation(s)
- Gordon J. Lockbaum
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Florian Leidner
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - William E. Royer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
4
|
Dimer Interface Organization is a Main Determinant of Intermonomeric Interactions and Correlates with Evolutionary Relationships of Retroviral and Retroviral-Like Ddi1 and Ddi2 Proteases. Int J Mol Sci 2020; 21:ijms21041352. [PMID: 32079302 PMCID: PMC7072860 DOI: 10.3390/ijms21041352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
The life cycles of retroviruses rely on the limited proteolysis catalyzed by the viral protease. Numerous eukaryotic organisms also express endogenously such proteases, which originate from retrotransposons or retroviruses, including DNA damage-inducible 1 and 2 (Ddi1 and Ddi2, respectively) proteins. In this study, we performed a comparative analysis based on the structural data currently available in Protein Data Bank (PDB) and Structural summaries of PDB entries (PDBsum) databases, with a special emphasis on the regions involved in dimerization of retroviral and retroviral-like Ddi proteases. In addition to Ddi1 and Ddi2, at least one member of all seven genera of the Retroviridae family was included in this comparison. We found that the studied retroviral and non-viral proteases show differences in the mode of dimerization and density of intermonomeric contacts, and distribution of the structural characteristics is in agreement with their evolutionary relationships. Multiple sequence and structure alignments revealed that the interactions between the subunits depend mainly on the overall organization of the dimer interface. We think that better understanding of the general and specific features of proteases may support the characterization of retroviral-like proteases.
Collapse
|
5
|
Whitfield TW, Ragland DA, Zeldovich KB, Schiffer CA. Characterizing Protein-Ligand Binding Using Atomistic Simulation and Machine Learning: Application to Drug Resistance in HIV-1 Protease. J Chem Theory Comput 2020; 16:1284-1299. [PMID: 31877249 DOI: 10.1021/acs.jctc.9b00781] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Over the past several decades, atomistic simulations of biomolecules, whether carried out using molecular dynamics or Monte Carlo techniques, have provided detailed insights into their function. Comparing the results of such simulations for a few closely related systems has guided our understanding of the mechanisms by which changes such as ligand binding or mutation can alter the function. The general problem of detecting and interpreting such mechanisms from simulations of many related systems, however, remains a challenge. This problem is addressed here by applying supervised and unsupervised machine learning techniques to a variety of thermodynamic observables extracted from molecular dynamics simulations of different systems. As an important test case, these methods are applied to understand the evasion by human immunodeficiency virus type-1 (HIV-1) protease of darunavir, a potent inhibitor to which resistance can develop via the simultaneous mutation of multiple amino acids. Complex mutational patterns have been observed among resistant strains, presenting a challenge to developing a mechanistic picture of resistance in the protease. In order to dissect these patterns and gain mechanistic insight into the role of specific mutations, molecular dynamics simulations were carried out on a collection of HIV-1 protease variants, chosen to include highly resistant strains and susceptible controls, in complex with darunavir. Using a machine learning approach that takes advantage of the hierarchical nature in the relationships among the sequence, structure, and function, an integrative analysis of these trajectories reveals key details of the resistance mechanism, including changes in the protein structure, hydrogen bonding, and protein-ligand contacts.
Collapse
Affiliation(s)
- Troy W Whitfield
- Department of Medicine , University of Massachusetts Medical School , Worcester , Massachusetts 01605 , United States.,Program in Bioinformatics and Integrative Biology , University of Massachusetts Medical School , Worcester , Massachusetts 01605 , United States
| | - Debra A Ragland
- Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , Massachusetts 01605 , United States
| | - Konstantin B Zeldovich
- Program in Bioinformatics and Integrative Biology , University of Massachusetts Medical School , Worcester , Massachusetts 01605 , United States
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , Massachusetts 01605 , United States
| |
Collapse
|
6
|
Wosicki S, Gilski M, Zabranska H, Pichova I, Jaskolski M. Comparison of a retroviral protease in monomeric and dimeric states. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:904-917. [PMID: 31588922 DOI: 10.1107/s2059798319011355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/13/2019] [Indexed: 11/10/2022]
Abstract
Retroviral proteases (RPs) are of high interest owing to their crucial role in the maturation process of retroviral particles. RPs are obligatory homodimers, with a pepsin-like active site built around two aspartates (in DTG triads) that activate a water molecule, as the nucleophile, under two flap loops. Mason-Pfizer monkey virus (M-PMV) is unique among retroviruses as its protease is also stable in the monomeric form, as confirmed by an existing crystal structure of a 13 kDa variant of the protein (M-PMV PR) and its previous biochemical characterization. In the present work, two mutants of M-PMV PR, D26N and C7A/D26N/C106A, were crystallized in complex with a peptidomimetic inhibitor and one mutant (D26N) was crystallized without the inhibitor. The crystal structures were solved at resolutions of 1.6, 1.9 and 2.0 Å, respectively. At variance with the previous study, all of the new structures have the canonical dimeric form of retroviral proteases. The protomers within a dimer differ mainly in the flap-loop region, with the most extreme case observed in the apo structure, in which one flap loop is well defined while the other flap loop is not defined by electron density. The presence of the inhibitor molecules in the complex structures was assessed using polder maps, but some details of their conformations remain ambiguous. In all of the presented structures the active site contains a water molecule buried deeply between the Asn26-Thr27-Gly28 triads of the protomers. Such a water molecule is completely unique not only in retropepsins but also in aspartic proteases in general. The C7A and C106A mutations do not influence the conformation of the protein. The Cys106 residue is properly placed at the homodimer interface area for a disulfide cross-link, but the reducing conditions of the crystallization experiment prevented S-S bond formation. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:Acta_Cryst_D:S2059798319011355.
Collapse
Affiliation(s)
- Stanislaw Wosicki
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Miroslaw Gilski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Helena Zabranska
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Iva Pichova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Mariusz Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| |
Collapse
|
7
|
Che X, Du XX, Cai X, Zhang J, Xie WJ, Long Z, Ye ZY, Zhang H, Yang L, Su XD, Gao YQ. Single Mutations Reshape the Structural Correlation Network of the DMXAA-Human STING Complex. J Phys Chem B 2017; 121:2073-2082. [PMID: 28178416 DOI: 10.1021/acs.jpcb.6b12472] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Subtle changes in protein sequences are able to alter ligand-protein interactions. Unraveling the mechanism of such phenomena is important for understanding ligand-protein interactions, including the DMXAA-STING interaction. DMXAA specifically binds to mouse STING instead of human STING. However, the S162A mutation and a newly discovered E260I mutation endow human STINGAQ with DMXAA sensitivity. Through molecular dynamics simulations, we revealed how these single mutations alter the DMXAA-STING interaction. Compared to mutated systems, structural correlations in the interaction of STINGAQ with DMXAA are stronger, and the correlations are cross-protomers in the dimeric protein. Analyses on correlation coefficients lead to the identification of two key interactions that mediate the strong cross-protomer correlation in the DMXAA-STINGAQ interaction network: DMXAA-267T-162S* and 238R-260E*. These two interactions are partially and totally interrupted by the S162A and E260I mutations, respectively. Moreover, a smaller number of water molecules are displaced upon DMXAA binding to STINGAQ than that on binding to its mutants, leading to a larger entropic penalty for the former. Considering the sensitivity of STINGAQ and two of its mutants to DMXAA, a strong structural correlation appears to discourage DMXAA-STING binding. Such an observation suggests that DMXAA derivatives, which are deprived of hydrogen-bond interaction with both 162S* and 267T, are potential agonists of human STING.
Collapse
Affiliation(s)
- Xing Che
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center and ‡State Key Laboratory of Protein and Plant Gene Research, and Biodynamic Optical Imaging Center, School of Life Sciences, Peking University , Beijing 100871, China
| | - Xiao-Xia Du
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center and ‡State Key Laboratory of Protein and Plant Gene Research, and Biodynamic Optical Imaging Center, School of Life Sciences, Peking University , Beijing 100871, China
| | - Xiaoxia Cai
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center and ‡State Key Laboratory of Protein and Plant Gene Research, and Biodynamic Optical Imaging Center, School of Life Sciences, Peking University , Beijing 100871, China
| | - Jun Zhang
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center and ‡State Key Laboratory of Protein and Plant Gene Research, and Biodynamic Optical Imaging Center, School of Life Sciences, Peking University , Beijing 100871, China
| | - Wen Jun Xie
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center and ‡State Key Laboratory of Protein and Plant Gene Research, and Biodynamic Optical Imaging Center, School of Life Sciences, Peking University , Beijing 100871, China
| | - Zhuoran Long
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center and ‡State Key Laboratory of Protein and Plant Gene Research, and Biodynamic Optical Imaging Center, School of Life Sciences, Peking University , Beijing 100871, China
| | - Zhao-Yang Ye
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center and ‡State Key Laboratory of Protein and Plant Gene Research, and Biodynamic Optical Imaging Center, School of Life Sciences, Peking University , Beijing 100871, China
| | - Heng Zhang
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center and ‡State Key Laboratory of Protein and Plant Gene Research, and Biodynamic Optical Imaging Center, School of Life Sciences, Peking University , Beijing 100871, China
| | - Lijiang Yang
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center and ‡State Key Laboratory of Protein and Plant Gene Research, and Biodynamic Optical Imaging Center, School of Life Sciences, Peking University , Beijing 100871, China
| | - Xiao-Dong Su
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center and ‡State Key Laboratory of Protein and Plant Gene Research, and Biodynamic Optical Imaging Center, School of Life Sciences, Peking University , Beijing 100871, China
| | - Yi Qin Gao
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center and ‡State Key Laboratory of Protein and Plant Gene Research, and Biodynamic Optical Imaging Center, School of Life Sciences, Peking University , Beijing 100871, China
| |
Collapse
|
8
|
Abstract
Viruses are major pathogenic agents that can cause a variety of diseases, such as AIDS, hepatitis, respiratory diseases, and many more, in humans, plants, and animals. The most prominent of them have been adenoviruses, alphaviruses, flaviviruses, hepatitis C virus, herpesviruses, human immunodeficiency virus of type 1, and picornaviruses. This chapter presents an introductory remark on such viruses, mechanisms of their invasion, and diseases related to them. The inhibition of these viruses is of great concern to human beings. Each of these viruses encodes one or more proteases that play crucial roles in their replication, and thus they are important targets for the design and development of potent antiviral agents. The chapter, therefore, also introduces the readers to such proteases and their structures and functions. This chapter is thus a prelude to the remaining chapters in the book, which present in detail about the different viruses and their proteases.
Collapse
Affiliation(s)
- Anjana Sharma
- Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Satya P. Gupta
- National Institute of Technical Teachers’ Training and Research, Bhopal, Madhya Pradesh, India
| |
Collapse
|
9
|
Chiu SH, Xie L. Toward High-Throughput Predictive Modeling of Protein Binding/Unbinding Kinetics. J Chem Inf Model 2016; 56:1164-74. [PMID: 27159844 DOI: 10.1021/acs.jcim.5b00632] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
One of the unaddressed challenges in drug discovery is that drug potency determined in vitro is not a reliable indicator of drug activity in vivo. Accumulated evidence suggests that in vivo activity is more strongly correlated with the binding/unbinding kinetics than the equilibrium thermodynamics of protein-ligand interactions (PLIs). However, existing experimental and computational techniques are insufficient in studying the molecular details of kinetics processes of PLIs on a large scale. Consequently, we not only have limited mechanistic understanding of the kinetic processes but also lack a practical platform for high-throughput screening and optimization of drug leads on the basis of their kinetic properties. For the first time, we address this unmet need by integrating coarse-grained normal mode analysis with multitarget machine learning (MTML). To test our method, HIV-1 protease is used as a model system. We find that computational models based on the residue normal mode directionality displacement of PLIs can not only recapitulate the results from all-atom molecular dynamics simulations but also predict protein-ligand binding/unbinding kinetics accurately. When this is combined with energetic features, the accuracy of combined kon and koff prediction reaches 74.35%. Furthermore, our integrated model provides us with new insights into the molecular determinants of the kinetics of PLIs. We propose that the coherent coupling of conformational dynamics and thermodynamic interactions between the receptor and the ligand may play a critical role in determining the kinetic rate constants of PLIs. In conclusion, we demonstrate that residue normal mode directionality displacement can serve as a kinetic fingerprint to capture long-time-scale conformational dynamics of the binding/unbinding kinetics. When this is coupled with MTML, it is possible to screen and optimize compounds on the basis of their binding/unbinding kinetics in a high-throughput fashion. The further development of such computational tools will bridge one of the critical missing links between in vitro compound screening and in vivo drug activity.
Collapse
Affiliation(s)
- See Hong Chiu
- Department of Computer Science, The Graduate Center, The City University of New York , 365 Fifth Avenue, New York, New York 10016, United States
| | - Lei Xie
- Department of Computer Science, The Graduate Center, The City University of New York , 365 Fifth Avenue, New York, New York 10016, United States.,Department of Computer Science, Hunter College, The City University of New York , 695 Park Avenue, New York, New York 10065, United States
| |
Collapse
|
10
|
Carter JD, Gonzales EG, Huang X, Smith AN, de Vera IMS, D'Amore PW, Rocca JR, Goodenow MM, Dunn BM, Fanucci GE. Effects of PRE and POST therapy drug-pressure selected mutations on HIV-1 protease conformational sampling. FEBS Lett 2014; 588:3123-8. [PMID: 24983495 DOI: 10.1016/j.febslet.2014.06.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 06/16/2014] [Accepted: 06/16/2014] [Indexed: 01/11/2023]
Abstract
Conformational sampling of pre- and post-therapy subtype B HIV-1 protease sequences derived from a pediatric subject infected via maternal transmission with HIV-1 were characterized by double electron-electron resonance spectroscopy. The conformational ensemble of the PRE construct resembles native-like inhibitor bound states. In contrast, the POST construct, which contains accumulated drug-pressure selected mutations, has a predominantly semi-open conformational ensemble, with increased populations of open-like states. The single point mutant L63P, which is contained in PRE and POST, has decreased dynamics, particularly in the flap region, and also displays a closed-like conformation of inhibitor-bound states. These findings support our hypothesis that secondary mutations accumulate in HIV-1 protease to shift conformational sampling to stabilize open-like conformations, while maintaining the predominant semi-open conformation for activity.
Collapse
Affiliation(s)
- Jeffrey D Carter
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | - Estrella G Gonzales
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | - Xi Huang
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | - Adam N Smith
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | | | - Peter W D'Amore
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | - James R Rocca
- Advanced Magnetic Resonance Imaging and Spectroscopy Facility, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Maureen M Goodenow
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610-3633, USA
| | - Ben M Dunn
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610-0245, USA
| | - Gail E Fanucci
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA.
| |
Collapse
|
11
|
Brut M, Estève A, Landa G, Djafari Rouhani M. Toward in silico biomolecular manipulation through static modes: atomic scale characterization of HIV-1 protease flexibility. J Phys Chem B 2014; 118:2821-30. [PMID: 24568689 DOI: 10.1021/jp4113156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Probing biomolecular flexibility with atomic-scale resolution is a challenging task in current computational biology for fundamental understanding and prediction of biomolecular interactions and associated functions. This paper makes use of the static mode method to study HIV-1 protease considered as a model system to investigate the full biomolecular flexibility at the atomic scale, the screening of active site biomechanical properties, the blind prediction of allosteric sites, and the design of multisite strategies to target deformations of interest. Relying on this single calculation run of static modes, we demonstrate that in silico predictive design of an infinite set of complex excitation fields is reachable, thanks to the storage of the static modes in a data bank that can be used to mimic single or multiatom contact and efficiently anticipate conformational changes arising from external stimuli. All along this article, we compare our results to data previously published and propose a guideline for efficient, predictive, and custom in silico experiments.
Collapse
Affiliation(s)
- Marie Brut
- CNRS , LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
| | | | | | | |
Collapse
|
12
|
Dewdney TG, Wang Y, Kovari IA, Reiter SJ, Kovari LC. Reduced HIV-1 integrase flexibility as a mechanism for raltegravir resistance. J Struct Biol 2013; 184:245-50. [PMID: 23891838 DOI: 10.1016/j.jsb.2013.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/10/2013] [Accepted: 07/15/2013] [Indexed: 11/28/2022]
Abstract
HIV-1 integrase is an essential enzyme necessary for the replication of the HIV virus as it catalyzes the insertion of the viral genome into the host chromosome. Raltegravir was the first integrase inhibitor approved by the FDA for antiretroviral treatment. HIV patients on raltegravir containing regimens often develop drug resistance mutations at residue 140 and 148 in the catalytic 140's loop resulting in a 5-10 fold decrease in susceptibility to raltegravir. Obtaining crystallographic structure information on the Q148H/R, G140S/A primary and secondary mutations has been elusive. Using 10 ns molecular dynamics simulations, we present a detailed analysis of the structural changes induced by these mutations. The formation frequency of a transient helix in the catalytic 140's loop is increased and the length of this helix is extended from 3-residues to 4 in the mutants relative to the wild type. This helix causes reduced flexibility in the protein active site and therefore serves as a gating mechanism restricting the access of raltegravir to the integrase binding pocket. These results suggest that resistance to raltegravir occurs through a common mechanism of altering the formation frequency of transient secondary structures such as α2 and β5 in addition to the conformational changes in the 140's loop therefore decreasing the flexibility of the HIV-1 integrase protein. The reduced integrase flexibility serves as a mechanism of resistance to raltegravir.
Collapse
Affiliation(s)
- Tamaria G Dewdney
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | | | | |
Collapse
|
13
|
|
14
|
How conformational changes can affect catalysis, inhibition and drug resistance of enzymes with induced-fit binding mechanism such as the HIV-1 protease. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:867-73. [PMID: 23376188 DOI: 10.1016/j.bbapap.2013.01.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/21/2013] [Accepted: 01/24/2013] [Indexed: 11/21/2022]
Abstract
A central question is how the conformational changes of proteins affect their function and the inhibition of this function by drug molecules. Many enzymes change from an open to a closed conformation upon binding of substrate or inhibitor molecules. These conformational changes have been suggested to follow an induced-fit mechanism in which the molecules first bind in the open conformation in those cases where binding in the closed conformation appears to be sterically obstructed such as for the HIV-1 protease. In this article, we present a general model for the catalysis and inhibition of enzymes with induced-fit binding mechanism. We derive general expressions that specify how the overall catalytic rate of the enzymes depends on the rates for binding, for the conformational changes, and for the chemical reaction. Based on these expressions, we analyze the effect of mutations that mainly shift the conformational equilibrium on catalysis and inhibition. If the overall catalytic rate is limited by product unbinding, we find that mutations that destabilize the closed conformation relative to the open conformation increase the catalytic rate in the presence of inhibitors by a factor exp(ΔΔGC/RT) where ΔΔGC is the mutation-induced shift of the free-energy difference between the conformations. This increase in the catalytic rate due to changes in the conformational equilibrium is independent of the inhibitor molecule and, thus, may help to understand how non-active-site mutations can contribute to the multi-drug-resistance that has been observed for the HIV-1 protease. A comparison to experimental data for the non-active-site mutation L90M of the HIV-1 protease indicates that the mutation slightly destabilizes the closed conformation of the enzyme. This article is part of a Special Issue entitled: The emerging dynamic view of proteins: Protein plasticity in allostery, evolution and self-assembly.
Collapse
|
15
|
Prediction of mutational tolerance in HIV-1 protease and reverse transcriptase using flexible backbone protein design. PLoS Comput Biol 2012; 8:e1002639. [PMID: 22927804 PMCID: PMC3426558 DOI: 10.1371/journal.pcbi.1002639] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 06/27/2012] [Indexed: 01/21/2023] Open
Abstract
Predicting which mutations proteins tolerate while maintaining their structure and function has important applications for modeling fundamental properties of proteins and their evolution; it also drives progress in protein design. Here we develop a computational model to predict the tolerated sequence space of HIV-1 protease reachable by single mutations. We assess the model by comparison to the observed variability in more than 50,000 HIV-1 protease sequences, one of the most comprehensive datasets on tolerated sequence space. We then extend the model to a second protein, reverse transcriptase. The model integrates multiple structural and functional constraints acting on a protein and uses ensembles of protein conformations. We find the model correctly captures a considerable fraction of protease and reverse-transcriptase mutational tolerance and shows comparable accuracy using either experimentally determined or computationally generated structural ensembles. Predictions of tolerated sequence space afforded by the model provide insights into stability-function tradeoffs in the emergence of resistance mutations and into strengths and limitations of the computational model. Many related protein sequences can be consistent with the structure and function of a given protein, suggesting that proteins may be quite robust to mutations. This tolerance to mutations is frequently exploited by pathogens. In particular, pathogens can rapidly evolve mutated proteins that have a new function - resistance against a therapeutic inhibitor - without abandoning other functions essential for the pathogen. This principle may also hold more generally: Proteins tolerant to mutational changes can more easily acquire new functions while maintaining their existing properties. The ability to predict the tolerance of proteins to mutation could thus help both to analyze the emergence of resistance mutations in pathogens and to engineer proteins with new functions. Here we develop a computational model to predict protein mutational tolerance towards point mutations accessible by single nucleotide changes, and validate it using two important pathogenic proteins and therapeutic targets: the protease and reverse transcriptase from HIV-1. The model provides insights into how resistance emerges and makes testable predictions on mutations that have not been seen yet. Similar models of mutational tolerance should be useful for characterizing and reengineering the functions of other proteins for which a three-dimensional structure is available.
Collapse
|
16
|
Mittal S, Cai Y, Nalam MNL, Bolon DNA, Schiffer CA. Hydrophobic core flexibility modulates enzyme activity in HIV-1 protease. J Am Chem Soc 2012; 134:4163-8. [PMID: 22295904 DOI: 10.1021/ja2095766] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human immunodeficiency virus Type-1 (HIV-1) protease is crucial for viral maturation and infectivity. Studies of protease dynamics suggest that the rearrangement of the hydrophobic core is essential for enzyme activity. Many mutations in the hydrophobic core are also associated with drug resistance and may modulate the core flexibility. To test the role of flexibility in protease activity, pairs of cysteines were introduced at the interfaces of flexible regions remote from the active site. Disulfide bond formation was confirmed by crystal structures and by alkylation of free cysteines and mass spectrometry. Oxidized and reduced crystal structures of these variants show the overall structure of the protease is retained. However, cross-linking the cysteines led to drastic loss in enzyme activity, which was regained upon reducing the disulfide cross-links. Molecular dynamics simulations showed that altered dynamics propagated throughout the enzyme from the engineered disulfide. Thus, altered flexibility within the hydrophobic core can modulate HIV-1 protease activity, supporting the hypothesis that drug resistant mutations distal from the active site can alter the balance between substrate turnover and inhibitor binding by modulating enzyme activity.
Collapse
Affiliation(s)
- Seema Mittal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | |
Collapse
|
17
|
Bandyopadhyay S, Bagchi A, Maulik U. ACTIVE SITE DRIVEN LIGAND DESIGN: AN EVOLUTIONARY APPROACH. J Bioinform Comput Biol 2011; 3:1053-70. [PMID: 16278947 DOI: 10.1142/s021972000500148x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Accepted: 04/11/2005] [Indexed: 11/18/2022]
Abstract
An evolutionary approach for designing a ligand molecule that can bind to the active site of a target protein is described in this article. An earlier attempt in this regard assumed a fixed tree structure of the ligand on both sides of the pharmacophore, and used a genetic algorithm for optimizing the van der Waals energy. However, it is evident that knowledge about the size of the tree is difficult to obtain an a priori. Moreover, it will also change from one active site to another. This limitation is overcome in the present article by using variable string length genetic algorithm (VGA) for evolving an appropriate arrangement of the basic functional units of the molecule to be designed, whose size may now vary. The crossover and mutation operators are appropriately redesigned in order to tackle the concept of variable length chromosomes. Once the geometry of the molecule is obtained, the possible three-dimensional structure and its docking energy is determined. Results are demonstrated for five different target proteins both numerically and pictorially. It is found that not only does the molecule designed using variable length representation, in general, have lower energy values, the docking energies are also lower, as compared to the molecule evolved using fixed size representation.
Collapse
|
18
|
Mitchell FL, Miles SM, Neres J, Bichenkova EV, Bryce RA. Tryptophan as a molecular shovel in the glycosyl transfer activity of Trypanosoma cruzi trans-sialidase. Biophys J 2010; 98:L38-40. [PMID: 20441732 DOI: 10.1016/j.bpj.2010.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 01/05/2010] [Accepted: 01/13/2010] [Indexed: 10/19/2022] Open
Abstract
Molecular dynamics investigations into active site plasticity of Trypanosoma cruzi trans-sialidase, a protein implicated in Chagas disease, suggest that movement of the Trp(312) loop plays an important role in the enzyme's sialic acid transfer mechanism. The observed Trp(312) flexibility equates to a molecular shovel action, which leads to the expulsion of the donor aglycone leaving group from the catalytic site. These computational simulations provide detailed structural insights into sialyl transfer by the trans-sialidase and may aid the design of inhibitors effective against this neglected tropical disease.
Collapse
Affiliation(s)
- Felicity L Mitchell
- School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, United Kingdom
| | | | | | | | | |
Collapse
|
19
|
Genoni A, Morra G, Merz KM, Colombo G. Computational study of the resistance shown by the subtype B/HIV-1 protease to currently known inhibitors. Biochemistry 2010; 49:4283-95. [PMID: 20415450 DOI: 10.1021/bi100569u] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human immunodeficiency virus type 1 protease (HIV-1 PR) is an essential enzyme in the HIV-1 life cycle. As such, this protein represents a major drug target in AIDS therapy, but emerging resistance to antiretroviral inhibitor cocktails, caused by high viral mutation rates, represents a significant challenge in AIDS treatment. Many mutations are not located within the active site or binding pocket, nor they do significantly modify the three-dimensional structural organization of the enzyme; hence, the mechanism(s) by which they alter inhibitor affinity for the protease remains uncertain. In this article, we present an all-atom computational analysis of the dynamic residue-residue coordination between the active site residues and the rest of the protein and of the energetic properties of different HIV-1 PR complexes. We analyze both the wild-type form and mutated forms that induce drug resistance. In particular, the results show differences between the wild type and the mutants in their mechanism of dynamic coordination, in the signal propagation between the active site residues and the rest of the protein, and in the energy networks responsible for the stabilization of the bound inhibitor conformation. Finally, we propose a dynamic and energetic explanation for HIV-1 protease drug resistance, and, through this model, we identify a possible new site that could be helpful in the design of a new family of HIV-1 PR allosteric inhibitors.
Collapse
Affiliation(s)
- Alessandro Genoni
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | | | | | | |
Collapse
|
20
|
HIV-1 protease has a genetic T-cell adjuvant effect which is negatively regulated by proteolytic activity. J Virol 2010; 84:7743-9. [PMID: 20484507 DOI: 10.1128/jvi.00747-10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV protease (PR) mediates the processing of human immunodeficiency virus (HIV) polyproteins and is necessary for the viral production. Recently, HIV PR was shown to possess both cytotoxic and chaperone like activity. We demonstrate here that HIV PR can serve as a genetic adjuvant that enhances the HIV Env and human papillomavirus (HPV) DNA vaccine-induced T-cell response in a dose-dependent manner, only when codelivered with DNA vaccine. Interestingly, the T-cell adjuvant effects of HIV PR were increased by introducing several mutations that inhibited its proteolytic activity, indicating that the adjuvant properties were inversely correlated with its proteolytic activity. Conversely, the introduction of a mutation in the flap region of HIV PR limiting the access to the core domain of HIV PR inhibited the T-cell adjuvant effect, suggesting that the HIV PR chaperone like activity may play a role in mediating T-cell adjuvant properties. A similar adjuvant effect was also observed in adenovirus vaccine, indicating vaccine type independency. These findings suggest that HIV PR can modulate T-cell responses elicited by a gene-based vaccine positively by inherent chaperone like activity and negatively by its proteolytic activity.
Collapse
|
21
|
Prashar V, Bihani SC, Das A, Rao DR, Hosur MV. Insights into the mechanism of drug resistance: X-ray structure analysis of G48V/C95F tethered HIV-1 protease dimer/saquinavir complex. Biochem Biophys Res Commun 2010; 396:1018-23. [PMID: 20471372 DOI: 10.1016/j.bbrc.2010.05.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 05/10/2010] [Indexed: 11/28/2022]
Abstract
The mutation G48V in HIV-1 protease is a major resistance mutation against the drug saquinavir. Recently, G48V mutation is found to co-exist with the mutation C95F in AIDS patients treated with saquinavir. We report here the three-dimensional crystal structure of G48V/C95F tethered HIV-1 protease/saquinavir complex. The structure indicates following as the possible causes of drug resistance: (1) loss of direct van der Waals interactions between saquinavir and enzyme residues PHE-53 and PRO-1081, (2) loss of water-mediated hydrogen bonds between the carbonyl oxygen atoms in saquinavir and amide nitrogen atoms of flap residues 50 and 1050, (3) changes in inter-monomer interactions, which could affect the energetics of domain movements associated with inhibitor-binding, and (4) significant reduction in the stability of the mutant dimer. The present structure also provides a rationale for the clinical observation that the resistance mutations C95F/G48V/V82A occur as a cluster in AIDS patients.
Collapse
Affiliation(s)
- Vishal Prashar
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | | | | | | | | |
Collapse
|
22
|
Kear JL, Blackburn ME, Veloro AM, Dunn BM, Fanucci GE. Subtype polymorphisms among HIV-1 protease variants confer altered flap conformations and flexibility. J Am Chem Soc 2010; 131:14650-1. [PMID: 19788299 DOI: 10.1021/ja907088a] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) protease plays a fundamental role in the maturation and life cycle of the retrovirus HIV-1, as it functions in regulating post-translational processing of the viral polyproteins gag and gag-pol; thus, it is a key target of AIDS antiviral therapy. Accessibility of substrate to the active site is mediated by two flaps, which must undergo a large conformational change from an open to a closed conformation during substrate binding and catalysis. The electron paramagnetic resonance (EPR) method of site-directed spin labeling (SDSL) with double electron-electron resonance (DEER) spectroscopy was utilized to monitor the conformations of the flaps in apo HIV-1 protease (HIV-1PR), subtypes B, C, and F, CRF01_A/E, and patient isolates V6 and MDR 769. The distance distribution profiles obtained from analysis of the dipolar modulated echo curves were reconstructed to yield a set of Gaussian-shaped populations, which provide an analysis of the flap conformations sampled. The relative percentages of each conformer population described as "tucked/curled", "closed", "semi-open", and "wide-open" were determined and compared for various constructs. The results and analyses show that sequence variations among subtypes, CRFs, and patient isolates of apo HIV-1PR alter the average flap conformation in a way that can be understood as inducing shifts in the relative populations, or conformational sampling, of the previously described four conformations for HIV-1PR.
Collapse
Affiliation(s)
- Jamie L Kear
- Department of Chemistry, P.O. Box 117200, University of Florida, Gainesville, Florida 32611-7200, USA
| | | | | | | | | |
Collapse
|
23
|
Weber IT, Agniswamy J. HIV-1 Protease: Structural Perspectives on Drug Resistance. Viruses 2009; 1:1110-36. [PMID: 21994585 PMCID: PMC3185505 DOI: 10.3390/v1031110] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 12/18/2022] Open
Abstract
Antiviral inhibitors of HIV-1 protease are a notable success of structure-based drug design and have dramatically improved AIDS therapy. Analysis of the structures and activities of drug resistant protease variants has revealed novel molecular mechanisms of drug resistance and guided the design of tight-binding inhibitors for resistant variants. The plethora of structures reveals distinct molecular mechanisms associated with resistance: mutations that alter the protease interactions with inhibitors or substrates; mutations that alter dimer stability; and distal mutations that transmit changes to the active site. These insights will inform the continuing design of novel antiviral inhibitors targeting resistant strains of HIV.
Collapse
Affiliation(s)
- Irene T Weber
- Department of Biology, Molecular Basis of Disease Program, Georgia State University, Atlanta, GA 30303, USA; E-Mail:
| | | |
Collapse
|
24
|
Molecular characterization of clinical isolates of human immunodeficiency virus resistant to the protease inhibitor darunavir. J Virol 2009; 83:8810-8. [PMID: 19535439 DOI: 10.1128/jvi.00451-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Darunavir is the most recently approved human immunodeficiency virus (HIV) protease (PR) inhibitor (PI) and is active against many HIV type 1 PR variants resistant to earlier-generation PIs. Darunavir shows a high genetic barrier to resistance development, and virus strains with lower sensitivity to darunavir have a higher number of PI resistance-associated mutations than viruses resistant to other PIs. In this work, we have enzymologically and structurally characterized a number of highly mutated clinically derived PRs with high levels of phenotypic resistance to darunavir. With 18 to 21 amino acid residue changes, the PR variants studied in this work are the most highly mutated HIV PR species ever studied by means of enzyme kinetics and X-ray crystallography. The recombinant proteins showed major defects in substrate binding, while the substrate turnover was less affected. Remarkably, the overall catalytic efficiency of the recombinant PRs (5% that of the wild-type enzyme) is still sufficient to support polyprotein processing and particle maturation in the corresponding viruses. The X-ray structures of drug-resistant PRs complexed with darunavir suggest that the impaired inhibitor binding could be explained by change in the PR-inhibitor hydrogen bond pattern in the P2' binding pocket due to a substantial shift of the aminophenyl moiety of the inhibitor. Recombinant virus phenotypic characterization, enzyme kinetics, and X-ray structural analysis thus help to explain darunavir resistance development in HIV-positive patients.
Collapse
|
25
|
Sasková KG, Kozísek M, Lepsík M, Brynda J, Rezácová P, Václavíková J, Kagan RM, Machala L, Konvalinka J. Enzymatic and structural analysis of the I47A mutation contributing to the reduced susceptibility to HIV protease inhibitor lopinavir. Protein Sci 2008; 17:1555-64. [PMID: 18560011 DOI: 10.1110/ps.036079.108] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Lopinavir (LPV) is a second-generation HIV protease inhibitor (PI) designed to overcome resistance development in patients undergoing long-term antiviral therapy. The mutation of isoleucine at position 47 of the HIV protease (PR) to alanine is associated with a high level of resistance to LPV. In this study, we show that recombinant PR containing a single I47A substitution has the inhibition constant (K(i) ) value for lopinavir by two orders of magnitude higher than for the wild-type PR. The addition of the I47A substitution to the background of a multiply mutated PR species from an AIDS patient showed a three-order-of-magnitude increase in K(i) in vitro relative to the patient PR without the I47A mutation. The crystal structure of I47A PR in complex with LPV showed the loss of van der Waals interactions in the S2/S2' subsites. This is caused by the loss of three side-chain methyl groups due to the I47A substitution and by structural changes in the A47 main chain that lead to structural changes in the flap antiparallel beta-strand. Furthermore, we analyzed possible interaction of the I47A mutation with secondary mutations V32I and I54V. We show that both mutations in combination with I47A synergistically increase the relative resistance to LPV in vitro. The crystal structure of the I47A/I54V PR double mutant in complex with LPV shows that the I54V mutation leads to a compaction of the flap, and molecular modeling suggests that the introduction of the I54V mutation indirectly affects the strain of the bound inhibitor in the PR binding cleft.
Collapse
Affiliation(s)
- Klára Grantz Sasková
- Gilead Sciences and IOCB Research Center, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague 6, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Altman MD, Ali A, Reddy GSKK, Nalam MNL, Anjum SG, Cao H, Chellappan S, Kairys V, Fernandes MX, Gilson MK, Schiffer CA, Rana TM, Tidor B. HIV-1 protease inhibitors from inverse design in the substrate envelope exhibit subnanomolar binding to drug-resistant variants. J Am Chem Soc 2008; 130:6099-113. [PMID: 18412349 PMCID: PMC3465729 DOI: 10.1021/ja076558p] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The acquisition of drug-resistant mutations by infectious pathogens remains a pressing health concern, and the development of strategies to combat this threat is a priority. Here we have applied a general strategy, inverse design using the substrate envelope, to develop inhibitors of HIV-1 protease. Structure-based computation was used to design inhibitors predicted to stay within a consensus substrate volume in the binding site. Two rounds of design, synthesis, experimental testing, and structural analysis were carried out, resulting in a total of 51 compounds. Improvements in design methodology led to a roughly 1000-fold affinity enhancement to a wild-type protease for the best binders, from a Ki of 30-50 nM in round one to below 100 pM in round two. Crystal structures of a subset of complexes revealed a binding mode similar to each design that respected the substrate envelope in nearly all cases. All four best binders from round one exhibited broad specificity against a clinically relevant panel of drug-resistant HIV-1 protease variants, losing no more than 6-13-fold affinity relative to wild type. Testing a subset of second-round compounds against the panel of resistant variants revealed three classes of inhibitors: robust binders (maximum affinity loss of 14-16-fold), moderate binders (35-80-fold), and susceptible binders (greater than 100-fold). Although for especially high-affinity inhibitors additional factors may also be important, overall, these results suggest that designing inhibitors using the substrate envelope may be a useful strategy in the development of therapeutics with low susceptibility to resistance.
Collapse
Affiliation(s)
- Michael D. Altman
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Akbar Ali
- Chemical Biology Program, Department of Biochemistry and Molecular Pharmacology, University of Massachuetts Medical School, Worcester, MA 01605, USA
| | - G. S. Kiran Kumar Reddy
- Chemical Biology Program, Department of Biochemistry and Molecular Pharmacology, University of Massachuetts Medical School, Worcester, MA 01605, USA
| | - Madhavi N. L. Nalam
- Department of Biochemistry and Molecular Pharmacology, University of Massachuetts Medical School, Worcester, MA 01605, USA
| | - Saima Ghafoor Anjum
- Chemical Biology Program, Department of Biochemistry and Molecular Pharmacology, University of Massachuetts Medical School, Worcester, MA 01605, USA
| | - Hong Cao
- Chemical Biology Program, Department of Biochemistry and Molecular Pharmacology, University of Massachuetts Medical School, Worcester, MA 01605, USA
| | - Sripriya Chellappan
- Center for Advanced Research in Biotechnology, University of Maryland, Biotechnology Institute, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Visvaldas Kairys
- Center for Advanced Research in Biotechnology, University of Maryland, Biotechnology Institute, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Miguel X. Fernandes
- Center for Advanced Research in Biotechnology, University of Maryland, Biotechnology Institute, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Michael K. Gilson
- Center for Advanced Research in Biotechnology, University of Maryland, Biotechnology Institute, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachuetts Medical School, Worcester, MA 01605, USA
| | - Tariq M. Rana
- Chemical Biology Program, Department of Biochemistry and Molecular Pharmacology, University of Massachuetts Medical School, Worcester, MA 01605, USA
| | - Bruce Tidor
- Department of Biological Engineering, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
27
|
Structural analysis of human immunodeficiency virus type 1 CRF01_AE protease in complex with the substrate p1-p6. J Virol 2008; 82:6762-6. [PMID: 18434392 DOI: 10.1128/jvi.00018-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of amino acid variability between human immunodeficiency virus type 1 (HIV-1) clades on structure and the emergence of resistance mutations in HIV-1 protease has become an area of significant interest in recent years. We determined the first crystal structure of the HIV-1 CRF01_AE protease in complex with the p1-p6 substrate to a resolution of 2.8 A. Hydrogen bonding between the flap hinge and the protease core regions shows significant structural rearrangements in CRF01_AE protease compared to the clade B protease structure.
Collapse
|
28
|
Ninety-nine is not enough: molecular characterization of inhibitor-resistant human immunodeficiency virus type 1 protease mutants with insertions in the flap region. J Virol 2008; 82:5869-78. [PMID: 18400858 DOI: 10.1128/jvi.02325-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While the selection of amino acid insertions in human immunodeficiency virus (HIV) reverse transcriptase (RT) is a known mechanism of resistance against RT inhibitors, very few reports on the selection of insertions in the protease (PR) coding region have been published. It is still unclear whether these insertions impact protease inhibitor (PI) resistance and/or viral replication capacity. We show that the prevalence of insertions, especially between amino acids 30 to 41 of HIV type 1 (HIV-1) PR, has increased in recent years. We identified amino acid insertions at positions 33 and 35 of the PR of HIV-1-infected patients who had undergone prolonged treatment with PIs, and we characterized the contribution of these insertions to viral resistance. We prepared the corresponding mutated, recombinant PR variants with or without insertions at positions 33 and 35 and characterized them in terms of enzyme kinetics and crystal structures. We also engineered the corresponding recombinant viruses and analyzed the PR susceptibility and replication capacity by recombinant virus assay. Both in vitro methods confirmed that the amino acid insertions at positions 33 and 35 contribute to the viral resistance to most of the tested PIs. The structural analysis revealed local structural rearrangements in the flap region and in the substrate binding pockets. The enlargement of the PR substrate binding site together with impaired flap dynamics could account for the weaker inhibitor binding by the insertion mutants. Amino acid insertions in the vicinity of the binding cleft therefore represent a novel mechanism of HIV resistance development.
Collapse
|
29
|
Kozísek M, Bray J, Rezácová P, Sasková K, Brynda J, Pokorná J, Mammano F, Rulísek L, Konvalinka J. Molecular analysis of the HIV-1 resistance development: enzymatic activities, crystal structures, and thermodynamics of nelfinavir-resistant HIV protease mutants. J Mol Biol 2007; 374:1005-16. [PMID: 17977555 DOI: 10.1016/j.jmb.2007.09.083] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 09/24/2007] [Accepted: 09/26/2007] [Indexed: 11/17/2022]
Abstract
Human immunodeficiency virus (HIV) encodes an aspartic protease (PR) that cleaves viral polyproteins into mature proteins, thus leading to the formation of infectious particles. Protease inhibitors (PIs) are successful virostatics. However, their efficiency is compromised by antiviral resistance. In the PR sequence of viral variants resistant to the PI nelfinavir, the mutations D30N and L90M appear frequently. However, these two mutations are seldom found together in vivo, suggesting that there are two alternative evolutionary pathways leading to nelfinavir resistance. Here we analyze the proteolytic activities, X-ray structures, and thermodynamics of inhibitor binding to HIV-1 PRs harboring the D30N and L90M mutations alone and in combination with other compensatory mutations. Vitality values obtained for recombinant mutant proteases and selected PR inhibitors confirm the crucial role of mutations in positions 30 and 90 for nelfinavir resistance. The combination of the D30N and L90M mutations significantly increases the enzyme vitality in the presence of nelfinavir, without a dramatic decrease in the catalytic efficiency of the recombinant enzyme. Crystal structures, molecular dynamics simulations, and calorimetric data for four mutants (D30N, D30N/A71V, D30N/N88D, and D30N/L90M) were used to augment our kinetic data. Calorimetric analysis revealed that the entropic contribution to the mutant PR/nelfinavir interaction is less favorable than the entropic contribution to the binding of nelfinavir by wild-type PR. This finding is supported by the structural data and simulations; nelfinavir binds most strongly to the wild-type protease, which has the lowest number of protein-ligand hydrogen bonds and whose structure exhibits the greatest degree of fluctuation upon inhibitor binding.
Collapse
Affiliation(s)
- Milan Kozísek
- Gilead Sciences and IOCB Research Center, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kiran Kumar Reddy GS, Ali A, Nalam MNL, Anjum SG, Cao H, Nathans RS, Schiffer CA, Rana TM. Design and synthesis of HIV-1 protease inhibitors incorporating oxazolidinones as P2/P2' ligands in pseudosymmetric dipeptide isosteres. J Med Chem 2007; 50:4316-28. [PMID: 17696512 PMCID: PMC3862176 DOI: 10.1021/jm070284z] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of novel HIV-1 protease inhibitors based on two pseudosymmetric dipeptide isosteres have been synthesized and evaluated. The inhibitors were designed by incorporating N-phenyloxazolidinone-5-carboxamides into the hydroxyethylene and (hydroxyethyl)hydrazine dipeptide isosteres as P2 and P2' ligands. Compounds with (S)-phenyloxazolidinones attached at a position proximal to the central hydroxyl group showed low nM inhibitory activities against wild-type HIV-1 protease. Selected compounds were further evaluated for their inhibitory activities against a panel of multidrug-resistant protease variants and for their antiviral potencies in MT-4 cells. The crystal structures of lopinavir (LPV) and two new inhibitors containing phenyloxazolidinone-based ligands in complex with wild-type HIV-1 protease have been determined. A comparison of the inhibitor-protease structures with the LPV-protease structure provides valuable insight into the binding mode of the new inhibitors to the protease enzyme. Based on the crystal structures and knowledge of structure-activity relationships, new inhibitors can be designed with enhanced enzyme inhibitory and antiviral potencies.
Collapse
Affiliation(s)
- G. S. Kiran Kumar Reddy
- Chemical Biology Program, University of Massachusetts Medical School, Worcester, Massachusetts 01605
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Akbar Ali
- Chemical Biology Program, University of Massachusetts Medical School, Worcester, Massachusetts 01605
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Madhavi N. L. Nalam
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Saima Ghafoor Anjum
- Chemical Biology Program, University of Massachusetts Medical School, Worcester, Massachusetts 01605
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Hong Cao
- Chemical Biology Program, University of Massachusetts Medical School, Worcester, Massachusetts 01605
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Robin S. Nathans
- Chemical Biology Program, University of Massachusetts Medical School, Worcester, Massachusetts 01605
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Tariq M. Rana
- Chemical Biology Program, University of Massachusetts Medical School, Worcester, Massachusetts 01605
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
31
|
Seibold SA, Cukier RI. A molecular dynamics study comparing a wild-type with a multiple drug resistant HIV protease: Differences in flap and aspartate 25 cavity dimensions. Proteins 2007; 69:551-65. [PMID: 17623840 DOI: 10.1002/prot.21535] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
HIV proteases can develop resistance to therapeutic drugs by mutating specific residues, but still maintain activity with their natural substrates. To gain insight into why mutations confer such resistance, long ( approximately 70 ns) Molecular Dynamics simulations in explicit solvent were performed on a multiple drug resistant (MDR) mutant (with Asn25 in the crystal structure mutated in silico back to the catalytically active Asp25) and a wild type (WT) protease. HIV proteases are homodimers, with characteristic flap tips whose conformations and dynamics are known to be important influences of ligand binding to the aspartates that form the catalytic center. The WT protease undergoes a transition between 25 and 35 ns that is absent in the MDR protease. The origin of this distinction is investigated using principal component analysis, and is related to differences in motion mainly in the flap region of each monomer. Trajectory analysis suggests that the WT transition arises from a concerted motion of the flap tip distances to their catalytic aspartate residues, and the distance between the two flap tips. These distances form a triangle that in the WT expands the active site from an initial (semi-open) form to an open form, in a correlated manner. In contrast, the MDR protease remains in a more closed configuration, with uncorrelated fluctuations in the distances defining the triangle. This contrasting behavior suggests that the MDR mutant achieves its resistance to drugs by making its active site less accessible to inhibitors. The migration of water to the active site aspartates is monitored. Water molecules move in and out of the active site and individual waters hydrogen bond to both aspartate carboxylate oxygens, with residence times in the ns time regime.
Collapse
Affiliation(s)
- Steve A Seibold
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, USA
| | | |
Collapse
|
32
|
Tie Y, Kovalevsky AY, Boross P, Wang YF, Ghosh AK, Tozser J, Harrison RW, Weber IT. Atomic resolution crystal structures of HIV-1 protease and mutants V82A and I84V with saquinavir. Proteins 2007; 67:232-42. [PMID: 17243183 DOI: 10.1002/prot.21304] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Saquinavir (SQV), the first antiviral HIV-1 protease (PR) inhibitor approved for AIDS therapy, has been studied in complexes with PR and the variants PR(I) (84V) and PR(V) (82A) containing the single mutations I84V and V82A that provide resistance to all the clinical inhibitors. Atomic resolution crystal structures (0.97-1.25 A) of the SQV complexes were analyzed in comparison to the protease complexes with darunavir, a new drug that targets resistant HIV, in order to understand the molecular basis of drug resistance. PR(I) (84V) and PR(V) (82A) complexes were obtained in both the space groups P2(1)2(1)2 and P2(1)2(1)2(1), which provided experimental limits for the conformational flexibility. The SQV interactions with PR were very similar in the mutant complexes, consistent with the similar inhibition constants. The mutation from bigger to smaller amino acids allows more space to accommodate the large group at P1' of SQV, unlike the reduced interactions observed in darunavir complexes. The residues 79-82 have adjusted to accommodate the large hydrophobic groups of SQV, suggesting that these residues are intrinsically flexible and their conformation depends more on the nature of the inhibitor than on the mutations in this region. This analysis will assist with development of more effective antiviral inhibitors.
Collapse
Affiliation(s)
- Yunfeng Tie
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Recent experimental studies suggest that lactate dehydrogenase (LDH) binds its substrate via the formation of a LDH/NADH.substrate encounter complex through a select-fit mechanism, whereby only a minority population of LDH/NADH is binding-competent. In this study, we perform molecular dynamics calculations to explore the variations in structure accessible to the binary complex with a focus on identifying structures that seem likely to be binding-competent and which are in accord with the known experimental characterization of forming binding-competent species. We find that LDH/NADH samples quite a range of protein conformations within our 2.148 ns calculations, some of which yield quite facile access of solvent to the active site. The results suggest that the mobile loop of LDH is perhaps just partially open in these conformations and that multiple open conformations, yielding multiple binding pathways, are likely. These open conformations do not require large-scale unfolding/melting of the binary complex. Rather, open versus closed conformations are due to subtle protein and water rearrangements. Nevertheless, the large heat capacity change observed between binding-competent and binding-incompetent can be explained by changes in solvation and an internal rearrangement of hydrogen bonds. We speculate that such a strategy for binding may be necessary to get a ligand efficiently to a binding pocket that is located fairly deep within the protein's interior.
Collapse
|
34
|
Sathyapriya R, Vishveshwara S. Structure networks of E. coli glutaminyl-tRNA synthetase: Effects of ligand binding. Proteins 2007; 68:541-50. [PMID: 17444518 DOI: 10.1002/prot.21401] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
It is well known that proteins undergo backbone as well as side chain conformational changes upon ligand binding, which is not necessarily confined to the active site. Both the local and the global conformational changes brought out by ligand-binding have been extensively studied earlier. However, the global changes have been reported mainly at the protein backbone level. Here we present a method that explicitly takes into account the side chain interactions, yet providing a global view of the ligand-induced conformational changes. This is achieved through the analysis of Protein Structure Networks (PSN), constructed from the noncovalent side chain interactions in the protein. Here, E. coli Glutaminyl-tRNA synthetase (GlnRS) in the ligand-free and different ligand-bound states is used as a case study to assess the effect of binding of tRNA, ATP, and the amino acid Gln to GlnRS. The PSNs are constructed on the basis of the strength of noncovalent interactions existing between the side chains of amino acids. The parameters like the size of the largest cluster, edge to node ratio, and the total number of hubs are used to quantitatively assess the structure network changes. These network parameters have effectively captured the ligand-induced structural changes at a global structure network level. Hubs, the highly connected amino acids, are also identified from these networks. Specifically, we are able to characterize different types of hubs based on the comparison of structure networks of the GlnRS system. The differences in the structure networks in both the presence and the absence of the ligands are reflected in these hubs. For instance, the characterization of hubs that are present in both the ligand-free and all the ligand-bound GlnRS (the invariant hubs) might implicate their role in structural integrity. On the other hand, identification of hubs unique to a particular ligand-bound structure (the exclusive hubs) not only highlights the structural differences mediated by ligand-binding at the structure network level, but also highlights significance of these amino acids hubs in binding to the ligand and catalyzing the biochemical function. Further, the hubs identified from this study could be ideal targets for mutational studies to ascertain the ligand-induced structure-function relationships in E. coli GlnRS. The formalism used in this study is simple and can be applied to other protein-ligands in general to understand the allosteric changes mediated by the binding of ligands.
Collapse
Affiliation(s)
- R Sathyapriya
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | | |
Collapse
|
35
|
Louis JM, Ishima R, Torchia DA, Weber IT. HIV-1 protease: structure, dynamics, and inhibition. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2007; 55:261-98. [PMID: 17586318 DOI: 10.1016/s1054-3589(07)55008-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
36
|
Kanibolotsky DS, Ivanova OS, Lisnyak VV. Comparison of NMR and MD N–H bond order parameters: example of HIV-1 protease. MOLECULAR SIMULATION 2006. [DOI: 10.1080/08927020601078489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Sirkis R, Gerst JE, Fass D. Ddi1, a eukaryotic protein with the retroviral protease fold. J Mol Biol 2006; 364:376-87. [PMID: 17010377 DOI: 10.1016/j.jmb.2006.08.086] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 08/25/2006] [Accepted: 08/29/2006] [Indexed: 10/24/2022]
Abstract
Retroviral aspartyl proteases are homodimeric, whereas eukaryotic aspartyl proteases tend to be large, monomeric enzymes with 2-fold internal symmetry. It has been proposed that contemporary monomeric aspartyl proteases evolved by gene duplication and fusion from a primordial homodimeric enzyme. Recent sequence analyses have suggested that such "fossil" dimeric aspartyl proteases are still encoded in the eukaryotic genome. We present evidence for retention of a dimeric aspartyl protease in eukaryotes. The X-ray crystal structure of a domain of the Saccharomyces cerevisiae protein Ddi1 shows that it is a dimer with a fold similar to that of the retroviral proteases. Furthermore, the double Asp-Thr-Gly-Ala amino acid sequence motif at the active site of HIV protease is found with identical geometry in the Ddi1 structure. However, the putative substrate binding groove is wider in Ddi1 than in the retroviral proteases, suggesting that Ddi1 accommodates bulkier substrates. Ddi1 belongs to a family of proteins known as the ubiquitin receptors, which have in common the ability to bind ubiquitinated substrates and the proteasome. Ubiquitin receptors contain an amino-terminal ubiquitin-like (UBL) domain and a carboxy-terminal ubiquitin-associated (UBA) domain, but Ddi1 is the only representative in which the UBL and UBA domains flank an aspartyl protease-like domain. The remarkable structural similarity between the central domain of Ddi1 and the retroviral proteases, in the global fold and in active-site detail, suggests that Ddi1 functions proteolytically during regulated protein turnover in the cell.
Collapse
Affiliation(s)
- Roy Sirkis
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
38
|
Prabu-Jeyabalan M, Nalivaika EA, Romano K, Schiffer CA. Mechanism of substrate recognition by drug-resistant human immunodeficiency virus type 1 protease variants revealed by a novel structural intermediate. J Virol 2006; 80:3607-16. [PMID: 16537628 PMCID: PMC1440387 DOI: 10.1128/jvi.80.7.3607-3616.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 01/17/2006] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) protease processes and cleaves the Gag and Gag-Pol polyproteins, allowing viral maturation, and therefore is an important target for antiviral therapy. Ligand binding occurs when the flaps open, allowing access to the active site. This flexibility in flap geometry makes trapping and crystallizing structural intermediates in substrate binding challenging. In this study, we report two crystal structures of two HIV-1 protease variants bound with their corresponding nucleocapsid-p1 variant. One of the flaps in each of these structures exhibits an unusual "intermediate" conformation. Analysis of the flap-intermediate and flap-closed crystal structures reveals that the intermonomer flap movements may be asynchronous and that the flap which wraps over the P3 to P1 (P3-P1) residues of the substrate might close first. This is consistent with our hypothesis that the P3-P1 region is crucial for substrate recognition. The intermediate conformation is conserved in both the wild-type and drug-resistant variants. The structural differences between the variants are evident only when the flaps are closed. Thus, a plausible structural model for the adaptability of HIV-1 protease to recognize substrates in the presence of drug-resistant mutations has been proposed.
Collapse
Affiliation(s)
- Moses Prabu-Jeyabalan
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St., Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
39
|
Tie Y, Boross PI, Wang YF, Gaddis L, Liu F, Chen X, Tozser J, Harrison RW, Weber IT. Molecular basis for substrate recognition and drug resistance from 1.1 to 1.6 angstroms resolution crystal structures of HIV-1 protease mutants with substrate analogs. FEBS J 2005; 272:5265-77. [PMID: 16218957 PMCID: PMC1360291 DOI: 10.1111/j.1742-4658.2005.04923.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
HIV-1 protease (PR) and two drug-resistant variants--PR with the V82A mutation (PR(V82A)) and PR with the I84V mutation (PR(I84V))--were studied using reduced peptide analogs of five natural cleavage sites (CA-p2, p2-NC, p6pol-PR, p1-p6 and NC-p1) to understand the structural and kinetic changes. The common drug-resistant mutations V82A and I84V alter residues forming the substrate-binding site. Eight crystal structures were refined at resolutions of 1.10-1.60 A. Differences in the PR-analog interactions depended on the peptide sequence and were consistent with the relative inhibition. Analog p6(pol)-PR formed more hydrogen bonds of P2 Asn with PR and fewer van der Waals contacts at P1' Pro compared with those formed by CA-p2 or p2-NC in PR complexes. The P3 Gly in p1-p6 provided fewer van der Waals contacts and hydrogen bonds at P2-P3 and more water-mediated interactions. PR(I84V) showed reduced van der Waals interactions with inhibitor compared with PR, which was consistent with kinetic data. The structures suggest that the binding affinity for mutants is modulated by the conformational flexibility of the substrate analogs. The complexes of PR(V82A) showed smaller shifts of the main chain atoms of Ala82 relative to PR, but more movement of the peptide analog, compared to complexes with clinical inhibitors. PR(V82A) was able to compensate for the loss of interaction with inhibitor caused by mutation, in agreement with kinetic data, but substrate analogs have more flexibility than the drugs to accommodate the structural changes caused by mutation. Hence, these structures help to explain how HIV can develop drug resistance while retaining the ability of PR to hydrolyze natural substrates.
Collapse
Affiliation(s)
- Yunfeng Tie
- Department of Chemistry, Molecular Basis of Disease, Georgia State University, Atlanta, GA, USA
| | - Peter I. Boross
- Department of Biology, Molecular Basis of Disease, Georgia State University, Atlanta, GA, USA
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Yuan-Fang Wang
- Department of Biology, Molecular Basis of Disease, Georgia State University, Atlanta, GA, USA
| | - Laquasha Gaddis
- Department of Biology, Molecular Basis of Disease, Georgia State University, Atlanta, GA, USA
| | - Fengling Liu
- Department of Biology, Molecular Basis of Disease, Georgia State University, Atlanta, GA, USA
| | - Xianfeng Chen
- Department of Biology, Molecular Basis of Disease, Georgia State University, Atlanta, GA, USA
| | - Jozsef Tozser
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Robert W. Harrison
- Department of Biology, Molecular Basis of Disease, Georgia State University, Atlanta, GA, USA
- Department of Computer Science, Molecular Basis of Disease, Georgia State University, Atlanta, GA, USA
| | - Irene T. Weber
- Department of Chemistry, Molecular Basis of Disease, Georgia State University, Atlanta, GA, USA
- Department of Biology, Molecular Basis of Disease, Georgia State University, Atlanta, GA, USA
- Correspondence I. T. Weber, Department of Biology, PO Box 4010, Georgia State University, Atlanta, GA 30302-4010, USA, Fax: +1 404 651 2509, Tel: +1 404 651 0098, E-mail:
| |
Collapse
|
40
|
Milac AL, Avram S, Petrescu AJ. Evaluation of a neural networks QSAR method based on ligand representation using substituent descriptors. Application to HIV-1 protease inhibitors. J Mol Graph Model 2005; 25:37-45. [PMID: 16325439 DOI: 10.1016/j.jmgm.2005.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 06/17/2005] [Accepted: 09/29/2005] [Indexed: 11/18/2022]
Abstract
We present here a neural networks method designed to predict biological activity based on a local representation of the ligand. The compounds of the series are represented by a vector mapping for each of four substituent properties: volume, log P, dipole moment and a simple 'steric' parameter relating to its shape. This ligand representation was tested using neural networks on a set of 42 cyclic-urea derivatives, inhibiting HIV-1 protease. The leave-one-out cross-validation using all descriptors in the input gave a correlation factor between prediction and experiment of 0.76 for the overall set and 0.88 when three outliers were left out. To rank the significance of the four descriptors, we further tested all combinations of two and three parameters for each substituent, using two disjunctive testing sets of five inhibitors. In these sets, vectors with extreme descriptor values were used either in the training or the testing set (sets A and B, respectively). The method is a very good interpolator (set A, 95+/-2% accuracy) but a less effective extrapolator (set B, 85+/-2% accuracy). Generally, the combinations including the 'steric' parameter predict better than average, while those containing the volume are less effective. The best prediction, 98.8+/-1.2%, was obtained when log P, the dipole and the steric parameter were used on set A. At the opposite end, the lowest ranked descriptor set was obtained when replacing log P with the volume, giving 92.3+/-6.7% accuracy over the set A.
Collapse
Affiliation(s)
- Adina-Luminiţa Milac
- Institute of Biochemistry, Splaiul Independenţei 296, Sector 6, Bucharest, Romania
| | | | | |
Collapse
|
41
|
Abecasis AB, Deforche K, Snoeck J, Bacheler LT, McKenna P, Carvalho AP, Gomes P, Camacho RJ, Vandamme AM. Protease mutation M89I/V is linked to therapy failure in patients infected with the HIV-1 non-B subtypes C, F or G. AIDS 2005; 19:1799-806. [PMID: 16227787 DOI: 10.1097/01.aids.0000188422.95162.b7] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To investigate whether and how mutations at position 89 of HIV-1 protease were associated with protease inhibitor (PI) failure, and what is the impact of the HIV-1 subtype. METHODS In a database containing pol nucleotide sequences and treatment history, the correlation between PI experience and mutations at codon 89 was determined separately for subtype B and several non-B subtypes. A Bayesian network model was used to map the resistance pathways in which M89I/V is involved for subtype G. The phenotypic effect of M89I/V for several PIs was also measured. RESULTS The analysis showed that for the subtypes C, F and G in which the wild-type codon at 89 was M compared to L for subtype B, M89I/V was significantly more frequently observed in PI-treated patients displaying major resistance mutations to PIs than in drug-naive patients. M89I/V was strongly associated with PI resistance mutations at codons 71, 74 and 90. Phenotypically, M89I/V alone did not confer a reduced susceptibility to PIs. However, when combined with L90M, a significantly reduced susceptibility to nelfinavir was observed (P < 0.05) in comparison with strains with L90M alone. CONCLUSIONS The results of the present study show that M89I/V is associated with PI experience in subtypes C, F and G but not in subtype B. M89I/V should be considered a secondary PI mutation with an important effect on nelfinavir susceptibility in the presence of L90M.
Collapse
Affiliation(s)
- Ana Barroso Abecasis
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Allostery involves coupling of conformational changes between two widely separated binding sites. The common view holds that allosteric proteins are symmetric oligomers, with each subunit existing in "at least" two conformational states with a different affinity for ligands. Recent observations such as the allosteric behavior of myoglobin, a classical example of a nonallosteric protein, call into question the existing allosteric dogma. Here we argue that all (nonfibrous) proteins are potentially allosteric. Allostery is a consequence of re-distributions of protein conformational ensembles. In a nonallosteric protein, the binding site shape may not show a concerted second-site change and enzyme kinetics may not reflect an allosteric transition. Nevertheless, appropriate ligands, point mutations, or external conditions may facilitate a population shift, leading a presumably nonallosteric protein to behave allosterically. In principle, practically any potential drug binding to the protein surface can alter the conformational redistribution. The question is its effectiveness in the redistribution of the ensemble, affecting the protein binding sites and its function. Here, we review experimental observations validating this view of protein allostery.
Collapse
Affiliation(s)
- K Gunasekaran
- Basic Research Program, SAIC-Frederick, Inc., Laboratory of Experimental and Computational Biology, National Cancer Institute-Frederick, Bldg 469, Rm 151, Frederick, Maryland 21702, USA
| | | | | |
Collapse
|
43
|
Cígler P, Kozísek M, Rezácová P, Brynda J, Otwinowski Z, Pokorná J, Plesek J, Grüner B, Dolecková-Maresová L, Mása M, Sedlácek J, Bodem J, Kräusslich HG, Král V, Konvalinka J. From nonpeptide toward noncarbon protease inhibitors: metallacarboranes as specific and potent inhibitors of HIV protease. Proc Natl Acad Sci U S A 2005; 102:15394-9. [PMID: 16227435 PMCID: PMC1255736 DOI: 10.1073/pnas.0507577102] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Indexed: 11/18/2022] Open
Abstract
HIV protease (PR) represents a prime target for rational drug design, and protease inhibitors (PI) are powerful antiviral drugs. Most of the current PIs are pseudopeptide compounds with limited bioavailability and stability, and their use is compromised by high costs, side effects, and development of resistant strains. In our search for novel PI structures, we have identified a group of inorganic compounds, icosahedral metallacarboranes, as candidates for a novel class of nonpeptidic PIs. Here, we report the potent, specific, and selective competitive inhibition of HIV PR by substituted metallacarboranes. The most active compound, sodium hydrogen butylimino bis-8,8-[5-(3-oxa-pentoxy)-3-cobalt bis(1,2-dicarbollide)]di-ate, exhibited a K(i) value of 2.2 nM and a submicromolar EC(50) in antiviral tests, showed no toxicity in tissue culture, weakly inhibited human cathepsin D and pepsin, and was inactive against trypsin, papain, and amylase. The structure of the parent cobalt bis(1,2-dicarbollide) in complex with HIV PR was determined at 2.15 A resolution by protein crystallography and represents the first carborane-protein complex structure determined. It shows the following mode of PR inhibition: two molecules of the parent compound bind to the hydrophobic pockets in the flap-proximal region of the S3 and S3' subsites of PR. We suggest, therefore, that these compounds block flap closure in addition to filling the corresponding binding pockets as conventional PIs. This type of binding and inhibition, chemical and biological stability, low toxicity, and the possibility to introduce various modifications make boron clusters attractive pharmacophores for potent and specific enzyme inhibition.
Collapse
Affiliation(s)
- Petr Cígler
- Institutes of Organic Chemistry and Biochemistry and Molecular Genetics, Academy of Sciences of the Czech Republic, Flemingovo námestí 2, 166 10 Prague 6, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tóth G, Borics A. Flap opening mechanism of HIV-1 protease. J Mol Graph Model 2005; 24:465-74. [PMID: 16188477 DOI: 10.1016/j.jmgm.2005.08.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 08/22/2005] [Accepted: 08/23/2005] [Indexed: 11/23/2022]
Abstract
The active site of aspartic proteases, such as HIV-1 protease (PR), is covered by one or more flaps, which restrict access to the active site. For HIV-1 PR, X-ray diffraction studies suggested that in the free enzyme the two flaps are packed onto each other loosely in a semi-open conformation, while molecular dynamics (MD) studies observed that the flaps can also separate into open conformations. In this study, the mechanism of flap opening and the structure and dynamics of HIV-1 PR with semi-open and open flap conformations were investigated using molecular dynamics simulations. The flaps showed complex dynamic behavior as two distinct mechanisms of flap opening and various stable flap conformations (semi-open, open and curled) were observed during the simulations. A network of weakly polar interactions between the flaps were proposed to be responsible for stabilizing the semi-open flap conformation. It is hypothesized that such interactions could be responsible for making flap opening a highly sensitive gating mechanism which control access to the active site.
Collapse
Affiliation(s)
- Gergely Tóth
- Locus Pharmaceuticals, Four Valley Square, 512 Township Line Rd., Blue Bell, PA 19422, USA.
| | | |
Collapse
|
45
|
Prashar V, Hosur MV. 1.8A X-ray structure of C95M/C1095F double mutant of tethered HIV-1 protease dimer complexed with acetyl pepstatin. Biochem Biophys Res Commun 2004; 323:1229-35. [PMID: 15451428 DOI: 10.1016/j.bbrc.2004.08.226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Indexed: 11/21/2022]
Abstract
Under the selection pressure of drugs, mutations appear in HIV-1 protease even at the sites, which are conserved in the untreated individuals. Cysteine 95 is a highly conserved residue and is believed to be involved in regulation of HIV-1 protease. In some of the virus isolates from patients undergoing heavy treatment with anti-HIV protease drugs, C95F mutation has appeared. The present study reports 1.8A X-ray structure of C95M/C1095F double mutant of tethered HIV-1 protease dimer complexed with acetyl pepstatin. It is found that in this mutant, dimer interface has become more rigid and that the packing at the interface of terminal and core domains is altered. These alterations may be relevant to C95F mutation conferring drug resistance to HIV-1 protease.
Collapse
Affiliation(s)
- Vishal Prashar
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | | |
Collapse
|
46
|
Shatsky M, Nussinov R, Wolfson HJ. FlexProt: alignment of flexible protein structures without a predefinition of hinge regions. J Comput Biol 2004; 11:83-106. [PMID: 15072690 DOI: 10.1089/106652704773416902] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
FlexProt is a novel technique for the alignment of flexible proteins. Unlike all previous algorithms designed to solve the problem of structural comparisons allowing hinge-bending motions, FlexProt does not require an a priori knowledge of the location of the hinge(s). FlexProt carries out the flexible alignment, superimposing the matching rigid subpart pairs, and detects the flexible hinge regions simultaneously. A large number of methods are available to handle rigid structural alignment. However, proteins are flexible molecules, which may appear in different conformations. Hence, protein structural analysis requires algorithms that can deal with molecular flexibility. Here, we present a method addressing specifically a flexible protein alignment task. First, the method efficiently detects maximal congruent rigid fragments in both molecules. Transforming the task into a graph theoretic problem, our method proceeds to calculate the optimal arrangement of previously detected maximal congruent rigid fragments. The fragment arrangement does not violate the protein sequence order. A clustering procedure is performed on fragment-pairs which have the same 3-D rigid transformation regardless of insertions and deletions (such as loops and turns) which separate them. Although the theoretical worst case complexity of the algorithm is O(n(6)), in practice FlexProt is highly efficient. It performs a structural comparison of a pair of proteins 300 amino acids long in about seven seconds on a standard desktop PC (400 MHz Pentium II processor with 256MB internal memory). We have performed extensive experiments with the algorithm. An assortment of these results is presented here. FlexProt can be accessed via WWW at bioinfo3d.cs.tau.ac.il/FlexProt/.
Collapse
Affiliation(s)
- Maxim Shatsky
- School of Computer Science, Beverly and Raymond Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
47
|
Perryman AL, Lin JH, McCammon JA. HIV-1 protease molecular dynamics of a wild-type and of the V82F/I84V mutant: possible contributions to drug resistance and a potential new target site for drugs. Protein Sci 2004; 13:1108-23. [PMID: 15044738 PMCID: PMC2280056 DOI: 10.1110/ps.03468904] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The protease from type 1 human immunodeficiency virus (HIV-1) is a critical drug target against which many therapeutically useful inhibitors have been developed; however, the set of viral strains in the population has been shifting to become more drug-resistant. Because indirect effects are contributing to drug resistance, an examination of the dynamic structures of a wild-type and a mutant could be insightful. Consequently, this study examined structural properties sampled during 22 nsec, all atom molecular dynamics (MD) simulations (in explicit water) of both a wild-type and the drug-resistant V82F/I84V mutant of HIV-1 protease. The V82F/I84V mutation significantly decreases the binding affinity of all HIV-1 protease inhibitors currently used clinically. Simulations have shown that the curling of the tips of the active site flaps immediately results in flap opening. In the 22-nsec MD simulations presented here, more frequent and more rapid curling of the mutant's active site flap tips was observed. The mutant protease's flaps also opened farther than the wild-type's flaps did and displayed more flexibility. This suggests that the effect of the mutations on the equilibrium between the semiopen and closed conformations could be one aspect of the mechanism of drug resistance for this mutant. In addition, correlated fluctuations in the active site and periphery were noted that point to a possible binding site for allosteric inhibitors.
Collapse
Affiliation(s)
- Alexander L Perryman
- University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0365, USA.
| | | | | |
Collapse
|
48
|
Abstract
Proteins are in constant motion between different conformational states with similar energies. This has often been ignored in drug design. However, protein flexibility is fundamental to understanding the ways in which drugs exert biological effects, their binding-site location, binding orientation, binding kinetics, metabolism and transport. Protein flexibility allows increased affinity to be achieved between a drug and its target. This is crucial, because the lipophilicity and number of polar interactions allowed for an oral drug is limited by absorption, distribution, metabolism and toxicology considerations.
Collapse
Affiliation(s)
- Simon J Teague
- AstraZeneca R&D Charnwood, Bakewell Road, Loughborough, Leicester LE11 5RH, UK.
| |
Collapse
|
49
|
Halperin I, Ma B, Wolfson H, Nussinov R. Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins 2002; 47:409-43. [PMID: 12001221 DOI: 10.1002/prot.10115] [Citation(s) in RCA: 771] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The docking field has come of age. The time is ripe to present the principles of docking, reviewing the current state of the field. Two reasons are largely responsible for the maturity of the computational docking area. First, the early optimism that the very presence of the "correct" native conformation within the list of predicted docked conformations signals a near solution to the docking problem, has been replaced by the stark realization of the extreme difficulty of the next scoring/ranking step. Second, in the last couple of years more realistic approaches to handling molecular flexibility in docking schemes have emerged. As in folding, these derive from concepts abstracted from statistical mechanics, namely, populations. Docking and folding are interrelated. From the purely physical standpoint, binding and folding are analogous processes, with similar underlying principles. Computationally, the tools developed for docking will be tremendously useful for folding. For large, multidomain proteins, domain docking is probably the only rational way, mimicking the hierarchical nature of protein folding. The complexity of the problem is huge. Here we divide the computational docking problem into its two separate components. As in folding, solving the docking problem involves efficient search (and matching) algorithms, which cover the relevant conformational space, and selective scoring functions, which are both efficient and effectively discriminate between native and non-native solutions. It is universally recognized that docking of drugs is immensely important. However, protein-protein docking is equally so, relating to recognition, cellular pathways, and macromolecular assemblies. Proteins function when they are bound to other molecules. Consequently, we present the review from both the computational and the biological points of view. Although large, it covers only partially the extensive body of literature, relating to small (drug) and to large protein-protein molecule docking, to rigid and to flexible. Unfortunately, when reviewing these, a major difficulty in assessing the results is the non-uniformity in the formats in which they are presented in the literature. Consequently, we further propose a way to rectify it here.
Collapse
Affiliation(s)
- Inbal Halperin
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
50
|
Abstract
The discovery and development of more than a dozen drugs in the past 15 years for the treatment of AIDS offer an excellent example of progress in the field of rational drug design. At this time, the principal targets are reverse transcriptase and protease, enzymes encoded by the human immunodeficiency virus. The introduction of protease inhibitors, in particular, has drastically decreased the mortality and morbidity associated with AIDS. This review presents the methods used to develop such drugs and discusses the remaining problems, such as the rapid emergence of drug resistance.
Collapse
Affiliation(s)
- Alexander Wlodawer
- Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA.
| |
Collapse
|