1
|
Barry BA, Brahmachari U, Obi CE, He JN. The intrinsically disordered PsbO subunit of Photosystem II: structure and role in photosynthetic water oxidation. FASEB J 2018. [DOI: 10.1096/fasebj.2018.32.1_supplement.795.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Udita Brahmachari
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGA
| | - Chiagoziem E. Obi
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGA
| | - Jiayuan Nancy He
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGA
| |
Collapse
|
2
|
Barry BA, Brahmachari U, Guo Z. Tracking Reactive Water and Hydrogen-Bonding Networks in Photosynthetic Oxygen Evolution. Acc Chem Res 2017; 50:1937-1945. [PMID: 28763201 DOI: 10.1021/acs.accounts.7b00189] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In oxygenic photosynthesis, photosystem II (PSII) converts water to molecular oxygen through four photodriven oxidation events at a Mn4CaO5 cluster. A tyrosine, YZ (Y161 in the D1 polypeptide), transfers oxidizing equivalents from an oxidized, primary chlorophyll donor to the metal center. Calcium or its analogue, strontium, is required for activity. The Mn4CaO5 cluster and YZ are predicted to be hydrogen bonded in a water-containing network, which involves amide carbonyl groups, amino acid side chains, and water. This hydrogen-bonded network includes amino acid residues in intrinsic and extrinsic subunits. One of the extrinsic subunits, PsbO, is intrinsically disordered. This extensive (35 Å) network may be essential in facilitating proton release from substrate water. While it is known that some proteins employ internal water molecules to catalyze reactions, there are relatively few methods that can be used to study the role of water. In this Account, we review spectroscopic evidence from our group supporting the conclusion that the PSII hydrogen-bonding network is dynamic and that water in the network plays a direct role in catalysis. Two approaches, transient electron paramagnetic resonance (EPR) and reaction-induced FT-IR (RIFT-IR) spectroscopies, were used. The EPR experiments focused on the decay kinetics of YZ• via recombination at 190 K and the solvent isotope, pH, and calcium dependence of these kinetics. The RIFT-IR experiments focused on shifts in amide carbonyl frequencies, induced by photo-oxidation of the metal cluster, and on the isotope-based assignment of bands to internal, small protonated water clusters at 190, 263, and 283 K. To conduct these experiments, PSII was prepared in selected steps along the catalytic pathway, the Sn state cycle (n = 0-4). This cycle ultimately generates oxygen. In the EPR studies, S-state dependent changes were observed in the YZ• lifetime and in its solvent isotope effect. The YZ• lifetime depended on the presence of calcium at pH 7.5, but not at pH 6.0, suggesting a two-donor model for PCET. At pH 6.0 or 7.5, barium and ammonia both slowed the rate of YZ• recombination, consistent with disruption of the hydrogen-bonding network. In the RIFT-IR studies of the S state transitions, infrared bands associated with the transient protonation and deprotonation of internal waters were identified by D2O and H218O labeling. The infrared bands of these protonated water clusters, Wn+ (or nH2O(H3O)+, n = 5-6), exhibited flash dependence and were produced during the S1 to S2 and S3 to S0 transitions. Calcium dependence was observed at pH 7.5, but not at pH 6.0. S-state induced shifts were observed in amide C═O frequencies during the S1 to S2 transition and attributed to alterations in hydrogen bonding, based on ammonia sensitivity. In addition, isotope editing of the extrinsic subunit, PsbO, established that amide vibrational bands of this lumenal subunit respond to the S state transitions and that PsbO is a structural template for the reaction center. Taken together, these spectroscopic results support the hypothesis that proton transfer networks, extending from YZ to PsbO, play a functional and dynamic role in photosynthetic oxygen evolution.
Collapse
Affiliation(s)
- Bridgette A. Barry
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Udita Brahmachari
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhanjun Guo
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
3
|
del Val C, Bondar AN. Charged groups at binding interfaces of the PsbO subunit of photosystem II: A combined bioinformatics and simulation study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:432-441. [DOI: 10.1016/j.bbabio.2017.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 01/20/2023]
|
4
|
Offenbacher AR, Pagba CV, Polander BC, Brahmachari U, Barry BA. First site-specific incorporation of a noncanonical amino acid into the photosynthetic oxygen-evolving complex. ACS Chem Biol 2014; 9:891-6. [PMID: 24437616 DOI: 10.1021/cb400880u] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In photosystem II (PSII), water is oxidized at the oxygen-evolving complex. This process occurs through a light-induced cycle that produces oxygen and protons. While coupled proton and electron transfer reactions play an important role in PSII and other proteins, direct detection of internal proton transfer reactions is challenging. Here, we demonstrate that the unnatural amino acid, 7-azatryptophan (7AW), has unique, pH-sensitive vibrational frequencies, which are sensitive markers of proton transfer. The intrinsically disordered, PSII subunit, PsbO, which contains a single W residue (Trp241), was engineered to contain 7AW at position 241. Fluorescence shows that 7AW-241 is buried in a hydrophobic environment. Reconstitution of 7AW(241)PsbO to PSII had no significant impact on oxygen evolution activity or flash-dependent protein dynamics. We conclude that directed substitution of 7AW into other structural domains is likely to provide a nonperturbative spectroscopic probe, which can be used to define internal proton pathways in PsbO.
Collapse
Affiliation(s)
- Adam R. Offenbacher
- Department of Chemistry and
Biochemistry and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Cynthia V. Pagba
- Department of Chemistry and
Biochemistry and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Brandon C. Polander
- Department of Chemistry and
Biochemistry and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Udita Brahmachari
- Department of Chemistry and
Biochemistry and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Bridgette A. Barry
- Department of Chemistry and
Biochemistry and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
5
|
Marín M, Ott T. Intrinsic disorder in plant proteins and phytopathogenic bacterial effectors. Chem Rev 2014; 114:6912-32. [PMID: 24697726 DOI: 10.1021/cr400488d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Macarena Marín
- Genetics Institute, Faculty of Biology, Ludwig-Maximilians-University of Munich , Grosshaderner Strasse 2-4, 82152 Martinsried, Germany
| | | |
Collapse
|
6
|
Offenbacher AR, Watson RA, Pagba CV, Barry BA. Redox-dependent structural coupling between the α2 and β2 subunits in E. coli ribonucleotide reductase. J Phys Chem B 2014; 118:2993-3004. [PMID: 24606240 DOI: 10.1021/jp501121d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ribonucleotide reductase (RNR) catalyzes the production of deoxyribonucleotides in all cells. In E. coli class Ia RNR, a transient α2β2 complex forms when a ribonucleotide substrate, such as CDP, binds to the α2 subunit. A tyrosyl radical (Y122O•)-diferric cofactor in β2 initiates substrate reduction in α2 via a long-distance, proton-coupled electron transfer (PCET) process. Here, we use reaction-induced FT-IR spectroscopy to describe the α2β2 structural landscapes, which are associated with dATP and hydroxyurea (HU) inhibition. Spectra were acquired after mixing E. coli α2 and β2 with a substrate, CDP, and the allosteric effector, ATP. Isotopic chimeras, (13)Cα2β2 and α2(13)Cβ2, were used to define subunit-specific structural changes. Mixing of α2 and β2 under turnover conditions yielded amide I (C═O) and II (CN/NH) bands, derived from each subunit. The addition of the inhibitor, dATP, resulted in a decreased contribution from amide I bands, attributable to β strands and disordered structures. Significantly, HU-mediated reduction of Y122O• was associated with structural changes in α2, as well as β2. To define the spectral contributions of Y122O•/Y122OH in the quaternary complex, (2)H4 labeling of β2 tyrosines and HU editing were performed. The bands of Y122O•, Y122OH, and D84, a unidentate ligand to the diferric cluster, previously identified in isolated β2, were observed in the α2β2 complex. These spectra also provide evidence for a conformational rearrangement at an additional β2 tyrosine(s), Yx, in the α2β2/CDP/ATP complex. This study illustrates the utility of reaction-induced FT-IR spectroscopy in the study of complex enzymes.
Collapse
Affiliation(s)
- Adam R Offenbacher
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | | | | | | |
Collapse
|
7
|
Offenbacher AR, Polander BC, Barry BA. An intrinsically disordered photosystem II subunit, PsbO, provides a structural template and a sensor of the hydrogen-bonding network in photosynthetic water oxidation. J Biol Chem 2013; 288:29056-68. [PMID: 23940038 DOI: 10.1074/jbc.m113.487561] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photosystem II (PSII) is a membrane-bound enzyme that utilizes solar energy to catalyze the photooxidation of water. Molecular oxygen is evolved after four sequential light-driven oxidation reactions at the Mn4CaO5 oxygen-evolving complex, producing five sequentially oxidized states, Sn. PSII is composed of 17 membrane-spanning subunits and three extrinsic subunits, PsbP, PsbQ, and PsbO. PsbO is intrinsically disordered and plays a role in facilitation of the water oxidizing cycle. Native PsbO can be removed and substituted with recombinant PsbO, thereby restoring steady-state activity. In this report, we used reaction-induced Fourier transform infrared spectroscopy to obtain information concerning the role of PsbP, PsbQ, and PsbO during the S state cycle. Light-minus-dark difference spectra were acquired, monitoring structural changes associated with each accessible flash-induced S state transition in a highly purified plant PSII preparation (Triton X-100, octylthioglucoside). A comparison of S2 minus S1 spectra revealed that removal of PsbP and PsbQ had no significant effect on the data, whereas amide frequency and intensity changes were associated with PsbO removal. These data suggest that PsbO acts as an organizational template for the PSII reaction center. To identify any coupled conformational changes arising directly from PsbO, global (13)C-PsbO isotope editing was employed. The reaction-induced Fourier transform infrared spectra of accessible S states provide evidence that PsbO spectral contributions are temperature (263 and 277 K) and S state dependent. These experiments show that PsbO undergoes catalytically relevant structural dynamics, which are coupled over long distance to hydrogen-bonding changes at the Mn4CaO5 cluster.
Collapse
Affiliation(s)
- Adam R Offenbacher
- From the School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | | | | |
Collapse
|
8
|
Offenbacher AR, Burns LA, Sherrill CD, Barry BA. Redox-linked conformational control of proton-coupled electron transfer: Y122 in the ribonucleotide reductase β2 subunit. J Phys Chem B 2013; 117:8457-68. [PMID: 23822111 DOI: 10.1021/jp404757r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tyrosyl radicals play essential roles in biological proton-coupled electron transfer (PCET) reactions. Ribonucleotide reductase (RNR) catalyzes the reduction of ribonucleotides and is vital in DNA replication in all organisms. Class Ia RNRs consist of α2 and β2 homodimeric subunits. In class Ia RNR, such as the E. coli enzyme, an essential tyrosyl radical (Y122O(•))-diferric cofactor is located in β2. Although Y122O(•) is extremely stable in free β2, Y122O(•) is highly reactive in the quaternary substrate-α2β2 complex and serves as a radical initiator in catalytic PCET between β2 and α2. In this report, we investigate the structural interactions that control the reactivity of Y122O(•) in a model system, isolated E. coli β2. Y122O(•) was reduced with hydroxyurea (HU), a radical scavenger that quenches the radical in a clinically relevant reaction. In the difference FT-IR spectrum, associated with this PCET reaction, amide I (CO) and amide II (CN/NH) bands were observed. Specific (13)C-labeling of the tyrosine C1 carbon assigned a component of these bands to the Y122-T123 amide bond. Comparison to density functional calculations on a model dipeptide, tyrosine-threonine, and structural modeling demonstrated that PCET is associated with a Y122 rotation and a 7.2 Å translation of the Y122 phenolic oxygen. To test for the functional consequences of this structural change, a proton inventory defined the origin of the large solvent isotope effect (SIE = 16.7 ± 1.0 at 25 °C) on this reaction. These data suggest that the one-electron, HU-mediated reduction of Y122O(•) is associated with two, rate-limiting (full or partial) proton transfer reactions. One is attributable to HU oxidation (SIE = 11.9, net H atom transfer), and the other is attributable to coupled, hydrogen-bonding changes in the Y122O(•)-diferric cofactor (SIE = 1.4). These results illustrate the importance of redox-linked changes to backbone and ring dihedral angles in high potential PCET and provide evidence for rate-limiting, redox-linked hydrogen-bonding interactions between Y122O(•) and the iron cluster.
Collapse
Affiliation(s)
- Adam R Offenbacher
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | | | | | | |
Collapse
|
9
|
Offenbacher AR, Minnihan EC, Stubbe J, Barry BA. Redox-linked changes to the hydrogen-bonding network of ribonucleotide reductase β2. J Am Chem Soc 2013; 135:6380-3. [PMID: 23594029 PMCID: PMC3694779 DOI: 10.1021/ja3032949] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribonucleotide reductase (RNR) catalyzes conversion of nucleoside diphosphates (NDPs) to 2'-deoxynucleotides, a critical step in DNA replication and repair in all organisms. Class-Ia RNRs, found in aerobic bacteria and all eukaryotes, are a complex of two subunits: α2 and β2. The β2 subunit contains an essential diferric-tyrosyl radical (Y122O(•)) cofactor that is needed to initiate reduction of NDPs in the α2 subunit. In this work, we investigated the Y122O(•) reduction mechanism in Escherichia coli β2 by hydroxyurea (HU), a radical scavenger and cancer therapeutic agent. We tested the hypothesis that Y122OH redox reactions cause structural changes in the diferric cluster. Reduction of Y122O(•) was studied using reaction-induced FT-IR spectroscopy and [(13)C]aspartate-labeled β2. These Y122O(•) minus Y122OH difference spectra provide evidence that the Y122OH redox reaction is associated with a frequency change to the asymmetric vibration of D84, a unidentate ligand to the diferric cluster. The results are consistent with a redox-induced shift in H-bonding between Y122OH and D84 that may regulate proton-transfer reactions on the HU-mediated inactivation pathway in isolated β2.
Collapse
Affiliation(s)
- Adam R. Offenbacher
- Department of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ellen C. Minnihan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bridgette A. Barry
- Department of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
10
|
Liu H, Chen J, Huang RYC, Weisz D, Gross ML, Pakrasi HB. Mass spectrometry-based footprinting reveals structural dynamics of loop E of the chlorophyll-binding protein CP43 during photosystem II assembly in the cyanobacterium Synechocystis 6803. J Biol Chem 2013; 288:14212-14220. [PMID: 23546881 DOI: 10.1074/jbc.m113.467613] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PSII repair cycle is required for sustainable photosynthesis in oxygenic photosynthetic organisms. In cyanobacteria and higher plants, proteolysis of the precursor D1 protein (pD1) to expose a C-terminal carboxylate group is an essential step leading to coordination of the Mn4CaO5 cluster, the site of water oxidation. Psb27 appears to associate with both pD1- and D1-containing PSII assembly intermediates by closely interacting with CP43. Here, we report that reduced binding affinity between CP43 and Psb27 is triggered by the removal of the C-terminal extension of the pD1 protein. A mass spectrometry-based footprinting strategy was adopted to probe solvent-exposed aspartic and glutamic acid residues on the CP43 protein. By comparing the extent of footprinting between HT3ΔctpAΔ27PSII and HT3ΔctpAPSII, two genetically modified PSII assembly complexes, we found that Psb27 binds to CP43 on the side of Loop E distal to the pseudo-symmetrical D1-D2 axis. By comparing a second pair of PSII assembly complexes, we discovered that Loop E of CP43 undergoes a significant conformational rearrangement due to the removal of the pD1 C-terminal extension, altering the Psb27-CP43 binding interface. The significance of this conformational rearrangement is discussed in the context of recruitment of the PSII lumenal extrinsic proteins and Mn4CaO5 cluster assembly. In addition to CP43's previously known function as one of the core PSII antenna proteins, this work demonstrates that Loop E of CP43 plays an important role in the functional assembly of the Water Oxidizing Center (WOC) during PSII biogenesis.
Collapse
Affiliation(s)
- Haijun Liu
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Jiawei Chen
- Department of Chemistry, Washington University, St. Louis, Missouri 63130
| | - Richard Y-C Huang
- Department of Chemistry, Washington University, St. Louis, Missouri 63130
| | - Daniel Weisz
- Department of Biology, Washington University, St. Louis, Missouri 63130; Department of Chemistry, Washington University, St. Louis, Missouri 63130
| | - Michael L Gross
- Department of Chemistry, Washington University, St. Louis, Missouri 63130
| | - Himadri B Pakrasi
- Department of Biology, Washington University, St. Louis, Missouri 63130.
| |
Collapse
|
11
|
Degradation of PsbO by the Deg protease HhoA Is thioredoxin dependent. PLoS One 2012; 7:e45713. [PMID: 23029195 PMCID: PMC3446894 DOI: 10.1371/journal.pone.0045713] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/24/2012] [Indexed: 02/02/2023] Open
Abstract
The widely distributed members of the Deg/HtrA protease family play an important role in the proteolysis of misfolded and damaged proteins. Here we show that the Deg protease rHhoA is able to degrade PsbO, the extrinsic protein of the Photosystem II (PSII) oxygen-evolving complex in Synechocystis sp. PCC 6803 and in spinach. PsbO is known to be stable in its oxidized form, but after reduction by thioredoxin it became a substrate for recombinant HhoA (rHhoA). rHhoA cleaved reduced eukaryotic (specifically, spinach) PsbO at defined sites and created distinct PsbO fragments that were not further degraded. As for the corresponding prokaryotic substrate (reduced PsbO of Synechocystis sp. PCC 6803), no PsbO fragments were observed. Assembly to PSII protected PsbO from degradation. For Synechocystis sp. PCC 6803, our results show that HhoA, HhoB, and HtrA are localized in the periplasma and/or at the thylakoid membrane. In agreement with the idea that PsbO could be a physiological substrate for Deg proteases, part of the cellular fraction of the three Deg proteases of Synechocystis sp. PCC 6803 (HhoA, HhoB, and HtrA) was detected in the PSII-enriched membrane fraction.
Collapse
|
12
|
Popelkova H, Yocum CF. PsbO, the manganese-stabilizing protein: Analysis of the structure–function relations that provide insights into its role in photosystem II. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:179-90. [DOI: 10.1016/j.jphotobiol.2011.01.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 01/13/2011] [Accepted: 01/14/2011] [Indexed: 01/07/2023]
|
13
|
Popelkova H, Commet A, Yocum CF. The double mutation ΔL6MW241F in PsbO, the photosystem II manganese stabilizing protein, yields insights into the evolution of its structure and function. FEBS Lett 2010; 584:4009-14. [PMID: 20708615 DOI: 10.1016/j.febslet.2010.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 07/27/2010] [Accepted: 08/08/2010] [Indexed: 11/24/2022]
Abstract
The W241F mutation in spinach manganese-stabilizing protein (PsbO) decreases binding to photosystem II (PSII); its thermostability is increased and reconstituted activity is lower [Wyman et al. (2008) Biochemistry 47, 6490-6498]. The results reported here show that W241F cannot adopt a normal solution structure and fails to reconstitute efficient Cl(-) retention by PSII. An N-terminal truncation of W241F, producing the ΔL6MW241F double mutant that resembles some features of cyanobacterial PsbO, significantly repairs the defects in W241F. Our data suggest that the C-terminal F→W mutation likely evolved in higher plants and green algae in order to preserve proper PsbO folding and PSII binding and assembly, which promotes efficient Cl(-) retention in the oxygen-evolving complex.
Collapse
Affiliation(s)
- Hana Popelkova
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
14
|
Roose JL, Yocum CF, Popelkova H. Function of PsbO, the Photosystem II Manganese-Stabilizing Protein: Probing the Role of Aspartic Acid 157. Biochemistry 2010; 49:6042-51. [DOI: 10.1021/bi100303f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Johnna L. Roose
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Charles F. Yocum
- Department of Molecular, Cellular, and Developmental Biology
- Department of Chemistry
| | - Hana Popelkova
- Department of Molecular, Cellular, and Developmental Biology
| |
Collapse
|
15
|
Kim ED, Buckley R, Learman S, Richard J, Parke C, Worthylake DK, Wojcik EJ, Walker RA, Kim S. Allosteric drug discrimination is coupled to mechanochemical changes in the kinesin-5 motor core. J Biol Chem 2010; 285:18650-61. [PMID: 20299460 DOI: 10.1074/jbc.m109.092072] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Essential in mitosis, the human Kinesin-5 protein is a target for >80 classes of allosteric compounds that bind to a surface-exposed site formed by the L5 loop. Not established is why there are differing efficacies in drug inhibition. Here we compare the ligand-bound states of two L5-directed inhibitors against 15 Kinesin-5 mutants by ATPase assays and IR spectroscopy. Biochemical kinetics uncovers functional differences between individual residues at the N or C termini of the L5 loop. Infrared evaluation of solution structures and multivariate analysis of the vibrational spectra reveal that mutation and/or ligand binding not only can remodel the allosteric binding surface but also can transmit long range effects. Changes in L5-localized 3(10) helix and disordered content, regardless of substitution or drug potency, are experimentally detected. Principal component analysis couples these local structural events to two types of rearrangements in beta-sheet hydrogen bonding. These transformations in beta-sheet contacts are correlated with inhibitory drug response and are corroborated by wild type Kinesin-5 crystal structures. Despite considerable evolutionary divergence, our data directly support a theorized conserved element for long distance mechanochemical coupling in kinesin, myosin, and F(1)-ATPase. These findings also suggest that these relatively rapid IR approaches can provide structural biomarkers for clinical determination of drug sensitivity and drug efficacy in nucleotide triphosphatases.
Collapse
Affiliation(s)
- Elizabeth D Kim
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Popelkova H, Commet A, Yocum CF. Asp157 is required for the function of PsbO, the photosystem II manganese stabilizing protein. Biochemistry 2010; 48:11920-8. [PMID: 19894760 DOI: 10.1021/bi9016999] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PsbO, the photosystem II manganese stabilizing protein, contains an aspartate residue [Asp157 (spinach numbering)], which is highly conserved in eukaryotic and prokaryotic PsbOs. The homology model of the PSII-bound conformation of spinach PsbO presented here positions Asp157 in the large flexible loop of the protein. We have characterized site-directed mutants (D157N, D157E, and D157K) of spinach PsbO that were rebound to PsbO-depleted PSII to probe the role of Asp157. Structural data revealed that PsbO Asp157 mutants exhibit near-wild-type solution structure at 25 degrees C, but functional analyses of the mutants showed that these are the first genetically modified PsbO proteins from spinach that combine wild-type PSII binding behavior with significantly impaired O(2) evolution activity; all of the mutants reconstituted approximately 30% of control O(2) evolution activity. PsbO Asp157 has been proposed to be a part of a putative H(2)O/H(+) channel that links the active site of the oxygen-evolving complex with the lumen [De Las Rivas, J., and Barber, J. (2004) Photosynth. Res. 81, 329-343]. Unsuccessful attempts to use chemical rescue to enhance the activity restored by Asp157 mutants could indicate that this residue is not involved in a proton transfer network. It is shown, however, that these mutants are deficient in restoring efficient Cl(-) retention by PSII.
Collapse
Affiliation(s)
- Hana Popelkova
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan,Ann Arbor, Michigan 48109-1048, USA.
| | | | | |
Collapse
|
17
|
Williamson AK. Structural and functional aspects of the MSP (PsbO) and study of its differences in thermophilic versus mesophilic organisms. PHOTOSYNTHESIS RESEARCH 2008; 98:365-89. [PMID: 18780158 DOI: 10.1007/s11120-008-9353-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 08/06/2008] [Indexed: 05/16/2023]
Abstract
The Manganese Stabilizing Protein (MSP) of Photosystem II (PSII) is a so-called extrinsic subunit, which reversibly associates with the other membrane-bound PSII subunits. The MSP is essential for maximum rates of O(2) production under physiological conditions as stabilizes the catalytic [Mn(4)Ca] cluster, which is the site of water oxidation. The function of the MSP subunit in the PSII complex has been extensively studied in higher plants, and the structure of non-PSII associated MSP has been studied by low-resolution biophysical techniques. Recently, crystal structures of PSII from the thermophilic cyanobacterium Thermosynechococcus elongatus have resolved the MSP subunit in its PSII-associated state. However, neither any crystal structure is available yet for MSP from mesophilic organisms, higher plants or algae nor has the non-PSII associated form of MSP been crystallized. This article reviews the current understanding of the structure, dynamics, and function of MSP, with a particular focus on properties of the MSP from T. elongatus that may be attributable to the thermophilic ecology of this organism rather than being general features of MSP.
Collapse
Affiliation(s)
- Adele K Williamson
- Research School of Biological Sciences, the Australian National University, Canberra 0200, Australia.
| |
Collapse
|
18
|
Wyman AJ, Popelkova H, Yocum CF. Site-directed mutagenesis of conserved C-terminal tyrosine and tryptophan residues of PsbO, the photosystem II manganese-stabilizing protein, alters its activity and fluorescence properties. Biochemistry 2008; 47:6490-8. [PMID: 18500826 DOI: 10.1021/bi800225m] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The extrinsic photosystem II PsbO subunit (manganese-stabilizing protein) contains near-UV CD signals from its complement of aromatic amino acid residues (one Trp, eight Tyr, and 13 Phe residues). Acidification, N-bromosuccinimide modification of Trp, reduction or elimination of a disulfide bond, or deletion of C-terminal amino acids abolishes these signals. Site-directed mutations that substitute Phe for Trp241 and Tyr242, near the C-terminus of PsbO, were used to examine the contribution of these residues to the activity and spectral properties of the protein. Although this substitution is, in theory, conservative, neither mutant binds efficiently to PSII, even though these proteins appear to retain wild-type solution structures. Removal of six residues from the N-terminus of the W241F mutant restores activity to near-wild-type levels. The near-UV CD spectra of the mutants are modified; well-defined Tyr and Trp peaks are lost. Characterizations of the fluorescence spectra of the full-length WF and YF mutants indicate that Y242 contributes significantly to PsbO's Tyr fluorescence emission and that an excited-state tyrosinate could be present in PsbO. Deletion of W241 shows that this residue is a major contributor to PsbO's fluorescence emission. Loss of function is consistent with the proposal that a native C-terminal domain is required for PsbO binding and activity, and restoration of activity by deletion of N-terminal amino acids may provide some insights into the evolution of this important photosynthetic protein.
Collapse
Affiliation(s)
- Aaron J Wyman
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | | | |
Collapse
|
19
|
Williamson AK, Liggins JR, Hillier W, Wydrzynski T. The importance of protein-protein interactions for optimising oxygen activity in photosystem II: reconstitution with a recombinant thioredoxin--manganese stabilising protein. PHOTOSYNTHESIS RESEARCH 2007; 92:305-14. [PMID: 17484036 DOI: 10.1007/s11120-007-9165-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 03/29/2007] [Indexed: 05/15/2023]
Abstract
In this paper we describe how photosystem II (PSII) from higher plants, which have been depleted, of the extrinsic proteins can be reconstituted with a chimeric fusion protein comprising thioredoxin from Escherichia coli and the manganese stabilising protein from Thermosynechococcus elongatus. Surprisingly, even though E. coli thioredoxin is completely unrelated to PSII, the fusion protein restores higher rates of activity upon rebinding to PSII than either the native spinach MSP, or T. elongatus MSP. PSII reconstituted with the fusion protein also has a lower requirement for calcium than PSII with the small extrinsic proteins removed, or PSII reconstituted with spinach or T. elongatus MSP. The MSP portion of the fusion protein is less thermally stable compared to isolated MSP from T. elongatus, which could be the key to its superior activation capability through greater flexibility. This work reveals the importance of protein-protein interactions in the water splitting activity of PSII and suggests that conformational configurations, which increase flexibility in MSP, are essential to its function, even when these are induced by an unrelated protein.
Collapse
Affiliation(s)
- A K Williamson
- Research School of Biological Sciences, The Australian National University, Canberra 0200, Australia.
| | | | | | | |
Collapse
|
20
|
Ventrella A, Catucci L, Mascolo G, Corcelli A, Agostiano A. Isolation and characterization of lipids strictly associated to PSII complexes: Focus on cardiolipin structural and functional role. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1620-7. [PMID: 17490608 DOI: 10.1016/j.bbamem.2007.03.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 03/13/2007] [Accepted: 03/29/2007] [Indexed: 11/21/2022]
Abstract
In this work, lipid extracts from spinach membrane fragments enriched in Photosystem II (PSII) and from spinach PSII dimers were analyzed, by means of Thin Layer Chromatography (TLC) and Electro-Spray Ionization Mass Spectrometry. Cardiolipin found in association with PSII was isolated and purified by preparative TLC, then characterized by mass and mass-mass analyses. Cardiolipin structures with four unsaturated C18 acyl chains and variable saturation degrees were evidenced. Structural and functional effects of different phospholipids on PSII complexes were investigated by Fluorescence, Resonance Light Scattering and Oxygen Evolution Rate measurements. An increment of PSII thermal stability was observed in the presence of cardiolipin and phosphatidylglycerol.
Collapse
Affiliation(s)
- A Ventrella
- Dip. di Chimica, Università di Bari, Via Orabona 4, 70126 Bari, Italy
| | | | | | | | | |
Collapse
|
21
|
Gündoğdu K, Nydegger MW, Bandaria JN, Hill SE, Cheatum CM. Vibrational relaxation of C-D stretching vibrations in CDCl3, CDBr3, and CDI3. J Chem Phys 2007; 125:174503. [PMID: 17100450 DOI: 10.1063/1.2361288] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We present time-resolved transient grating measurements of the vibrational relaxation rates of the C-D stretching vibrations of deuterated haloforms in benzene and acetone. We compare our results with previous measurements of excited C-H stretches in the same solvents to obtain insight into the solvent effect on the vibrational relaxation. In deuterated molecules, there are more low-order-coupled states and the states are closer in energy to the C-D stretch than in the unlabeled isotopologs. Therefore, the relaxation is faster for the deuterated molecules. The relaxation also shows a significant solvent dependence. Bromoform and iodoform form charge-transfer complexes with both benzene and acetone which enhance the relaxation rate. For chloroform, hydrogen bonding to acetone is expected to be a more favorable interaction. Surprisingly, however, the vibrational relaxation of CDCl(3) is slower in acetone than in benzene.
Collapse
Affiliation(s)
- Kenan Gündoğdu
- Chemistry Department, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
22
|
Lundin B, Thuswaldner S, Shutova T, Eshaghi S, Samuelsson G, Barber J, Andersson B, Spetea C. Subsequent events to GTP binding by the plant PsbO protein: structural changes, GTP hydrolysis and dissociation from the photosystem II complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1767:500-8. [PMID: 17223069 DOI: 10.1016/j.bbabio.2006.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 10/26/2006] [Accepted: 10/28/2006] [Indexed: 10/23/2022]
Abstract
Besides an essential role in optimizing water oxidation in photosystem II (PSII), it has been reported that the spinach PsbO protein binds GTP [C. Spetea, T. Hundal, B. Lundin, M. Heddad, I. Adamska, B. Andersson, Proc. Natl. Acad. Sci. U.S.A. 101 (2004) 1409-1414]. Here we predict four GTP-binding domains in the structure of spinach PsbO, all localized in the beta-barrel domain of the protein, as judged from comparison with the 3D-structure of the cyanobacterial counterpart. These domains are not conserved in the sequences of the cyanobacterial or green algae PsbO proteins. MgGTP induces specific changes in the structure of the PsbO protein in solution, as detected by circular dichroism and intrinsic fluorescence spectroscopy. Spinach PsbO has a low intrinsic GTPase activity, which is enhanced fifteen-fold when the protein is associated with the PSII complex in its dimeric form. GTP stimulates the dissociation of PsbO from PSII under light conditions known to also release Mn(2+) and Ca(2+) ions from the oxygen-evolving complex and to induce degradation of the PSII reaction centre D1 protein. We propose the occurrence in higher plants of a PsbO-mediated GTPase activity associated with PSII, which has consequences for the function of the oxygen-evolving complex and D1 protein turnover.
Collapse
Affiliation(s)
- Björn Lundin
- Division of Cell Biology, Linköping University, SE-581 85 Linköping, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Li S, Chen G, Han G, Ling L, Huang D, Khorobrykh AA, Zharmukhamedov SK, Liu Q, Klimov VV, Kuang T. Coordination between manganese and nitrogen within the ligands in the manganese complexes facilitates the reconstitution of the water-oxidizing complex in manganese-depleted photosystem II preparations. J Biol Inorg Chem 2006; 11:783-90. [PMID: 16791637 DOI: 10.1007/s00775-006-0126-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Accepted: 06/07/2006] [Indexed: 10/24/2022]
Abstract
The water-oxidizing complex (WOC) within photosystem II (PSII) can be reconstituted with synthetic manganese complexes by a process called photoactivation; however, the key factors affecting the efficiency of synthetic manganese complexes in reconstitution of electron transport and oxygen evolution activity in manganese-depleted PSII remain unclear. In the present study, four complexes with different manganese coordination environments were used to reconstitute the WOC, and an interesting relationship was found between the coordination environment of the manganese atom in the complexes and their efficiency in restoring electron transport and oxygen evolution. If Mn(II) is coordinated to nitrogen atoms within the ligand, it can restore significant rates of electron transport and oxygen evolution; however, if the manganese atom is coordinated only to oxygen atoms instead of nitrogen atoms, it has no capability to restore electron transport and oxygen evolution. So, our results demonstrate that the capability of manganese complexes to reconstitute the WOC is mainly determined by the coordination between nitrogen atoms from ligands and the manganese atom. It is suggested from our results that the ligation between the nitrogen atom and the manganese atom within the manganese complex facilitates the photoligation of the manganese atom to histidyl residues on the apo-protein in manganese-depleted PSII during photoactivation.
Collapse
Affiliation(s)
- Shuqin Li
- Photosynthesis Research Center, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Han G, Li J, Chen G, Ling L, Li S, Khorobrykh AA, Zharmukhamedov SK, Klimov VV, Kuang T. Reconstruction of the water-oxidizing complex in manganese-depleted Photosystem II using synthetic manganese complexes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2005; 81:114-20. [PMID: 16154756 DOI: 10.1016/j.jphotobiol.2005.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 04/27/2005] [Accepted: 04/27/2005] [Indexed: 11/26/2022]
Abstract
The efficiency of a trinuclear and two binuclear manganese complexes in reconstituting electron transport and O(2) evolution activity in Mn-depleted Photosystem II preparations is analyzed. The trinuclear Mn-complex is more efficient than two binuclear Mn-complexes in restoring oxygen evolution, but it is less effective as an electron donor than binuclear Mn-complexes. It is inferred from our results that recovery of electron transport and O(2) evolution with polynuclear Mn-complexes is affected with different factors. Moreover, the trinuclear Mn-complex is extremely sensitive to the addition of CaCl(2). It is suggested that there is an interaction between Ca(2+) and carboxyl within the trinuclear Mn-complex during photoactivation and this interaction benefits the ligation of Mn atom to the apo-WOC and form an active WOC. Binuclear Mn(III)Mn(III) complex shows slightly higher efficiency than binuclear Mn(III)Mn(IV) complex in restoration of O(2) evolution activity. The efficiency of three Mn-complexes in the reconstitution of WOC is in an order: trinuclear Mn(3)(III)>binuclear Mn(III)Mn(III)>binuclear Mn(III)Mn(IV).
Collapse
Affiliation(s)
- Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wyman AJ, Yocum CF. Structure and activity of the photosystem II manganese-stabilizing protein: role of the conserved disulfide bond. PHOTOSYNTHESIS RESEARCH 2005; 85:359-72. [PMID: 16170637 DOI: 10.1007/s11120-005-7385-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Accepted: 05/13/2005] [Indexed: 05/04/2023]
Abstract
The 33-kDa manganese-stabilizing protein (MSP) of Photosystem II (PS II) maintains the functional stability of the Mn cluster in the enzyme's active site. This protein has been shown to possess characteristics similar to those of the intrinsically disordered, or natively unfolded proteins. Alternately it was proposed that MSP should be classified as a molten globule, based in part on the hypothesis that its lone disulfide bridge is necessary for structural stability and function in solution. A site-directed mutant MSP (C28A,C51A) that eliminates the disulfide bond reconstitutes O(2) evolution activity and binds to MSP-free PS II preparations at wild-type levels. This mutant was further characterized by incubation at 90 degrees C to determine the effect of loss of the disulfide bridge on MSP thermostability and solution structure. After heating at 90 degrees C for 20 min, C28A,C51A MSP was still able to bind to PS II preparations at molar stoichiometries similar to those of WT MSP and reconstitute O(2) evolution activity. A fraction of the protein aggregates upon heating, but after resolubilization, it regains the ability to bind to PS II and reconstitute O(2) evolution activity. Characterization of the solution structure of C28A,C51A MSP, using CD spectroscopy, UV absorption spectroscopy, and gel filtration chromatography, revealed that the mutant has a more disordered solution structure than WT MSP. The disulfide bond is therefore unnecessary for MSP function and the intrinsically disordered characteristics of MSP are not dependent on its presence. However, the disulfide bond does play a role in the solution structure of MSP in vivo, as evidenced by the lability of a C20S MSP mutation in Synechocystis 6803.
Collapse
Affiliation(s)
- Aaron J Wyman
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109-1048, USA
| | | |
Collapse
|
26
|
Zhang L, Zhang F, Zhang SY, Guo YL, Xu CH. Acetonitrile-induced unfolding of the photosystem II manganese-stabilizing protein studied by electrospray mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:2151-6. [PMID: 15988731 DOI: 10.1002/rcm.2043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this paper an acetonitrile-induced unfolding of the manganese-stabilizing protein (MSP) of photosystem II was discovered. More distinct unfolding states of MSP were identified than previously by using mainly electrospray ionization mass spectrometry (ESI-MS), together with fluorescence spectra and far-UV circular dichroism (CD) at pH 2.0, 6.2 or 11.6, and with acetonitrile concentrations from 0 to 50%. At pH 6.2 with acetonitrile concentration changing from 0 to 10%, relatively broad charge-state distributions and poor intensity were observed in ESI-MS, indicating the presence of coexisting conformers. It was concluded that the structure of the MSP protein is unlikely to be a tightly folded form. When the concentration of acetonitrile was 20-40%, simulating the state in the biological membrane, changes in the state of unfolding of MSP were observed to a certain extent using ESI-MS, fluorescence and CD spectroscopy. The charge-state distribution in ESI-MS was found to move toward high states (from 13+ to 27+ to 15+ to 31+) with increasing acetonitrile concentration. At pH 2.0, the MSP structure is rearranged into an unfolded state, and at pH 11.6 the MSP structure is induced to assume another unordered state by deprotonation of appropriate residues. An interesting observation was that a second peak envelope emerged with 20-50% acetonitrile in the medium at pH 11.6.
Collapse
Affiliation(s)
- Li Zhang
- Shanghai Mass Spectrometry Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
27
|
Tan CY, Xu CH, Wong J, Shen JR, Sakuma S, Yamamoto Y, Lange R, Balny C, Ruan KC. Pressure equilibrium and jump study on unfolding of 23-kDa protein from spinach photosystem II. Biophys J 2004; 88:1264-75. [PMID: 15531632 PMCID: PMC1305128 DOI: 10.1529/biophysj.104.050435] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pressure-induced unfolding of 23-kDa protein from spinach photosystem II has been systematically investigated at various experimental conditions. Thermodynamic equilibrium studies indicate that the protein is very sensitive to pressure. At 20 degrees C and pH 5.5, 23-kDa protein shows a reversible two-state unfolding transition under pressure with a midpoint near 160 MPa, which is much lower than most natural proteins studied to date. The free energy (DeltaG(u)) and volume change (DeltaV(u)) for the unfolding are 5.9 kcal/mol and -160 ml/mol, respectively. It was found that NaCl and sucrose significantly stabilize the protein from unfolding and the stabilization is associated not only with an increase in DeltaG(u) but also with a decrease in DeltaV(u). The pressure-jump studies of 23-kDa protein reveal a negative activation volume for unfolding (-66.2 ml/mol) and a positive activation volume for refolding (84.1 ml/mol), indicating that, in terms of system volume, the protein transition state lies between the folded and unfolded states. Examination of the temperature effect on the unfolding kinetics indicates that the thermal expansibility of the transition state and the unfolded state of 23-kDa protein are closer to each other and they are larger than that of the native state. The diverse pressure-refolding pathways of 23-kDa protein in some conditions were revealed in pressure-jump kinetics.
Collapse
Affiliation(s)
- Cui-Yan Tan
- Key Laboratory of Proteomics, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Low pH-induced conformational changes in 33 kD protein of photosystem II. CHINESE SCIENCE BULLETIN-CHINESE 2004. [DOI: 10.1007/bf03184012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Svensson B, Tiede DM, Nelson DR, Barry BA. Structural studies of the manganese stabilizing subunit in photosystem II. Biophys J 2004; 86:1807-12. [PMID: 14990506 PMCID: PMC1304014 DOI: 10.1016/s0006-3495(04)74247-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Accepted: 10/31/2003] [Indexed: 10/21/2022] Open
Abstract
Photosystem II (PSII) is the plant photosynthetic reaction center that carries out the light driven oxidation of water. The water splitting reactions are catalyzed at a tetranuclear manganese cluster. The manganese stabilizing protein (MSP) of PSII stabilizes the manganese cluster and accelerates the rate of oxygen evolution. MSP can be removed from PSII, with an accompanying decrease in activity. Either an Escherichia coli expressed version of MSP or native, plant MSP can be rebound to the PSII reaction center; MSP reconstitution reverses the deleterious effects associated with MSP removal. We have employed Fourier transform infrared (FTIR) spectroscopy and solution small angle x-ray scattering (SAXS) techniques to investigate the structure of MSP in solution and to define the structural changes that occur before and after reconstitution to PSII. FTIR and SAXS are complementary, because FTIR spectroscopy detects changes in MSP secondary structure and SAXS detects changes in MSP size/shape. From the SAXS data, we conclude that the size/shape and domain structure of MSP do not change when MSP binds to PSII. From FTIR data acquired before and after reconstitution, we conclude that the reconstitution-induced increase in beta-sheet content, which was previously reported, persists after MSP is removed from the PSII reaction center. However, the secondary structural change in MSP is metastable after removal from PSII, which indicates that this form of MSP is not the lowest energy conformation in solution.
Collapse
Affiliation(s)
- Bengt Svensson
- Department of Biochemistry, Biophysics, and Molecular Biology, University of Minnesota, Gortner Laboratory, St. Paul, Minnesota 55108, USA
| | | | | | | |
Collapse
|
30
|
Nowaczyk M, Berghaus C, Stoll R, Rögner M. Preliminary structural characterisation of the 33 kDa protein (PsbO) in solution studied by site-directed mutagenesis and NMR spectroscopy. Phys Chem Chem Phys 2004. [DOI: 10.1039/b407316a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Sachs RK, Halverson KM, Barry BA. Specific isotopic labeling and photooxidation-linked structural changes in the manganese-stabilizing subunit of photosystem II. J Biol Chem 2003; 278:44222-9. [PMID: 12941934 DOI: 10.1074/jbc.m307148200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photosystem II (PSII) oxidizes water to molecular oxygen; the catalytic site is a cluster of four manganese ions. The catalytic site undergoes four sequential light-driven oxidation steps to form oxygen; these sequentially oxidized states are referred to as the Sn states, where n refers to the number of oxidizing equivalents stored. The extrinsic manganese stabilizing protein (MSP) of PSII influences the efficiency and stability of the manganese cluster, as well as the rates of the S state transitions. To understand how MSP influences photosynthetic water oxidation, we have employed isotope editing and difference Fourier transform infrared spectroscopy. MSP was expressed in Escherichia coli under conditions in which MSP aspartic and glutamic acid residues label at yields of 65 and 41%, respectively. Asparagine and glutamine were also labeled by this approach. GC/MS analysis was consistent with minimal scrambling of label into other amino acid residues and with no significant scrambling into the peptide bond. Selectively labeled MSP was then reconstituted to PSII, which had been stripped of native MSP. Difference Fourier transform infrared spectroscopy was used to probe the S1QA to S2QA- transition at 200 K, as well as the S1QB to S2QB- transition at 277 K. These experiments show that aspargine, glutamine, and glutamate residues in MSP are perturbed by photooxidation of manganese during the S1 to S2 transition.
Collapse
Affiliation(s)
- Roseann K Sachs
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | |
Collapse
|
32
|
Svensson B, Tiede DM, Barry BA. Small-Angle X-ray Scattering Studies of the Manganese Stabilizing Subunit in Photosystem II. J Phys Chem B 2002. [DOI: 10.1021/jp0258199] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bengt Svensson
- Department of Biochemistry, Biophysics, and Molecular Biology, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, Minnesota 55108 and Chemistry Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439
| | - David M. Tiede
- Department of Biochemistry, Biophysics, and Molecular Biology, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, Minnesota 55108 and Chemistry Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439
| | - Bridgette A. Barry
- Department of Biochemistry, Biophysics, and Molecular Biology, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, Minnesota 55108 and Chemistry Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439
| |
Collapse
|
33
|
Nield J, Balsera M, De Las Rivas J, Barber J. Three-dimensional electron cryo-microscopy study of the extrinsic domains of the oxygen-evolving complex of spinach: assignment of the PsbO protein. J Biol Chem 2002; 277:15006-12. [PMID: 11815610 DOI: 10.1074/jbc.m110549200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three independent three-dimensional reconstructions of the spinach photosystem II-light-harvesting complex supercomplex were derived from single particle analyses of non-stained, vitrified samples imaged by electron microscopy. Each reconstruction was found to differ significantly in the composition of the lumenal oxygen-evolving complex extrinsic proteins. From difference mapping, aided by electron microscopy of negatively stained selectively washed samples, regions of density were assigned to the PsbO and PsbP/PsbQ proteins. Interpretation of the density assigned to the PsbO protein was explored using computer-aided structural predictions. PsbO is calculated to be mainly a beta-protein (38% beta) composed of two domains within an overall elongated shape (Pazos, F., Heredia, P., Valencia, A., and De Las Rivas, J. (2001) Proteins Struct. Funct. Genet. 45, 372-381). The positioning and fitting of the proposed structural model for the PsbO protein within the three-dimensional map indicated that there is a single copy per reaction center. Moreover, the structural model derived for PsbO, together with difference mapping, indicates that this protein stretches across the surface of the reaction center with its N- and C-terminal domains located toward the CP47 and CP43 side, respectively. This structural assignment is discussed in terms of the recent x-ray-derived cyanobacterial model of PSII (Zouni, A., Witt, H.-T., Kern, J., Fromme, P., Krauss, N., Saenger, W., and Orth, P. (2001) Nature 409, 739-743).
Collapse
Affiliation(s)
- Jon Nield
- Wolfson Laboratories, Department of Biological Sciences, Imperial College of Science, Technology and Medicine, London SW7 2AY, United Kingdom
| | | | | | | |
Collapse
|
34
|
Pueyo JJ, Alfonso M, Andrés C, Picorel R. Increased tolerance to thermal inactivation of oxygen evolution in spinach Photosystem II membranes by substitution of the extrinsic 33-kDa protein by its homologue from a thermophilic cyanobacterium. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1554:29-35. [PMID: 12034468 DOI: 10.1016/s0005-2728(02)00208-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photosynthetic oxygen evolution is an extremely heat-sensitive process and incubation of spinach Photosystem II (PSII) membranes at 40 degrees C for only several minutes leads to its complete inactivation. Substitution experiments of the spinach 33-kDa manganese stabilizing protein by a homologue protein, isolated either from the thermophilic cyanobacterium Phormidium laminosum, or from Escherichia coli as a recombinant thermophilic cyanobacterial protein, showed a significant increase in tolerance to heat inactivation of the oxygen-evolving activity. The results allow us to suggest that thermal inactivation of oxygen evolution in higher plant PSII membranes is due to dissociation of the 33-kDa protein as a consequence of temperature-induced conformational changes, and stabilization can be provided by substitution by a thermostable homologue whose secondary structure and binding to PSII remain unaltered at moderately high temperatures.
Collapse
Affiliation(s)
- José J Pueyo
- Estación Experimental de Aula Dei (CSIC), Apdo. 202, E-50080 Zaragoza, Spain.
| | | | | | | |
Collapse
|
35
|
Tohri A, Suzuki T, Okuyama S, Kamino K, Motoki A, Hirano M, Ohta H, Shen JR, Yamamoto Y, Enami I. Comparison of the structure of the extrinsic 33 kDa protein from different organisms. PLANT & CELL PHYSIOLOGY 2002; 43:429-39. [PMID: 11978871 DOI: 10.1093/pcp/pcf053] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The psbO gene encoding the extrinsic 33 kDa protein of oxygen-evolving photosystem II (PSII) complex was cloned and sequenced from a red alga, Cyanidium caldarium. The gene encodes a polypeptide of 333 residues, of which the first 76 residues served as transit peptides for transfer across the chloroplast envelope and thylakoid membrane. The mature protein consists of 257 amino acids with a calculated molecular mass of 28,290 Da. The sequence homology of the mature 33 kDa protein was 42.9-50.8% between the red alga and cyanobacteria, and 44.7-48.6% between the red alga and higher plants. The cloned gene was expressed in Escherichia coli, and the recombinant protein was purified, subjected to protease-treatments. The cleavage sites of the 33 kDa protein by chymotrypsin or V8 protease were determined and compared among a cyanobacterium (Synechococcus elongatus), a euglena (Euglena gracilis), a green alga (Chlamydomonas reinhardtii) and two higher plants (Spinacia oleracea and Oryza sativa). The cleavage sites by chymotrypsin were at 156F and 190F for the cyanobacterium, 159M, 160F and 192L for red alga, 11Y and 151F for euglena, 10Yand 150F for green alga, and 16Y for spinach, respectively. The cleavage sites by V8 protease were at 181E (cyanobacterium), 182E and 195E (red alga), 13E, 67E, 69E, 153D and 181E (euglena), 176E and 180E (green alga), and 18E or 19E (higher plants). Since most of the residues at these cleavage sites were conserved among the six organisms, the results indicate that the structure of the 33 kDa protein, at least the structure based on the accessibility by proteases, is different among these organisms. In terms of the cleavage sites, the structure of the 33 kDa protein can be divided into three major groups: cyanobacterial and red algal-type has cleavage sites at residues around 156-195, higher plant-type at residues 16-19, and euglena and green algal-type at residues of both cyanobacterial and higher plant-types.
Collapse
Affiliation(s)
- Akihiko Tohri
- Department of Biology, Faculty of Science, Science University of Tokyo, Kagurazaka 1-3, Shinjuku-ku, 162-8601 Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pazos F, Heredia P, Valencia A, de las Rivas J. Threading structural model of the manganese-stabilizing protein PsbO reveals presence of two possible beta-sandwich domains. Proteins 2001; 45:372-81. [PMID: 11746685 DOI: 10.1002/prot.10012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The manganese-stabilizing protein (PsbO) is an essential component of photosystem II (PSII) and is present in all oxyphotosynthetic organisms. PsbO allows correct water splitting and oxygen evolution by stabilizing the reactions driven by the manganese cluster. Despite its important role, its structure and detailed functional mechanism are still unknown. In this article we propose a structural model based on fold recognition and molecular modeling. This model has additional support from a study of the distribution of characteristics of the PsbO sequence family, such as the distribution of conserved, apolar, tree-determinants, and correlated positions. Our threading results consistently showed PsbO as an all-beta (beta) protein, with two homologous beta domains of approximately 120 amino acids linked by a flexible Proline-Glycine-Glycine (PGG) motif. These features are compatible with a general elongated and flexible architecture, in which the two domains form a sandwich-type structure with Greek key topology. The first domain is predicted to include 8 to 9 beta-strands, the second domain 6 to 7 beta-strands. An Ig-like beta-sandwich structure was selected as a template to build the 3-D model. The second domain has, between the strands, long-loops rich in Pro and Gly that are difficult to model. One of these long loops includes a highly conserved region (between P148 and P174) and a short alpha-helix (between E181 and N188)). These regions are characteristic parts of PsbO and show that the second domain is not so similar to the template. Overall, the model was able to account for much of the experimental data reported by several authors, and it would allow the detection of key residues and regions that are proposed in this article as essential for the structure and function of PsbO.
Collapse
Affiliation(s)
- F Pazos
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | |
Collapse
|
37
|
Kim S, Barry BA. Reaction-Induced FT-IR Spectroscopic Studies of Biological Energy Conversion in Oxygenic Photosynthesis and Transport§. J Phys Chem B 2001. [DOI: 10.1021/jp0042516] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Hong SK, Pawlikowski SA, Vander Meulen KA, Yocum CF. The oxidation state of the photosystem II manganese cluster influences the structure of manganese stabilizing protein. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1504:262-74. [PMID: 11245790 DOI: 10.1016/s0005-2728(00)00255-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure of photosystem II membranes to trypsin that has been treated to inhibit chymotrypsin activity produces limited hydrolysis of manganese stabilizing protein. Exposure to chymotrypsin under the same conditions yields substantial digestion of the protein. Further probing of the unusual insensitivity of manganese stabilizing protein to trypsin hydrolysis reveals that increasing the temperature from 4 to 25 degrees C will cause some acceleration in the rate of proteolysis. However, addition of low (100 microM) concentrations of NH2OH, that are sufficient to reduce, but not destroy, the photosystem II Mn cluster, causes a change in PS II-bound manganese stabilizing protein that causes it to be rapidly digested by trypsin. Immunoblot analyses with polyclonal antibodies directed against the N-terminus of the protein, or against the entire sequence show that trypsin cleavage produces two distinct peptide fragments estimated to be in the 17-20 kDa range, consistent with proposals that there are 2 mol of the protein/mol photosystem II. The correlation of trypsin sensitivity with Mn redox state(s) in photosystem II suggest that manganese stabilizing protein may interact either directly with Mn, or alternatively, that the polypeptide is bound to another protein of the photosystem II reaction center that is intimately involved in binding and redox activity of Mn.
Collapse
Affiliation(s)
- S K Hong
- Department of Biology and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | | | | | |
Collapse
|
39
|
Tucker DL, Hirsh K, Li H, Boardman B, Sherman LA. The manganese stabilizing protein (MSP) and the control of O2 evolution in the unicellular, diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1504:409-22. [PMID: 11245804 DOI: 10.1016/s0005-2728(00)00271-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The unicellular diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142 temporally separates N2 fixation from photosynthesis. To better understand the processes by which photosynthesis is regulated, we have analyzed Photosystem (PS) II O2 evolution and the PSII lumenal proteins, especially the Mn stabilizing protein (MSP). We describe a procedure using glycine betaine to isolate photosynthetic membranes from Cyanothece sp. that have high rates of PSI and PSII activity. Analysis with these membranes demonstrated similar patterns of O2 evolution in vivo and in vitro, with a trough at the time of maximal N2 fixation and with a peak in the late light period. The pattern of PSI activity was also similar in vivo and in vitro. We cloned the genes for MSP (psbO) and the 12 kDa protein (psbU) and analyzed their transcriptional properties throughout the diurnal cycle. We suggest that the changes in PSII activity in Cyanothece sp. were due to conformational changes in a highly flexible MSP, a suggestion which can now be studied in a chimera. The Cyanothece sp. psbO gene has been transformed into Synechocystis sp. PCC 6803; MSP and O2 evolution in the resulting transformant had properties that were similar to those in Cyanothece sp., providing additional confirmation for the properties of Cyanothece sp. MSP.
Collapse
Affiliation(s)
- D L Tucker
- Department of Biological Sciences, 1392 Lilly Hall of Life Sciences, Purdue University, 47907, West Lafayette, IN, USA
| | | | | | | | | |
Collapse
|
40
|
Chin JK, Jimenez R, Romesberg FE. Direct observation of protein vibrations by selective incorporation of spectroscopically observable carbon-deuterium bonds in cytochrome c. J Am Chem Soc 2001; 123:2426-7. [PMID: 11456893 DOI: 10.1021/ja0033741] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- J K Chin
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
41
|
Debus RJ. Amino acid residues that modulate the properties of tyrosine Y(Z) and the manganese cluster in the water oxidizing complex of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1503:164-86. [PMID: 11115632 DOI: 10.1016/s0005-2728(00)00221-8] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The catalytic site for photosynthetic water oxidation is embedded in a protein matrix consisting of nearly 30 different polypeptides. Residues from several of these polypeptides modulate the properties of the tetrameric Mn cluster and the redox-active tyrosine residue, Y(Z), that are located at the catalytic site. However, most or all of the residues that interact directly with Y(Z) and the Mn cluster appear to be contributed by the D1 polypeptide. This review summarizes our knowledge of the environments of Y(Z) and the Mn cluster as obtained from the introduction of site-directed, deletion, and other mutations into the photosystem II polypeptides of the cyanobacterium Synechocystis sp. PCC 6803 and the green alga Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- R J Debus
- Department of Biochemistry, University of California, Riverside, CA 92521-0129, USA.
| |
Collapse
|
42
|
Kim S, Barry BA. Identification of Carbonyl Modes of P700 and P700+ by in situ Chlorophyll Labeling in Photosystem I†. J Am Chem Soc 2000. [DOI: 10.1021/ja000512d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sunyoung Kim
- University of Minnesota Department of Biochemistry, Molecular Biology, & Biophysics St. Paul, Minnesota 55108-1022
| | - Bridgette A. Barry
- University of Minnesota Department of Biochemistry, Molecular Biology, & Biophysics St. Paul, Minnesota 55108-1022
| |
Collapse
|
43
|
Hutchison RS, Steenhuis JJ, Yocum CF, Razeghifard MR, Barry BA. Deprotonation of the 33-kDa, extrinsic, manganese-stabilizing subunit accompanies photooxidation of manganese in photosystem II. J Biol Chem 1999; 274:31987-95. [PMID: 10542229 DOI: 10.1074/jbc.274.45.31987] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photosystem II catalyzes photosynthetic water oxidation. The oxidation of water to molecular oxygen requires four sequential oxidations; the sequentially oxidized forms of the catalytic site are called the S states. An extrinsic subunit, the manganese-stabilizing protein (MSP), promotes the efficient turnover of the S states. MSP can be removed and rebound to the reaction center; removal and reconstitution is associated with a decrease in and then a restoration of enzymatic activity. We have isotopically edited MSP by uniform (13)C labeling of the Escherichia coli-expressed protein and have obtained the Fourier transform infrared spectrum associated with the S(1) to S(2) transition in the presence either of reconstituted (12)C or (13)C MSP. (13)C labeling of MSP is shown to cause 30-60 cm(-1) shifts in a subset of vibrational lines. The derived, isotope-edited vibrational spectrum is consistent with a deprotonation of glutamic/aspartic acid residues on MSP during the S(1) to S(2) transition; the base, which accepts this proton(s), is not located on MSP. This finding suggests that this subunit plays a role as a stabilizer of a charged transition state and, perhaps, as a general acid/base catalyst of oxygen evolution. These results provide a molecular explanation for known MSP effects on oxygen evolution.
Collapse
Affiliation(s)
- R S Hutchison
- Department of Biochemistry, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | | | |
Collapse
|