1
|
Imamoto Y, Sasayama H, Harigai M, Furutani Y, Kataoka M. Regulation of Photocycle Kinetics of Photoactive Yellow Protein by Modulating Flexibility of the β-Turn. J Phys Chem B 2020; 124:1452-1459. [PMID: 32017565 DOI: 10.1021/acs.jpcb.9b11879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of the significant flexibility of the β-turn in photoactive yellow protein (PYP) due to Gly115 was studied. G115A and G115P mutations were observed to accelerate the photocycle and shift the equilibrium between the late photocycle intermediate (pB) and its precursor (pR) toward pR. Thermodynamic analysis of dark-state recovery from pB demonstrated that the transition state (pB⧧) has a negative change in transition heat capacity, suggesting that an exposed hydrophobic surface of pB is buried in pB⧧. Fourier transform infrared spectroscopy showed that the structural ensemble of pB is populated by the compact structure in G115P. Taken together, the rigid structure induced by mutation of Gly115 facilitates its transition to pB⧧, which adopts a substantially more compact structure as opposed to the ensemble-averaged structure of pB. The photocycle kinetics of PYP may be fine-tuned by modulating the flexibility of the 115 loop to activate an appropriate number of transducer proteins.
Collapse
Affiliation(s)
- Yasushi Imamoto
- Department of Biophysics, Graduate School of Science , Kyoto University , Kyoto 606-8502 , Japan
| | - Hiroaki Sasayama
- Graduate School of Materials Science , Nara Institute of Science and Technology , Ikoma , Nara 630-0192 , Japan
| | - Miki Harigai
- Graduate School of Materials Science , Nara Institute of Science and Technology , Ikoma , Nara 630-0192 , Japan
| | - Yuji Furutani
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science , National Institutes of Natural Sciences , 38 Nishigo-Naka, Myodaiji , Okazaki 444-8585 , Japan.,Department of Structural Molecular Science , The Graduate University for Advanced Studies (SOKENDAI) , 38 Nishigo-Naka, Myodaiji , Okazaki 444-8585 , Japan
| | - Mikio Kataoka
- Graduate School of Materials Science , Nara Institute of Science and Technology , Ikoma , Nara 630-0192 , Japan
| |
Collapse
|
2
|
Schmidt-Engler JM, Blankenburg L, Błasiak B, van Wilderen LJGW, Cho M, Bredenbeck J. Vibrational Lifetime of the SCN Protein Label in H 2O and D 2O Reports Site-Specific Solvation and Structure Changes During PYP's Photocycle. Anal Chem 2019; 92:1024-1032. [PMID: 31769286 DOI: 10.1021/acs.analchem.9b03997] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The application of vibrational labels such as thiocyanate (-S-C≡N) for studying protein structure and dynamics is thriving. Absorption spectroscopy is usually employed to obtain wavenumber and line shape of the label. An observable of great significance might be the vibrational lifetime, which can be obtained by pump probe or 2D-IR spectroscopy. Due to the insulating effect of the heavy sulfur atom in the case of the SCN label, the lifetime of the C≡N oscillator is expected to be particularly sensitive to its surrounding as it is not dominated by through-bond relaxation. We therefore investigate the vibrational lifetime of the SCN label at various positions in the blue light sensor protein Photoactive Yellow Protein (PYP) in the ground state and signaling state of the photoreceptor. We find that the vibrational lifetime of the C≡N stretching mode is strongly affected both by its protein environment and by the degree of exposure to the solvent. Even for label positions where the line shape and wavenumber observed by FTIR are barely changing upon activation of the photoreceptor, we find that the lifetime can change considerably. To obtain an unambiguous measure for the solvent exposure of the labeled site, we show that it is imperative to compare the lifetimes in H2O and D2O. Importantly, the lifetimes shorten in H2O as compared to D2O for water exposed labels, while they stay largely the same for buried labels. We quantify this effect by defining a solvent exclusion coefficient (SEC). The response of the label's vibrational lifetime to its solvent exposure renders it a suitable universal probe for protein investigations. This applies even to systems that are otherwise hard to address, such as transient or short-lived states, which could be created during a protein's working cycle (as here in PYP) or during protein folding. It is also applicable to flexible systems (intrinsically disordered proteins), protein-protein and protein-membrane interactions.
Collapse
Affiliation(s)
- Julian M Schmidt-Engler
- Johann Wolfgang Goethe-University , Institute of Biophysics , Max-von-Laue-Straße 1 , 60438 Frankfurt am Main , Germany
| | - Larissa Blankenburg
- Johann Wolfgang Goethe-University , Institute of Biophysics , Max-von-Laue-Straße 1 , 60438 Frankfurt am Main , Germany
| | - Bartosz Błasiak
- Johann Wolfgang Goethe-University , Institute of Biophysics , Max-von-Laue-Straße 1 , 60438 Frankfurt am Main , Germany
| | - Luuk J G W van Wilderen
- Johann Wolfgang Goethe-University , Institute of Biophysics , Max-von-Laue-Straße 1 , 60438 Frankfurt am Main , Germany
| | - Minhaeng Cho
- Institute of Basic Science , Center of Molecular Spectroscopy and Dynamics , 145 Anam-ro , Seongbuk-gu , Seoul 02841 , Republic of Korea.,Korea University , Department of Chemistry , 145 Anam-ro , Seongbuk-gu , Seoul 02841 , Republic of Korea
| | - Jens Bredenbeck
- Johann Wolfgang Goethe-University , Institute of Biophysics , Max-von-Laue-Straße 1 , 60438 Frankfurt am Main , Germany
| |
Collapse
|
3
|
Blankenburg L, Schroeder L, Habenstein F, Błasiak B, Kottke T, Bredenbeck J. Following local light-induced structure changes and dynamics of the photoreceptor PYP with the thiocyanate IR label. Phys Chem Chem Phys 2019; 21:6622-6634. [PMID: 30855039 DOI: 10.1039/c8cp05399e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoactive Yellow Protein (PYP) is a bacterial blue light receptor that enters a photocycle after excitation. The intermediate states are formed on time scales ranging from femtoseconds up to hundreds of milliseconds, after which the signaling state with a lifetime of about 1 s is reached. To investigate structural changes and dynamics, we incorporated the SCN IR label at distinct positions of the photoreceptor via cysteine mutation and cyanylation. FT-IR measurements of the SCN label at different sites of the well-established dark state structure of PYP characterized the spectral response of the label to differences in the environment. Under constant blue light irradiation, we observed the formation of the signaling state with significant changes of wavenumber and lineshape of the SCN bands. Thereby we deduced light-induced structural changes in the local environment of the labels. These results were supported by molecular dynamics simulations on PYP providing the solvent accessible surface area (SASA) at the different positions. To follow protein dynamics via the SCN label during the photocycle, we performed step-scan FT-IR measurements with a time resolution of 10 μs. Global analysis yielded similar time constants of τ1 = 70 μs, τ2 = 640 μs, and τ3 > 20 ms for the wild type and τ1 = 36 μs, τ2 = 530 μs, and τ3 > 20 ms for the SCN-labeled mutant PYP-A44C*, a mutant which provided a sufficiently large SCN difference signal to measure step-scan FT-IR spectra. In comparison to the protein (amide, E46) and chromophore bands the dynamics of the SCN label show a different behavior. This result indicates that the local kinetics sensed by the label are different from the global protein kinetics.
Collapse
Affiliation(s)
- Larissa Blankenburg
- Johann Wolfgang Goethe-University, Institute of Biophysics, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
4
|
Yu P, Song L, Qin J, Wang J. Capturing the photo-signaling state of a photoreceptor in a steady-state fashion by binding a transition metal complex. Protein Sci 2017; 26:2249-2256. [PMID: 28856755 DOI: 10.1002/pro.3284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/26/2017] [Indexed: 11/08/2022]
Abstract
Binding a small molecule to proteins causes conformational changes, but often to a limited extent. Here, we demonstrate that the interaction of a CO-releasing molecule (CORM3) with a photoreceptor photoactive yellow protein (PYP) drives large structural changes in the latter. The interaction of CORM3 and a mutant of PYP, Met100Ala, not only trigger the isomerization of its chromophore, p-coumaric acid, from its anionic trans configuration to a protonated cis configuration, but also increases the content of β-sheet at the cost of α-helix and random coil in the secondary structure of the protein. The CORM3 derived Met100Ala is found to highly resemble the signaling state, which is one of the key photo-intermediates of this photoactive protein, in both protein local conformation and chromophore configuration. The organometallic reagents hold promise as protein engineering tools. This work highlights a novel approach to structurally accessing short lived intermediates of proteins in a steady-state fashion.
Collapse
Affiliation(s)
- Pengyun Yu
- Beijing National Laboratory for Molecular Sciences; Molecular Reaction Dynamics Laboratory; CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Lei Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, People's Republic of China
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, People's Republic of China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences; Molecular Reaction Dynamics Laboratory; CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
5
|
Mix LT, Hara M, Rathod R, Kumauchi M, Hoff WD, Larsen DS. Noncanonical Photocycle Initiation Dynamics of the Photoactive Yellow Protein (PYP) Domain of the PYP-Phytochrome-Related (Ppr) Photoreceptor. J Phys Chem Lett 2016; 7:5212-5218. [PMID: 27973895 DOI: 10.1021/acs.jpclett.6b02253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The photoactive yellow protein (PYP) from Halorhodospira halophila (Hhal) is a bacterial photoreceptor and model system for exploring functional protein dynamics. We report ultrafast spectroscopy experiments that probe photocycle initiation dynamics in the PYP domain from the multidomain PYP-phytochrome-related photoreceptor from Rhodospirillum centenum (Rcen). As with Hhal PYP, Rcen PYP exhibits similar excited-state dynamics; in contrast, Rcen PYP exhibits altered photoproduct ground-state dynamics in which the primary I0 intermediate as observed in Hhal PYP is absent. This property is attributed to a tighter, more sterically constrained binding pocket around the p-coumaric acid chromophore due to a change in the Rcen PYP protein structure that places Phe98 instead of Met100 in contact with the chromophore. Hence, the I0 state is not a necessary step for the initiation of productive PYP photocycles and the ubiquitously studied Hhal PYP may not be representative of the broader PYP family of photodynamics.
Collapse
Affiliation(s)
- L Tyler Mix
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Miwa Hara
- Department of Microbiology and Molecular Genetics, Oklahoma State University , Stillwater, Oklahoma 74078, United States
| | - Rachana Rathod
- Department of Microbiology and Molecular Genetics, Oklahoma State University , Stillwater, Oklahoma 74078, United States
| | - Masato Kumauchi
- Department of Microbiology and Molecular Genetics, Oklahoma State University , Stillwater, Oklahoma 74078, United States
| | - Wouter D Hoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University , Stillwater, Oklahoma 74078, United States
| | - Delmar S Larsen
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
6
|
Hamada N, Tan Z, Kanematsu Y, Inazumi N, Nakamura R. Influence of a chromophore analogue in the protein cage of a photoactive yellow protein. Photochem Photobiol Sci 2015; 14:1722-8. [PMID: 26178816 DOI: 10.1039/c5pp00176e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Time-resolved spectra of a photoactive yellow protein (PYP) containing cyano-p-coumaric acid (CHCA) were recorded. To understand the mechanism of photo-isomerization, an electron-withdrawing CN group was introduced into the PYP to alter the C[double bond, length as m-dash]C double bond character. Free CHCA chromophores in aqueous solution underwent photo-isomerization whereas PYP with a bound CHCA (PYP-CN) exhibited no photocycle at acidic or alkaline pH or in urea and other solutions. Furthermore, no photocycle was observed with PYP mutants after illumination. This phenomenon cannot be fully explained by the electron-withdrawing properties of the CN group. We conclude that the CHCA chromophore in PYP was locked in the protein cage and that the CN group interacted with the protein residues.
Collapse
Affiliation(s)
- Norio Hamada
- Science & Technology Entrepreneurship Laboratory (e-square), Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan.
| | | | | | | | | |
Collapse
|
7
|
Kumar A, Woolley GA. Origins of the Intermediate Spectral Form in M100 Mutants of Photoactive Yellow Protein. Photochem Photobiol 2015; 91:985-91. [PMID: 25946641 DOI: 10.1111/php.12464] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/26/2015] [Indexed: 12/11/2022]
Abstract
Numerous single-site mutants of photoactive yellow protein (PYP) from Halorhodospira halophila and as well as PYP homologs from other species exhibit a shoulder on the short wavelength side of the absorbance maximum in their dark-adapted states. The structural basis for the occurrence of this shoulder, called the "intermediate spectral form," has only been investigated in detail for the Y42F mutation. Here we explore the structural basis for occurrence of the intermediate spectral form in a M121E derivative of a circularly permuted H. halophila PYP (M121E-cPYP). The M121 site in M121E-cPYP corresponds to the M100 site in wild-type H. halophila PYP. High-resolution NMR measurements with a salt-tolerant cryoprobe enabled identification of those residues directly affected by increasing concentrations of ammonium chloride, a salt that greatly enhances the fraction of the intermediate spectra form. Residues in the surface loop containing the M121E (M100E) mutation were found to be affected by ammonium chloride as well as a discrete set of residues that link this surface loop to the buried hydroxyl group of the chromophore via a hydrogen bond network. Localized changes in the conformational dynamics of a surface loop can thereby produce structural rearrangements near the buried hydroxyl group chromophore while leaving the large majority of residues in the protein unaffected.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
8
|
Vachon J, Carroll GT, Pollard MM, Mes EM, Brouwer AM, Feringa BL. An ultrafast surface-bound photo-active molecular motor. Photochem Photobiol Sci 2014; 13:241-6. [DOI: 10.1039/c3pp50208b] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Kumar A, Burns DC, Al-Abdul-Wahid MS, Woolley GA. A circularly permuted photoactive yellow protein as a scaffold for photoswitch design. Biochemistry 2013; 52:3320-31. [PMID: 23570450 DOI: 10.1021/bi400018h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Upon blue light irradiation, photoactive yellow protein (PYP) undergoes a conformational change that involves large movements at the N-terminus of the protein. We reasoned that this conformational change might be used to control other protein or peptide sequences if these were introduced as linkers connecting the N- and C-termini of PYP in a circular permutant. For such a design strategy to succeed, the circularly permuted PYP (cPYP) would have to fold normally and undergo a photocycle similar to that of the wild-type protein. We created a test cPYP by connecting the N- and C-termini of wild-type PYP (wtPYP) with a GGSGGSGG linker polypeptide and introducing new N- and C-termini at G115 and S114, respectively. Biophysical analysis indicated that this cPYP adopts a dark-state conformation much like wtPYP and undergoes wtPYP-like photoisomerization driven by blue light. However, thermal recovery of dark-state cPYP is ∼10-fold faster than that of wtPYP, so that very bright light is required to significantly populate the light state. Targeted mutations at M121E (M100 in wtPYP numbering) were found to enhance the light sensitivity substantially by lengthening the lifetime of the light state to ∼10 min. Nuclear magnetic resonance (NMR), circular dichroism, and UV-vis analysis indicated that the M121E-cPYP mutant also adopts a dark-state structure like that of wtPYP, although protonated and deprotonated forms of the chromophore coexist, giving rise to a shoulder near 380 nm in the UV-vis absorption spectrum. Fluorine NMR studies with fluorotryptophan-labeled M121E-cPYP show that blue light drives large changes in conformational dynamics and leads to solvent exposure of Trp7 (Trp119 in wtPYP numbering), consistent with substantial rearrangement of the N-terminal cap structure. M121E-cPYP thus provides a scaffold that may allow a wider range of photoswitchable protein designs via replacement of the linker polypeptide with a target protein or peptide sequence.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | | | | | | |
Collapse
|
10
|
Hellingwerf KJ, Hendriks J, Gensch T. On the Configurational and Conformational Changes in Photoactive Yellow Protein that Leads to Signal Generation in Ectothiorhodospira halophila. J Biol Phys 2013; 28:395-412. [PMID: 23345784 DOI: 10.1023/a:1020360505111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Photoactive Yellow Protein (PYP), a phototaxis photoreceptor from Ectothiorhodospira halophila, is a small water-soluble protein that iscrystallisable and excellently photo-stable. It can be activated with light(λ(max)= 446 nm), to enter a series of transientintermediates that jointly form the photocycle of this photosensor protein.The most stable of these transient states is the signalling state forphototaxis, pB.The spatial structure of the ground state of PYP, pG and the spectralproperties of the photocycle intermediates have been very well resolved.Owing to its excellent chemical- and photochemical stability, also the spatialstructure of its photocycle intermediates has been characterised with X-raydiffraction and multinuclear NMR spectroscopy. Surprisingly, the resultsobtained showed that their structure is dependent on the molecular contextin which they are formed. Therefore, a large range of diffraction-,scattering- and spectroscopic techniques is now being employed to resolvein detail the dynamical changes of the structure of PYP while it progressesthrough its photocycle. This approach has led to considerable progress,although some techniques still result in mutually inconsistent conclusionsregarding aspects of the structure of particular intermediates.Recently, significant progress has also been made with simulations withmolecular dynamics analyses of the initial events that occur in PYP uponphoto activation. The great challenge in this field is to eventually obtainagreement between predicted dynamical alterations in PYP structure, asobtained with the MD approach and the actually measured dynamicalchanges in its structure as evolving during photocycle progression.
Collapse
|
11
|
Hospes M, Ippel JH, Boelens R, Hellingwerf KJ, Hendriks J. Binding of Hydrogen-Citrate to Photoactive Yellow Protein Is Affected by the Structural Changes Related to Signaling State Formation. J Phys Chem B 2012; 116:13172-82. [DOI: 10.1021/jp306891s] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marijke Hospes
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences and Netherlands Institute for Systems Biology, Amsterdam, The Netherlands
| | - Johannes H. Ippel
- Bijvoet Center for Biomolecular
Research, Science Faculty, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Rolf Boelens
- Bijvoet Center for Biomolecular
Research, Science Faculty, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Klaas J. Hellingwerf
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences and Netherlands Institute for Systems Biology, Amsterdam, The Netherlands
| | - Johnny Hendriks
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences and Netherlands Institute for Systems Biology, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Kyndt JA, Meyer TE, Olson KT, Van Beeumen J, Cusanovich MA. Photokinetic, biochemical and structural features of chimeric photoactive yellow protein constructs. Photochem Photobiol 2012; 89:349-60. [PMID: 22958002 DOI: 10.1111/j.1751-1097.2012.01235.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/29/2012] [Indexed: 11/28/2022]
Abstract
Of the 10 photoactive yellow protein (PYPs) that have been characterized, the two from Rhodobacter species are the only ones that have an additional intermediate spectral form in the resting state (λmax = 375 nm), compared to the prototypical Halorhodospira halophila PYP. We have constructed three chimeric PYP proteins by replacing the first 21 residues from the N-terminus (Hyb1PYP), 10 from the β4-β5 loop (Hyb2PYP) and both (Hyb3PYP) in Hhal PYP with those from Rb. capsulatus PYP. The N-terminal chimera behaves both spectrally and kinetically like Hhal PYP, indicating that the Rcaps N-terminus folds against the core of Hhal PYP. A small fraction shows dimerization and slower recovery, possibly due to interaction at the N-termini. The loop chimera has a small amount of the intermediate spectral form and a photocycle that is 20 000 times slower than Hhal PYP. The third chimera, with both regions exchanged, resembles Rcaps PYP with a significant amount of intermediate spectral form (λmax = 380 nm), but has even slower kinetics. The effects are not strictly additive in the double chimera, suggesting that what perturbs one site, affects the other as well. These chimeras suggest that the intermediate spectral form has its origins in overall protein stability and solvent exposure.
Collapse
Affiliation(s)
- John A Kyndt
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA.
| | | | | | | | | |
Collapse
|
13
|
Meyer TE, Kyndt JA, Memmi S, Moser T, Colón-Acevedo B, Devreese B, Van Beeumen JJ. The growing family of photoactive yellow proteins and their presumed functional roles. Photochem Photobiol Sci 2012; 11:1495-514. [DOI: 10.1039/c2pp25090j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Kumauchi M, Kaledhonkar S, Philip AF, Wycoff J, Hara M, Li Y, Xie A, Hoff WD. A conserved helical capping hydrogen bond in PAS domains controls signaling kinetics in the superfamily prototype photoactive yellow protein. J Am Chem Soc 2011; 132:15820-30. [PMID: 20954744 DOI: 10.1021/ja107716r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PAS domains form a divergent protein superfamily with more than 20 000 members that perform a wide array of sensing and regulatory functions in all three domains of life. Only nine residues are well-conserved in PAS domains, with an Asn residue at the start of α-helix 3 showing the strongest conservation. The molecular functions of these nine conserved residues are unknown. We use static and time-resolved visible and FTIR spectroscopy to investigate receptor activation in the photosensor photoactive yellow protein (PYP), a PAS domain prototype. The N43A and N43S mutants allow an investigation of the role of side-chain hydrogen bonding at this conserved position. The mutants exhibit a blue-shifted visible absorbance maximum and up-shifted chromophore pK(a). Disruption of the hydrogen bonds in N43A PYP causes both a reduction in protein stability and a 3400-fold increase in the lifetime of the signaling state of this photoreceptor. A significant part of this increase in lifetime can be attributed to the helical capping interaction of Asn43. This extends the known importance of helical capping for protein structure to regulating functional protein kinetics. A model for PYP activation has been proposed in which side-chain hydrogen bonding of Asn43 is critical for relaying light-induced conformational changes. However, FTIR spectroscopy shows that both Asn43 mutants retain full allosteric transmission of structural changes. Analysis of 30 available high-resolution structures of PAS domains reveals that the side-chain hydrogen bonding of residue 43 but not residue identity is highly conserved and suggests that its helical cap affects signaling kinetics in other PAS domains.
Collapse
Affiliation(s)
- Masato Kumauchi
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Carroll EC, Song SH, Kumauchi M, van Stokkum IHM, Jailaubekov A, Hoff WD, Larsen DS. Subpicosecond Excited-State Proton Transfer Preceding Isomerization During the Photorecovery of Photoactive Yellow Protein. J Phys Chem Lett 2010; 1:2793-2799. [PMID: 20953237 PMCID: PMC2955422 DOI: 10.1021/jz101049v] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The ultrafast excited-state dynamics underlying the receptor state photorecovery is resolved in the M100A mutant of the photoactive yellow protein (PYP) from Halorhodospira halophila. The M100A PYP mutant, with its distinctly slower photocycle than wt PYP, allows isolation of the pB signaling state for study of the photodynamics of the protonated chromophore cis-p-coumaric acid. Transient absorption signals indicate a subpicosecond excited-state proton-transfer reaction in the pB state that results in chromophore deprotonation prior to the cis-trans isomerization required in the photorecovery dynamics of the pG state. Two terminal photoproducts are observed, a blue-absorbing species presumed to be deprotonated trans-p-coumaric acid and an ultraviolet-absorbing protonated photoproduct. These two photoproducts are hypothesized to originate from an equilibrium of open and closed folded forms of the signaling state, I(2) and I(2)'.
Collapse
Affiliation(s)
- Elizabeth C. Carroll
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616
| | - Sang-Hun Song
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616
| | - Masato Kumauchi
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Ivo H. M. van Stokkum
- Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Askat Jailaubekov
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616
| | - Wouter D. Hoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Delmar S. Larsen
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616
| |
Collapse
|
16
|
Klok M, Boyle N, Pryce MT, Meetsma A, Browne WR, Feringa BL. MHz unidirectional rotation of molecular rotary motors. J Am Chem Soc 2008; 130:10484-5. [PMID: 18636709 DOI: 10.1021/ja8037245] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A combination of cryogenic UV-vis and CD spectroscopy and transient absorption spectroscopy at ambient temperature is used to study a new class of unidirectional rotary molecular motors. Stabilization of unstable intermediates is achieved below 95 K in propane solution for the structure with the fastest rotation rate, and below this temperature measurements on the rate limiting step in the rotation cycle can be performed to obtain activation parameters. The results are compared to measurements at ambient temperature using transient absorption spectroscopy, which show that behavior of these motors is similar over the full temperature range investigated, thereby allowing a maximum rotation rate of 3 MHz at room temperature under suitable irradiation conditions.
Collapse
Affiliation(s)
- Martin Klok
- Laboratory for Organic Chemistry, Stratingh Institute for Chemistry, Faculty of Mathematics and Natural Sciences, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
17
|
Harigai M, Kataoka M, Imamoto Y. Interaction Between N-terminal Loop and-Scaffold of Photoactive Yellow Protein,. Photochem Photobiol 2008; 84:1031-7. [DOI: 10.1111/j.1751-1097.2008.00375.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Kumauchi M, Hara MT, Stalcup P, Xie A, Hoff WD. Identification of Six New Photoactive Yellow ProteinsDiversity and StructureFunction Relationships in a Bacterial Blue Light Photoreceptor. Photochem Photobiol 2008; 84:956-69. [DOI: 10.1111/j.1751-1097.2008.00335.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Imamoto Y, Harigai M, Morimoto T, Kataoka M. Low-temperature Spectroscopy of Met100Ala Mutant of Photoactive Yellow Protein. Photochem Photobiol 2008; 84:970-6. [DOI: 10.1111/j.1751-1097.2008.00336.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Abstract
Pharaonis phoborhodopsin (ppR, also called pharaonis sensory rhodopsin II) is a seven transmembrane helical retinal protein. ppR forms a signaling complex with pharaonis Halobacterial transducer II (pHtrII) in the membrane that transmits a light signal to the sensory system in the cytoplasm. The M-state during the photocycle of ppR (lambda(max) = 386 nm) is one of the active (signaling) intermediates. However, progress in characterizing the M-state at physiological temperature has been slow because its lifetime is very short (decay half-time is approximately 1 s). In this study, we identify a highly stable photoproduct that can be trapped at room temperature in buffer solution containing n-octyl-beta-d-glucoside, with a decay half-time and an absorption maximum of approximately 2 h and 386 nm, respectively. HPLC analysis revealed that this stable photoproduct contains 13-cis-retinal as a chromophore. Previously, we reported that water-soluble hydroxylamine reacts selectively with the M-state, and we found that this stable photoproduct also reacts selectively with that reagent. These results suggest that the physical properties of the stable photoproduct (named the M-like state) are very similar with the M-state during the photocycle. By utilizing the high stability of the M-like state, we analyzed interactions of the M-like state and directly estimated the pK(a) value of the Schiff base in the M-like state. These results suggest that the dissociation constant of the ppR(M-like)/pHtrII complex greatly increases (to 5 muM) as the pK(a) value greatly decreases (from 12 to 1.5). The proton transfer reaction of ppR from the cytoplasmic to the extracellular side is proposed to be caused by this change in pK(a).
Collapse
|
21
|
Abstract
The role of glycine residues was studied by alanine-scanning mutagenesis using photoactive yellow protein, a structural prototype of PER ARNT SIM domain proteins, as a template. Mutation of glycine located close to the end of beta-strands with dihedral angles disallowed for alanine (Gly-37, Gly-59, Gly-86, and Gly-115) induces destabilization of the protein structure. On the other hand, substitution for Gly-77 and Gly-82, incorporated into the fifth alpha-helix, slows the photocycle by 15-20 times, suggesting that these residues regulate the light-induced structural switch between dark-state structure and signaling-state structure. Most importantly, a significant amount of G29A is in the bleached state and showed a 1000-fold slower photocycle. As O(epsilon2) of the carboxylic acid of Glu-46 is close enough for contact with C(alpha) of Gly-29, alanine mutation perturbs this packing. Fourier transform infrared spectroscopy demonstrated that the C=O(epsilon2) stretching mode of Glu-46 is 6 cm(-1) upshifted in G29A, suggesting that C(alpha) of Gly-29 acts as a proton donor for the C(alpha)-H...O(epsilon2) hydrogen bond with Glu-46, which stabilizes the dark-state structure. During the photocycle, Glu-46 becomes negatively charged by donating a proton to the chromophore, resulting in breakage of this hydrophobic packing and consequent conformational change of the protein.
Collapse
|
22
|
Imamoto Y, Kataoka M. Structure and photoreaction of photoactive yellow protein, a structural prototype of the PAS domain superfamily. Photochem Photobiol 2007; 83:40-9. [PMID: 16939366 DOI: 10.1562/2006-02-28-ir-827] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Photoactive yellow protein (PYP) is a water-soluble photosensor protein found in purple photosynthetic bacteria. Unlike bacterial rhodopsins, photosensor proteins composed of seven transmembrane helices and a retinal chromophore in halophilic archaebacteria, PYP is a highly soluble globular protein. The alpha/beta fold structure of PYP is a structural prototype of the PAS domain superfamily, many members of which function as sensors for various kinds of stimuli. To absorb a photon in the visible region, PYP has a p-coumaric acid chromophore binding to the cysteine residue via a thioester bond. It exists in a deprotonated trans form in the dark. The primary photochemical event is photo-isomerization of the chromophore from trans to cis form. The twisted cis chromophore in early intermediates is relaxed and finally protonated. Consequently, the chromophore becomes electrostatically neutral and rearrangement of the hydrogen-bonding network triggers overall structural change of the protein moiety, in which local conformational change around the chromophore is propagated to the N-terminal region. Thus, it is an ideal model for protein conformational changes that result in functional change, responding to stimuli and expressing physiological activity. In this paper, recent progress in investigation of the photoresponse of PYP is reviewed.
Collapse
Affiliation(s)
- Yasushi Imamoto
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan.
| | | |
Collapse
|
23
|
Borucki B, Otto H, Meyer TE, Cusanovich MA, Heyn MP. Sensitive circular dichroism marker for the chromophore environment of photoactive yellow protein: assignment of the 307 and 318 nm bands to the n --> pi* transition of the carbonyl. J Phys Chem B 2007; 109:629-33. [PMID: 16851055 DOI: 10.1021/jp046515k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The absorption and CD spectra of wild-type PYP, apo-PYP, and the mutants, E46Q and M100A, were measured between 250 and 550 nm. At neutral pH, the two very weak absorption bands of wild-type PYP at 307 and 318 nm (epsilon(max) = 600 +/- 100 M(-1) cm(-1) at 318 nm) are associated with quite strong positive CD bands (Deltaepsilon(max) approximately 6.8 M(-1) cm(-1)). Both sets of bands are absent in the apoprotein. On the basis of this evidence, we assign these optical signals to the n --> pi* transition of the oxygen of the carbonyl group of the 4-hydroxycinnamic acid chromophore, which is expected to be electric dipole forbidden but magnetic dipole allowed. The progression of narrow bands at 307 and 318 nm with a shoulder in the CD around 329 nm is due to vibrational fine structure with a frequency of about 1050 +/- 50 cm(-1). This is the carbonyl stretch frequency in the electronically excited state and is well-known from the vibrational structure in the CD spectra of carbonyl compounds. The positive sign of the CD in the near UV is in accordance with the octant rule and the high-resolution X-ray structure, if we assume that the NH group of cysteine 69 to which the carbonyl is hydrogen bonded is the principle perturbant. Similar absorption and CD spectra were observed in the range of 300-340 nm for the mutants E46Q and M100A at neutral pH. Protonation of the trans chromophore by lowering the pH in the dark (without photoisomerization) broadens the 307 and 318 nm CD bands in the mutant E46Q but does not significantly affect their positions or alter their sign. For the long-lived I(2) photointermediate of the mutant M100A with protonated cis chromophore, we observed that the sign of the rotational strength in the 310-320 nm range is negative (i.e., opposite to that in the dark state with trans chromophore). This suggests that the light-induced isomerization of the chromophore, which leads to breaking of the hydrogen bond with the backbone amide of C69, brings the carbonyl into a new protein environment with different asymmetry than in the unbleached protein. The observed change in sign is mainly due to this effect, but a change in chromophore twist may also contribute. Thus, the 318 nm CD signal is a sensitive marker for the environment of the chromophore carbonyl, which samples various environments and configurations during the photocycle.
Collapse
Affiliation(s)
- Berthold Borucki
- Biophysics Group, Physics Department, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
24
|
Morishita T, Harigai M, Yamazaki Y, Kamikubo H, Kataoka M, Imamoto Y. Array of Aromatic Amino Acid Side Chains Located Near the Chromophore of Photoactive Yellow Protein†. Photochem Photobiol 2007; 83:280-5. [PMID: 16879039 DOI: 10.1562/2006-06-15-ra-929] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of the array of aromatic amino acid side chains located close to the chromophore binding loop of photoactive yellow protein (PYP) was studied using the alanine-substitution mutagenesis. Phe92, Tyr94, Phe96 and Tyr98 were replaced with alanine (F92A, Y94A, F96A and Y98A, respectively), then these mutants were characterized by UV-visible absorption spectra, circular dichroism (CD) spectra, thermal stability and photocycle kinetics. Absorption maxima of F92A, Y94A, F96A and Y98A were 444, 442, 439 and 447 nm, respectively, different to wild type (WT) at 446 nm. Far-UV CD spectra of mutants other than F92A were different from WT, indicating that Tyr94, Phe96 and Tyr98 maintain the native secondary structure of PYP. Mid-point temperatures of thermal denaturation of F92A, Y94A and F96A, estimated by the CD signal at 222 nm, were 5-10 degrees C lower than WT. Time constants of the photocycle estimated by flash-induced absorbance change were 0.36 s for WT and 1.4 s for Y98A, however, 100, 30 and 3000 times slower than WT for F92A, Y94A and F96A, respectively. Tyr98 is located in the loop region, whereas Phe92, Tyr94 and Phe96 are incorporated in the beta4 strand, showing that aromatic amino acid residues in the beta-sheet regulate the absorption spectrum, thermal stability and photocycle of PYP. Aromatic rings of Phe92, Tyr94 and Phe96 lie nearly perpendicular to the aromatic ring of Phe75 or chromophore. Possible weak hydrogen bonds between the aromatic ring hydrogen and pi-electrons of these residues are discussed.
Collapse
Affiliation(s)
- Tomokazu Morishita
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Bernard C, Houben K, Derix NM, Marks D, van der Horst MA, Hellingwerf KJ, Boelens R, Kaptein R, van Nuland NAJ. The solution structure of a transient photoreceptor intermediate: Delta25 photoactive yellow protein. Structure 2005; 13:953-62. [PMID: 16004868 DOI: 10.1016/j.str.2005.04.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Revised: 04/23/2005] [Accepted: 04/23/2005] [Indexed: 11/18/2022]
Abstract
The N-terminally truncated variant of photoactive yellow protein (Delta25-PYP) undergoes a very similar photocycle as the corresponding wild-type protein (WT-PYP), although the lifetime of its light-illuminated (pB) state is much longer. This has allowed determination of the structure of both its dark- (pG) as well as its pB-state in solution by nuclear magnetic resonance (NMR) spectroscopy. The pG structure shows a well-defined fold, similar to WT-PYP and the X-ray structure of the pG state of Delta25-PYP. In the long-lived photocycle intermediate pB, the central beta sheet is still intact, as well as a small part of one alpha helix. The remainder of pB is unfolded and highly flexible, as evidenced by results from proton-deuterium exchange and NMR relaxation studies. Thus, the partially unfolded nature of the presumed signaling state of PYP in solution, as suggested previously, has now been structurally demonstrated.
Collapse
Affiliation(s)
- Cédric Bernard
- Department of NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Premvardhan L, van der Horst MA, Hellingwerf KJ, van Grondelle R. How light-induced charge transfer accelerates the receptor-state recovery of photoactive yellow protein from its signaling state. Biophys J 2005; 89:L64-6. [PMID: 16258045 PMCID: PMC1367008 DOI: 10.1529/biophysj.105.075275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stark (electroabsorption) spectra of the M100A mutant of photoactive yellow protein reveal that the neutral, cis cofactor of the pB intermediate undergoes a strikingly large change in the static dipole moment (|Deltamu| = 19 Debye) on photon absorption. The formation of this charge-separated species, in the excited state, precedes the cis --> trans isomerization of the pB cofactor and the regeneration of pG. The large |Deltamu|, reminiscent of that produced on the excitation of pG, we propose, induces twisting of the cis cofactor as a result of translocation of negative charge, from the hydroxyl oxygen, O1, toward the C7-C8 double bond. The biological significance of this photoinduced charge transfer reaction underlies the significantly faster regeneration of pG from pB in vitro, on the absorption of blue light.
Collapse
Affiliation(s)
- L Premvardhan
- Department of Biophysics and Physics of Complex Systems, Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
27
|
Larsen DS, van Stokkum IHM, Vengris M, van Der Horst MA, de Weerd FL, Hellingwerf KJ, van Grondelle R. Incoherent manipulation of the photoactive yellow protein photocycle with dispersed pump-dump-probe spectroscopy. Biophys J 2005; 87:1858-72. [PMID: 15345564 PMCID: PMC1304590 DOI: 10.1529/biophysj.104.043794] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photoactive yellow protein is the protein responsible for initiating the "blue-light vision" of Halorhodospira halophila. The dynamical processes responsible for triggering the photoactive yellow protein photocycle have been disentangled with the use of a novel application of dispersed ultrafast pump-dump-probe spectroscopy, where the photocycle can be started and interrupted with appropriately tuned and timed laser pulses. This "incoherent" manipulation of the photocycle allows for the detailed spectroscopic investigation of the underlying photocycle dynamics and the construction of a fully self-consistent dynamical model. This model requires three kinetically distinct excited-state intermediates, two (ground-state) photocycle intermediates, I(0) and pR, and a ground-state intermediate through which the protein, after unsuccessful attempts at initiating the photocycle, returns to the equilibrium ground state. Also observed is a previously unknown two-photon ionization channel that generates a radical and an ejected electron into the protein environment. This second excitation pathway evolves simultaneously with the pathway containing the one-photon photocycle intermediates.
Collapse
Affiliation(s)
- Delmar S Larsen
- Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
28
|
Kort R, Hellingwerf KJ, Ravelli RBG. Initial events in the photocycle of photoactive yellow protein. J Biol Chem 2004; 279:26417-24. [PMID: 15026418 DOI: 10.1074/jbc.m311961200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The light-induced isomerization of a double bond is the key event that allows the conversion of light energy into a structural change in photoactive proteins for many light-mediated biological processes, such as vision, photosynthesis, photomorphogenesis, and photo movement. Cofactors such as retinals, linear tetrapyrroles, and 4-hydroxy-cinnamic acid have been selected by nature that provide the essential double bond to transduce the light signal into a conformational change and eventually, a physiological response. Here we report the first events after light excitation of the latter chromophore, containing a single ethylene double bond, in a low temperature crystallographic study of the photoactive yellow protein. We measured experimental phases to overcome possible model bias, corrected for minimized radiation damage, and measured absorption spectra of crystals to analyze the photoproducts formed. The data show a mechanism for the light activation of photoactive yellow protein, where the energy to drive the remainder of the conformational changes is stored in a slightly strained but fully cis-chromophore configuration. In addition, our data indicate a role for backbone rearrangements during the very early structural events.
Collapse
Affiliation(s)
- Remco Kort
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands.
| | | | | |
Collapse
|
29
|
Haker A, Hendriks J, van Stokkum IHM, Heberle J, Hellingwerf KJ, Crielaard W, Gensch T. The two photocycles of photoactive yellow protein from Rhodobacter sphaeroides. J Biol Chem 2003; 278:8442-51. [PMID: 12496261 DOI: 10.1074/jbc.m209343200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The absorption spectrum of the photoactive yellow protein from Rhodobacter sphaeroides (R-PYP) shows two maxima, absorbing at 360 nm (R-PYP(360)) and 446 nm (R-PYP(446)), respectively. Both forms are photoactive and part of a temperature- and pH-dependent equilibrium (Haker, A., Hendriks, J., Gensch, T., Hellingwerf, K. J., and Crielaard, W. (2000) FEBS Lett. 486, 52-56). At 20 degrees C, for PYP characteristic, the 446-nm absorbance band displays a photocycle, in which the depletion of the 446-nm ground state absorption occurs in at least three phases, with time constants of <30 ns, 0.5 micros, and 17 micros. Intermediates with both blue- and red-shifted absorption maxima are transiently formed, before a blue-shifted intermediate (pB(360), lambda(max) = 360 nm) is established. The photocycle is completed with a monophasic recovery of the ground state with a time constant of 2.5 ms. At 7 degrees C these photocycle transitions are slowed down 2- to 3-fold. Upon excitation of R-PYP(360) with a UV-flash (330 +/- 50 nm) a species with a difference absorption maximum at approximately 435 nm is observed that returns to R-PYP(360) on a minute time scale. Recovery can be accelerated by a blue light flash (450 nm). R-PYP(360) and R-PYP(446) differ in their overall protein conformation, as well as in the isomerization and protonation state of the chromophore, as determined with the fluorescent polarity probe Nile Red and Fourier Transform Infrared spectroscopy, respectively.
Collapse
Affiliation(s)
- Andrea Haker
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences, BioCentrum, University of Amsterdam, Nieuwe Achtergracht 166, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
30
|
Ng WO, Grossman AR, Bhaya D. Multiple light inputs control phototaxis in Synechocystis sp. strain PCC6803. J Bacteriol 2003; 185:1599-607. [PMID: 12591877 PMCID: PMC148062 DOI: 10.1128/jb.185.5.1599-1607.2003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phototactic behavior of individual cells of the cyanobacterium Synechocystis sp. strain PCC6803 was studied with a glass slide-based phototaxis assay. Data from fluence rate-response curves and action spectra suggested that there were at least two light input pathways regulating phototaxis. We observed that positive phototaxis in wild-type cells was a low fluence response, with peak spectral sensitivity at 645 and 704 nm. This red-light-induced phototaxis was inhibited or photoreversible by infrared light (760 nm). Previous work demonstrated that a taxD1 mutant (Cyanobase accession no. sll0041; also called pisJ1) lacked positive but maintained negative phototaxis. Therefore, the TaxD1 protein, which has domains that are similar to sequences found in both bacteriophytochrome and the methyl-accepting chemoreceptor protein, is likely to be the photoreceptor that mediates positive phototaxis. Wild-type cells exhibited negative phototaxis under high-intensity broad-spectrum light. This phenomenon is predominantly blue light responsive, with a maximum sensitivity at approximately 470 nm. A weakly negative phototactic response was also observed in the spectral region between 600 and 700 nm. A deltataxD1 mutant, which exhibits negative phototaxis even under low-fluence light, has a similar action maximum in the blue region of the spectrum, with minor peaks from green to infrared (500 to 740 nm). These results suggest that while positive phototaxis is controlled by the red light photoreceptor TaxD1, negative phototaxis in Synechocystis sp. strain PCC6803 is mediated by one or more (as yet) unidentified blue light photoreceptors.
Collapse
Affiliation(s)
- Wing-On Ng
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, California 94305, USA.
| | | | | |
Collapse
|
31
|
Rajagopal S, Moffat K. Crystal structure of a photoactive yellow protein from a sensor histidine kinase: conformational variability and signal transduction. Proc Natl Acad Sci U S A 2003; 100:1649-54. [PMID: 12563032 PMCID: PMC149887 DOI: 10.1073/pnas.0336353100] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2002] [Indexed: 11/18/2022] Open
Abstract
Photoactive yellow protein (E-PYP) is a blue light photoreceptor, implicated in a negative phototactic response in Ectothiorhodospira halophila, that also serves as a model for the Per-Arnt-Sim superfamily of signaling molecules. Because no biological signaling partner for E-PYP has been identified, it has not been possible to correlate any of its photocycle intermediates with a relevant signaling state. However, the PYP domain (Ppr-PYP) from the sensor histidine kinase Ppr in Rhodospirillum centenum, which regulates the catalytic activity of Ppr by blue light absorption, may allow such issues to be addressed. Here we report the crystal structure of Ppr-PYP at 2 A resolution. This domain has the same absorption spectrum and similar photocycle kinetics as full length Ppr, but a blue-shifted absorbance and considerably slower photocycle than E-PYP. Although the overall fold of Ppr-PYP resembles that of E-PYP, a novel conformation of the beta 4-beta 5 loop results in inaccessibility of Met-100, thought to catalyze chromophore reisomerization, to the chromophore. This conformation also exposes a highly conserved molecular surface that could interact with downstream signaling partners. Other structural differences in the alpha 3-alpha 4 and beta 4-beta 5 loops are consistent with these regions playing significant roles in the control of photocycle dynamics and, by comparison to other sensory Per-Arnt-Sim domains, in signal transduction. Because of its direct linkage to a measurable biological output, Ppr-PYP serves as an excellent system for understanding how changes in photocycle dynamics affect signaling by PYPs.
Collapse
Affiliation(s)
- Sudarshan Rajagopal
- Department of Biochemistry and Molecular Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | |
Collapse
|
32
|
Hellingwerf KJ, Hendriks J, Gensch T. Photoactive Yellow Protein, A New Type of Photoreceptor Protein: Will This “Yellow Lab” Bring Us Where We Want to Go? J Phys Chem A 2003. [DOI: 10.1021/jp027005y] [Citation(s) in RCA: 248] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Klaas J. Hellingwerf
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences (SILS), BioCentrum, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands, and Institute of Biological Information Processing 1, Research Centre Jülich, D-52425 Jülich, Germany
| | - Johnny Hendriks
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences (SILS), BioCentrum, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands, and Institute of Biological Information Processing 1, Research Centre Jülich, D-52425 Jülich, Germany
| | - Thomas Gensch
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences (SILS), BioCentrum, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands, and Institute of Biological Information Processing 1, Research Centre Jülich, D-52425 Jülich, Germany
| |
Collapse
|
33
|
Lee BC, Croonquist PA, Hoff WD. Mimic of photocycle by a protein folding reaction in photoactive yellow protein. J Biol Chem 2001; 276:44481-7. [PMID: 11577076 DOI: 10.1074/jbc.m104362200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The blue light receptor photoactive yellow protein (PYP) displays rhodopsin-like photochemistry based on the trans to cis photoisomerization of its p-coumaric acid chromophore. Here, we report that protein refolding from the acid-denatured state of PYP mimics the last photocycle transition in PYP. This implies a direct link between transient protein unfolding and photosensory signal transduction. We utilize this link to study general issues in protein folding. Chromophore trans to cis photoisomerization in the acid-denatured state strongly decelerates refolding, and converts the pH dependence of the barrier for refolding from linear to nonlinear. We propose transition state movement to explain this phenomenon. The cis chromophore significantly stabilizes the acid-denatured state, but acidification of PYP results in the accumulation of the acid-denatured state containing a trans chromophore. This provides a clear example of kinetic control in a protein unfolding reaction. These results demonstrate the power of PYP as a light-triggered model system to study protein folding.
Collapse
Affiliation(s)
- B C Lee
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
34
|
Devanathan S, Lin S, Cusanovich MA, Woodbury N, Tollin G. Early photocycle kinetic behavior of the E46A and Y42F mutants of photoactive yellow protein: femtosecond spectroscopy. Biophys J 2001; 81:2314-9. [PMID: 11566800 PMCID: PMC1301701 DOI: 10.1016/s0006-3495(01)75877-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In the photoactive yellow protein, PYP, both Glu46 and Tyr42 form hydrogen bonds to the phenolic OH group of the p-hydroxycinnamoyl chromophore. Previous work on replacement of the carboxyl group of Glu46 by an amide group (Glu46Gln) has shown that changing the nature of this hydrogen bond has a minimal effect on the rate constant for the formation of the first intermediate (I(0)) and on the excited state lifetime, whereas the rate constants for the formation of the second (I(0)( not equal)) and third (I(1)) intermediates were increased by factors of approximately 30 and 5, respectively. In the present experiments, two additional mutants (Glu46Ala and Tyr42Phe) have been studied. These two mutants are shown to behave kinetically very similarly to one another. In both cases, the rate constant for I(0) formation is decreased by a factor of approximately 2, with little or no effect on the photochemical yield as a consequence of a compensating increase in the excited state lifetime. Although we are unable to resolve the rate constant for the formation of the second intermediate from that of the first intermediate, the rate constant for the formation of the third intermediate is increased by a factor of approximately 100. The structural implications of these results are discussed.
Collapse
Affiliation(s)
- S Devanathan
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | |
Collapse
|
35
|
Changenet-Barret P, Plaza P, Martin MM. Primary events in the photoactive yellow protein chromophore in solution. Chem Phys Lett 2001. [DOI: 10.1016/s0009-2614(01)00137-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Metzler DE, Metzler CM, Sauke DJ. Light and Life. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Haker A, Hendriks J, Gensch T, Hellingwerf K, Crielaard W. Isolation, reconstitution and functional characterisation of the Rhodobacter sphaeroides photoactive yellow protein. FEBS Lett 2000; 486:52-6. [PMID: 11108842 DOI: 10.1016/s0014-5793(00)02242-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We report the isolation, functional reconstitution and photophysical characterisation of Rhodobacter sphaeroides photoactive yellow protein (PYP), of which the gene was recently cloned. Reconstitution of the his-tagged purified apo-protein with 4-hydroxy-cinnamic acid yields the characteristic blue absorbance at 446 nm, but surprisingly also an absorbance peak at 360 nm. This additional peak is not caused by binding of a second chromophore, as confirmed with mass spectroscopy. Moreover, reconstitution with the 'locked' analogue 7-hydroxy-coumarin-3-carboxylic acid yields only a single absorbance peak at 441 nm. The 446 nm and 360 nm species are part of a temperature- and pH-dependent equilibrium. Photoactivation of the protein leads to formation of a blue-shifted intermediate as in other PYPs, with a 100-fold increased groundstate recovery rate (k(pB-->pG)=500 s(-1)) compared to E-PYP.
Collapse
Affiliation(s)
- A Haker
- Laboratory for Microbiology, E.C. Slater Institute, BioCentrum, University of Amsterdam, Nieuwe Achtergracht 127, 1018 WS, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
38
|
Craven CJ, Derix NM, Hendriks J, Boelens R, Hellingwerf KJ, Kaptein R. Probing the nature of the blue-shifted intermediate of photoactive yellow protein in solution by NMR: hydrogen-deuterium exchange data and pH studies. Biochemistry 2000; 39:14392-9. [PMID: 11087391 DOI: 10.1021/bi001628p] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nature of the pB intermediate of photoactive yellow protein (PYP) from Ectothiorhodospira halophila has been probed by NMR. pH-dependent changes in the NMR spectrum of the dark state of PYP are shown to closely mimic exchange broadening effects observed previously in the NMR spectrum of the pB intermediate in solution. Amide H-D exchange data show that while pB retains a solid protected core, two regions become significantly less protected than the dark state. The amide exchange data help to rationalize why the conformational exchange process affects the N-terminal 28-residue segment of the protein, which is not close to the site of chromophore rearrangement. At very low pH (pH 1.7), the dark state NMR spectrum displays approximately 30 very sharp signals, which are characteristic of a portion of the molecule becoming unfolded. Similarities between the dark state spectra at pH approximately 3.2 and the spectra of pB suggest a model for pB in solution where the protein exists in an equilibrium between a well-ordered state and a state in which a region is unfolded. Such a two-state model accounts for the exchange phenomena observed in the NMR spectra of pB, and the hydrophobic exposure and lability inferred from thermodynamic data. It is likely that in the crystalline environment the ordered form of pB is strongly favored.
Collapse
Affiliation(s)
- C J Craven
- Department of NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
39
|
Hendriks J, van Stokkum IH, Crielaard W, Hellingwerf KJ. Kinetics of and intermediates in a photocycle branching reaction of the photoactive yellow protein from Ectothiorhodospira halophila. FEBS Lett 1999; 458:252-6. [PMID: 10481075 DOI: 10.1016/s0014-5793(99)01136-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have studied the kinetics of the blue light-induced branching reaction in the photocycle of photoactive yellow protein (PYP) from Ectothiorhodospira halophila, by nanosecond time-resolved UV/Vis spectroscopy. As compared to the parallel dark recovery reaction of the presumed blue-shifted signaling state pB, the light-induced branching reaction showed a 1000-fold higher rate. In addition, a new intermediate was detected in this branching pathway, which, compared to pB, showed a larger extinction coefficient and a blue-shifted absorption maximum. This substantiates the conclusion that isomerization of the chromophore is the rate-controlling step in the thermal photocycle reactions of PYP and implies that absorption of a blue photon leads to cis-->trans isomerization of the 4-hydroxy-cinnamyl chromophore of PYP in its pB state.
Collapse
Affiliation(s)
- J Hendriks
- Laboratory for Microbiology, E.C. Slater Institute, BioCentrum, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|