1
|
Agarwala N, Makita H, Hastings G. Time-resolved FTIR difference spectroscopy for the study of photosystem I with high potential naphthoquinones incorporated into the A 1 binding site. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148918. [PMID: 36116485 DOI: 10.1016/j.bbabio.2022.148918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/28/2022]
Abstract
Time-resolved step-scan Fourier transform infrared difference spectroscopy has been used to study cyanobacterial photosystem I photosynthetic reaction centers from Synechocystis sp. PCC 6803 (S6803) with four high-potential, 1,4-naphthoquinones incorporated into the A1 binding site. The high-potential naphthoquinones are 2-chloro-, 2-bromo-, 2,3-dichloro- and 2,3-dibromo-1,4-naphthoquinone. "Foreign minus native" double difference spectra (DDS) were constructed by subtracting difference spectra for native photosystem I (with phylloquinone in the A1 binding site) from corresponding spectra obtained using photosystem I with the different quinones incorporated. To help assess and assign bands in the difference and double difference spectra, density functional theory based vibrational frequency calculations for the different quinones in solvent, or in the presence of a single asymmetric H- bond to either a water molecule or a peptide backbone NH group, were undertaken. Calculated and experimental spectra agree best for the peptide backbone asymmetrically H- bonded system. By comparing multiple sets of double difference spectra, several new bands for the native quinone (phylloquinone) are identified. By comparing calculated and experimental spectra we conclude that the mono-substituted halogenated NQs can occupy the binding site in either of two different orientations, with the chlorine or bromine atom being either ortho or meta to the H- bonded CO group.
Collapse
Affiliation(s)
- Neva Agarwala
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, USA
| | - Hiroki Makita
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, USA
| | - Gary Hastings
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Selikhanov G, Fufina T, Guenther S, Meents A, Gabdulkhakov A, Vasilieva L. X-ray structure of the Rhodobacter sphaeroides reaction center with an M197 Phe→His substitution clarifies the properties of the mutant complex. IUCRJ 2022; 9:261-271. [PMID: 35371503 PMCID: PMC8895020 DOI: 10.1107/s2052252521013178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
The first steps of the global process of photosynthesis take place in specialized membrane pigment-protein complexes called photosynthetic reaction centers (RCs). The RC of the photosynthetic purple bacterium Rhodobacter sphaeroides, a relatively simple analog of the more complexly organized photosystem II in plants, algae and cyanobacteria, serves as a convenient model for studying pigment-protein interactions that affect photochemical processes. In bacterial RCs the bacteriochlorophyll (BChl) dimer P serves as the primary electron donor, and its redox potential is a critical factor in the efficient functioning of the RC. It has previously been shown that the replacement of Phe M197 by His strongly affects the oxidation potential of P (E m P/P+), increasing its value by 125 mV, as well as increasing the thermal stability of RC and its stability in response to external pressure. The crystal structures of F(M197)H RC at high resolution obtained using various techniques presented in this report clarify the optical and electrochemical properties of the primary electron donor and the increased resistance of the mutant complex to denaturation. The electron-density maps are consistent with the donation of a hydrogen bond from the imidazole group of His M197 to the C2-acetyl carbonyl group of BChl PB. The formation of this hydrogen bond leads to a considerable out-of-plane rotation of the acetyl carbonyl group and results in a 1.2 Å shift of the O atom of this group relative to the wild-type structure. Besides, the distance between BChl PA and PB in the area of pyrrole ring I was found to be increased by up to 0.17 Å. These structural changes are discussed in association with the spectral properties of BChl dimer P. The electron-density maps strongly suggest that the imidazole group of His M197 accepts another hydrogen bond from the nearest water molecule, which in turn appears to form two more hydrogen bonds to Asn M195 and Asp L155. As a result of the F(M197)H mutation, BChl PB finds itself connected to the extensive hydrogen-bonding network that pre-existed in wild-type RC. Dissimilarities in the two hydrogen-bonding networks near the M197 and L168 sites may account for the different changes of the E m P/P+ in F(M197)H and H(L168)F RCs. The involvement of His M197 in the hydrogen-bonding network also appears to be related to stabilization of the F(M197)H RC structure. Analysis of the experimental data presented here and of the data available in the literature points to the fact that the hydrogen-bonding networks in the vicinity of BChl dimer P may play an important role in fine-tuning the redox properties of the primary electron donor.
Collapse
Affiliation(s)
- Georgii Selikhanov
- Group of Structural Studies of Macromolecular Complexes, Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, Pushchino 142290, Moscow Region, Russian Federation
- Federal Research Center Pushchino Scientific Center for Biological Research PSCBR, Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya 2, Pushchino 142290, Moscow Region, Russian Federation
| | - Tatiana Fufina
- Federal Research Center Pushchino Scientific Center for Biological Research PSCBR, Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya 2, Pushchino 142290, Moscow Region, Russian Federation
| | - Sebastian Guenther
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Alke Meents
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Azat Gabdulkhakov
- Group of Structural Studies of Macromolecular Complexes, Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, Pushchino 142290, Moscow Region, Russian Federation
| | - Lyudmila Vasilieva
- Federal Research Center Pushchino Scientific Center for Biological Research PSCBR, Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya 2, Pushchino 142290, Moscow Region, Russian Federation
| |
Collapse
|
3
|
Nagao R, Yamaguchi M, Nakamura S, Ueoka-Nakanishi H, Noguchi T. Genetically introduced hydrogen bond interactions reveal an asymmetric charge distribution on the radical cation of the special-pair chlorophyll P680. J Biol Chem 2017; 292:7474-7486. [PMID: 28302724 DOI: 10.1074/jbc.m117.781062] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/08/2017] [Indexed: 11/06/2022] Open
Abstract
The special-pair chlorophyll (Chl) P680 in photosystem II has an extremely high redox potential (Em ) to enable water oxidation in photosynthesis. Significant positive-charge localization on one of the Chl constituents, PD1 or PD2, in P680+ has been proposed to contribute to this high Em To identify the Chl molecule on which the charge is mainly localized, we genetically introduced a hydrogen bond to the 131-keto C=O group of PD1 and PD2 by changing the nearby D1-Val-157 and D2-Val-156 residues to His, respectively. Successful hydrogen bond formation at PD1 and PD2 in the obtained D1-V157H and D2-V156H mutants, respectively, was monitored by detecting 131-keto C=O vibrations in Fourier transfer infrared (FTIR) difference spectra upon oxidation of P680 and the symmetrically located redox-active tyrosines YZ and YD, and they were simulated by quantum-chemical calculations. Analysis of the P680+/P680 FTIR difference spectra of D1-V157H and D2-V156H showed that upon P680+ formation, the 131-keto C=O frequency upshifts by a much larger extent in PD1 (23 cm-1) than in PD2 (<9 cm-1). In addition, thermoluminescence measurements revealed that the D1-V157H mutation increased the Em of P680 to a larger extent than did the D2-V156H mutation. These results, together with the previous results for the mutants of the His ligands of PD1 and PD2, lead to a definite conclusion that a charge is mainly localized to PD1 in P680<sup/>.
Collapse
Affiliation(s)
- Ryo Nagao
- From the Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Motoki Yamaguchi
- From the Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Shin Nakamura
- From the Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Hanayo Ueoka-Nakanishi
- From the Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takumi Noguchi
- From the Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
4
|
Faries KM, Kressel LL, Dylla NP, Wander MJ, Hanson DK, Holten D, Laible PD, Kirmaier C. Optimizing multi-step B-side charge separation in photosynthetic reaction centers from Rhodobacter capsulatus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:150-159. [DOI: 10.1016/j.bbabio.2015.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/20/2015] [Accepted: 11/30/2015] [Indexed: 11/16/2022]
|
5
|
Wu Y, Fried SD, Boxer SG. Dissecting Proton Delocalization in an Enzyme's Hydrogen Bond Network with Unnatural Amino Acids. Biochemistry 2015; 54:7110-9. [PMID: 26571340 DOI: 10.1021/acs.biochem.5b00958] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Extended hydrogen bond networks are a common structural motif of enzymes. A recent analysis proposed quantum delocalization of protons as a feature present in the hydrogen bond network spanning a triad of tyrosines (Y(16), Y(32), and Y(57)) in the active site of ketosteroid isomerase (KSI), contributing to its unusual acidity and large isotope shift. In this study, we utilized amber suppression to substitute each tyrosine residue with 3-chlorotyrosine to test the delocalization model and the proton affinity balance in the triad. X-ray crystal structures of each variant demonstrated that the structure, notably the O-O distances within the triad, was unaffected by 3-chlorotyrosine substitutions. The changes in the cluster's acidity and the acidity's isotope dependence in these variants were assessed via UV-vis spectroscopy and the proton sharing pattern among individual residues with (13)C nuclear magnetic resonance. Our data show pKa detuning at each triad residue alters the proton delocalization behavior in the H-bond network. The extra stabilization energy necessary for the unusual acidity mainly comes from the strong interactions between Y(57) and Y(16). This is further enabled by Y(32), which maintains the right geometry and matched proton affinity in the triad. This study provides a rich picture of the energetics of the hydrogen bond network in enzymes for further model refinement.
Collapse
Affiliation(s)
- Yufan Wu
- Department of Chemistry, Stanford University , Stanford, California 94305-5012, United States
| | - Stephen D Fried
- Department of Chemistry, Stanford University , Stanford, California 94305-5012, United States
| | - Steven G Boxer
- Department of Chemistry, Stanford University , Stanford, California 94305-5012, United States
| |
Collapse
|
6
|
Fufina TY, Vasilieva LG, Gabdulkhakov AG, Shuvalov VA. The L(M196)H mutation in Rhodobacter sphaeroides reaction center results in new electrostatic interactions. PHOTOSYNTHESIS RESEARCH 2015; 125:23-29. [PMID: 25480338 DOI: 10.1007/s11120-014-0062-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023]
Abstract
New histidine residue was introduced in M196 position in the reaction center of Rhodobacter sphaeroides in order to alter polarity of the BChl dimer's protein environment and to study how it affects properties and structure of the primary electron donor P. It was shown that in the absorption spectrum of the mutant RC the 6 nm red shift of the Q Y P band was observed together with considerable decrease of its amplitude. The mid-point potential of P/P (+) in the mutant RC was increased by +65 (±15) mV as compared to the E m P/P (+) value in the wild-type RC suggesting that the mutation resulted in new pigment-protein interactions. Crystal structure of RC L(M196)H determined at 2.4 Å resolution implies that BChl Р В and introduced histidine-M196 organize new electrostatic contact that may be specified either as π-π staking or as hydrogen-π interaction. Besides, the structure of the mutants RC shows that His-M196 apparently became involved in hydrogen bond network existing in BChl Р В vicinity that may favor stability of the mutant RC.
Collapse
Affiliation(s)
- Tatiana Y Fufina
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | | | | | | |
Collapse
|
7
|
Kressel L, Faries KM, Wander MJ, Zogzas CE, Mejdrich RJ, Hanson DK, Holten D, Laible PD, Kirmaier C. High yield of secondary B-side electron transfer in mutant Rhodobacter capsulatus reaction centers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1892-1903. [DOI: 10.1016/j.bbabio.2014.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/22/2014] [Accepted: 07/26/2014] [Indexed: 10/25/2022]
|
8
|
Gall A, Pascal AA, Robert B. Vibrational techniques applied to photosynthesis: Resonance Raman and fluorescence line-narrowing. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:12-8. [PMID: 25268562 DOI: 10.1016/j.bbabio.2014.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/12/2014] [Accepted: 09/22/2014] [Indexed: 11/25/2022]
Abstract
Resonance Raman spectroscopy may yield precise information on the conformation of, and the interactions assumed by, the chromophores involved in the first steps of the photosynthetic process. Selectivity is achieved via resonance with the absorption transition of the chromophore of interest. Fluorescence line-narrowing spectroscopy is a complementary technique, in that it provides the same level of information (structure, conformation, interactions), but in this case for the emitting pigment(s) only (whether isolated or in an ensemble of interacting chromophores). The selectivity provided by these vibrational techniques allows for the analysis of pigment molecules not only when they are isolated in solvents, but also when embedded in soluble or membrane proteins and even, as shown recently, in vivo. They can be used, for instance, to relate the electronic properties of these pigment molecules to their structure and/or the physical properties of their environment. These techniques are even able to follow subtle changes in chromophore conformation associated with regulatory processes. After a short introduction to the physical principles that govern resonance Raman and fluorescence line-narrowing spectroscopies, the information content of the vibrational spectra of chlorophyll and carotenoid molecules is described in this article, together with the experiments which helped in determining which structural parameter(s) each vibrational band is sensitive to. A selection of applications is then presented, in order to illustrate how these techniques have been used in the field of photosynthesis, and what type of information has been obtained. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
Affiliation(s)
- Andrew Gall
- Institute of Biology and Technology Saclay, CEA, UMR 8221 CNRS, 91191 Gif/Yvette, France
| | - Andrew A Pascal
- Institute of Biology and Technology Saclay, CEA, UMR 8221 CNRS, 91191 Gif/Yvette, France
| | - Bruno Robert
- Institute of Biology and Technology Saclay, CEA, UMR 8221 CNRS, 91191 Gif/Yvette, France.
| |
Collapse
|
9
|
Gabdulkhakov AG, Fufina TY, Vasilieva LG, Mueller U, Shuvalov VA. Expression, purification, crystallization and preliminary X-ray structure analysis of wild-type and L(M196)H-mutant Rhodobacter sphaeroides reaction centres. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:506-509. [PMID: 23695564 PMCID: PMC3660888 DOI: 10.1107/s1744309113006398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/05/2013] [Indexed: 06/02/2023]
Abstract
The electron and proton transport mediated by protein-bound cofactors in photosynthesis have been investigated by various methods in order to determine the energetics, the dynamics and the pathway of this process. In purple bacteria, primary photosynthetic charge separation and the build-up of a proton gradient across the periplasmic membrane are catalyzed by the photosynthetic reaction centre (RC). Here, the purification, crystallization and preliminary X-ray analysis of wild-type and L(M196)H-mutant RCs of Rhodobacter sphaeroides are presented, enabling study of the influence of the protein environment of the primary electron donor on the spectral properties and photochemical activity of the RC.
Collapse
Affiliation(s)
- A G Gabdulkhakov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russian Federation.
| | | | | | | | | |
Collapse
|
10
|
Zhang Y, LaFountain AM, Magdaong N, Fuciman M, Allen JP, Frank HA, Rusling JF. Thin Film Voltammetry of Wild Type and Mutant Reaction Center Proteins from Photosynthetic Bacteria. J Phys Chem B 2011; 115:3226-32. [PMID: 21384836 DOI: 10.1021/jp111680p] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yun Zhang
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Amy M. LaFountain
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Nikki Magdaong
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Marcel Fuciman
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - James P. Allen
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Harry A. Frank
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - James F. Rusling
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06032, United States
| |
Collapse
|
11
|
Collins AM, Kirmaier C, Holten D, Blankenship RE. Kinetics and energetics of electron transfer in reaction centers of the photosynthetic bacterium Roseiflexus castenholzii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:262-9. [PMID: 21126505 DOI: 10.1016/j.bbabio.2010.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 11/18/2010] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
Abstract
The kinetics and thermodynamics of the photochemical reactions of the purified reaction center (RC)-cytochrome (Cyt) complex from the chlorosome-lacking, filamentous anoxygenic phototroph, Roseiflexus castenholzii are presented. The RC consists of L- and M-polypeptides containing three bacteriochlorophyll (BChl), three bacteriopheophytin (BPh) and two quinones (Q(A) and Q(B)), and the Cyt is a tetraheme subunit. Two of the BChls form a dimer P that is the primary electron donor. At 285K, the lifetimes of the excited singlet state, P*, and the charge-separated state P(+)H(A)(-) (where H(A) is the photoactive BPh) were found to be 3.2±0.3 ps and 200±20 ps, respectively. Overall charge separation P*→→ P(+)Q(A)(-) occurred with ≥90% yield at 285K. At 77K, the P* lifetime was somewhat shorter and the P(+)H(A)(-) lifetime was essentially unchanged. Poteniometric titrations gave a P(865)/P(865)(+) midpoint potential of +390mV vs. SHE. For the tetraheme Cyt two distinct midpoint potentials of +85 and +265mV were measured, likely reflecting a pair of low-potential hemes and a pair of high-potential hemes, respectively. The time course of electron transfer from reduced Cyt to P(+) suggests an arrangement where the highest potential heme is not located immediately adjacent to P. Comparisons of these and other properties of isolated Roseiflexus castenholzii RCs to those from its close relative Chloroflexus aurantiacus and to RCs from the purple bacteria are made.
Collapse
Affiliation(s)
- Aaron M Collins
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | | | | |
Collapse
|
12
|
Alia A, Ganapathy S, de Groot HJM. Magic Angle Spinning (MAS) NMR: a new tool to study the spatial and electronic structure of photosynthetic complexes. PHOTOSYNTHESIS RESEARCH 2009; 102:415-25. [PMID: 19669927 PMCID: PMC2777226 DOI: 10.1007/s11120-009-9478-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 07/13/2009] [Indexed: 05/08/2023]
Abstract
In the last two decades, Magic Angle Spinning (MAS) NMR has created its own niche in studies involving photosynthetic membrane protein complexes, owing to its ability to provide structural and functional information at atomic resolution of membrane proteins when in the membrane, in the natural environment. The light-harvesting two (LH2) transmembrane complex from Rhodopseudomonas acidophila is used to illustrate the procedure of the technique applicable in photosynthesis research. One- and two-dimensional solid-state NMR experiments involving (13)C- and (15)N-labeled LH2 complexes allow to make a sequence-specific assignment of NMR signals, which forms the basis for resolving structural details and the assessment of charge transfer, electronic delocalization effects, and functional strain in the ground state.
Collapse
Affiliation(s)
- A. Alia
- Leiden Institute of Chemistry, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Swapna Ganapathy
- Leiden Institute of Chemistry, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Huub J. M. de Groot
- Leiden Institute of Chemistry, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
13
|
Ponomarenko NS, Li L, Marino AR, Tereshko V, Ostafin A, Popova JA, Bylina EJ, Ismagilov RF, Norris JR. Structural and spectropotentiometric analysis of Blastochloris viridis heterodimer mutant reaction center. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1788:1822-31. [PMID: 19539602 PMCID: PMC2752317 DOI: 10.1016/j.bbamem.2009.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 05/06/2009] [Accepted: 06/03/2009] [Indexed: 01/07/2023]
Abstract
Heterodimer mutant reaction centers (RCs) of Blastochloris viridis were crystallized using microfluidic technology. In this mutant, a leucine residue replaced the histidine residue which had acted as a fifth ligand to the bacteriochlorophyll (BChl) of the primary electron donor dimer M site (HisM200). With the loss of the histidine-coordinated Mg, one bacteriochlorophyll of the special pair was converted into a bacteriopheophytin (BPhe), and the primary donor became a heterodimer supermolecule. The crystals had dimensions 400 x 100 x 100 microm, belonged to space group P4(3)2(1)2, and were isomorphous to the ones reported earlier for the wild type (WT) strain. The structure was solved to a 2.5 A resolution limit. Electron-density maps confirmed the replacement of the histidine residue and the absence of Mg. Structural changes in the heterodimer mutant RC relative to the WT included the absence of the water molecule that is typically positioned between the M side of the primary donor and the accessory BChl, a slight shift in the position of amino acids surrounding the site of the mutation, and the rotation of the M194 phenylalanine. The cytochrome subunit was anchored similarly as in the WT and had no detectable changes in its overall position. The highly conserved tyrosine L162, located between the primary donor and the highest potential heme C(380), revealed only a minor deviation of its hydroxyl group. Concomitantly to modification of the BChl molecule, the redox potential of the heterodimer primary donor increased relative to that of the WT organism (772 mV vs. 517 mV). The availability of this heterodimer mutant and its crystal structure provides opportunities for investigating changes in light-induced electron transfer that reflect differences in redox cascades.
Collapse
Affiliation(s)
- Nina S. Ponomarenko
- Department of Chemistry, University of Chicago, 929 E.57th Street, GCIS, Chicago, IL 60637, USA
| | - Liang Li
- Department of Chemistry, University of Chicago, 929 E.57th Street, GCIS, Chicago, IL 60637, USA
| | - Antony R. Marino
- Department of Chemistry, University of Chicago, 929 E.57th Street, GCIS, Chicago, IL 60637, USA
| | - Valentina Tereshko
- Department of Chemistry, University of Chicago, 929 E.57th Street, GCIS, Chicago, IL 60637, USA
| | - Agnes Ostafin
- Department of Material Science, University of Utah, 316 CME, 122 S. Central Camous Drive, Salt Lake City, UT 84112, USA
| | - Julia A. Popova
- Department of Chemistry, University of Chicago, 929 E.57th Street, GCIS, Chicago, IL 60637, USA
| | - Edward J. Bylina
- Department of Chemistry, University of Chicago, 929 E.57th Street, GCIS, Chicago, IL 60637, USA
| | - Rustem F. Ismagilov
- Department of Chemistry, University of Chicago, 929 E.57th Street, GCIS, Chicago, IL 60637, USA
| | - James R. Norris
- Department of Chemistry, University of Chicago, 929 E.57th Street, GCIS, Chicago, IL 60637, USA,Corresponding author. Tel.: +1 773 702 7864. (J.R. Norris)
| |
Collapse
|
14
|
|
15
|
Lebedev N, Trammell SA, Tsoi S, Spano A, Kim JH, Xu J, Twigg ME, Schnur JM. Increasing efficiency of photoelectronic conversion by encapsulation of photosynthetic reaction center proteins in arrayed carbon nanotube electrode. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:8871-8876. [PMID: 18616302 DOI: 10.1021/la8011348] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The construction of efficient light energy converting (photovoltaic and photoelectronic) devices is a current and great challenge in science and technology and one that will have important economic consequences. Here we show that the efficiency of these devices can be improved by the utilization of a new type of nano-organized material having photosynthetic reaction center proteins encapsulated inside carbon nanotube arrayed electrodes. In this work, a generically engineered bacterial photosynthetic reaction center protein with specifically synthesized organic molecular linkers were encapsulated inside carbon nanotubes and bound to the inner tube walls in unidirectional orientation. The results show that the photosynthetic proteins encapsulated inside carbon nanotubes are photochemically active and exhibit considerable improvement in the rate of electron transfer and the photocurrent density compared to the material constructed from the same components in traditional lamella configuration.
Collapse
Affiliation(s)
- Nikolai Lebedev
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, Washington, DC 20375, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Xu J, Lu Y, Liu B, Xu C, Kong J. Sensitively probing the cofactor redox species and photo-induced electron transfer of wild-type and pheophytin-replaced photosynthetic proteins reconstituted in self-assembled monolayers. J Solid State Electrochem 2007. [DOI: 10.1007/s10008-007-0330-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Abstract
The electrochemistry of 2,6-dimethylbenzoquinone (DMBQ) has been characterized for three different systems: DMBQ freely solvated in aqueous buffer; DMBQ bound to a neutral, blocked cysteine (N-acetyl-L-cysteine methyl ester) and the resulting DMBQ-bCys compound solvated in aqueous buffer; and DMBQ bound to a small model protein denoted alpha(3)C. The goal of this study is to detect and characterize differences in the redox properties of the protein-ligated DMBQ relative to the solvated quinones. The alpha(3)C protein used here is a tryptophan-32 to cysteine-32 variant of the structurally defined alpha(3)W de novo protein (Dai et al. J. Am. Chem. Soc. 2002, 124, 10952-10953). The properties of alpha(3)C were recently described (Hay et al. Biochemistry 2005, 44, 11891-11902). DMBQ was covalently bound to bCys and alpha(3)C through a sulfur substitution reaction with the cysteine thiol. In contrast to the solvated DMBQ and DMBQ-bCys compounds, diffusion controlled electrochemistry of DMBQ-alpha(3)C showed well-behaved and fully reversible n = 2 oxidation/reduction with a peak separation of approximately 30 mV between pH 5 and 9. DMBQ-alpha(3)C could also be immobilized on a gold electrode modified with a self-assembled monolayer of 3-mercaptopropionoic acid, allowing the measurement, by cyclic voltammetry, of an apparent rate of electron transfer of 22 s(-1). The (cysteine) sulfur substitution significantly lowers one of the hydroquinone pKA's from 10.4 in DMBQ to 6.8 in DMBQ-bCys. This pKA is slightly elevated in DMBQ-alpha(3)C to 7.0 and the E1/2 at pH 7.0 is raised by 110 mV from +190 mV in DMBQ-bCys to +297 mV in DMBQ-alpha(3)C.
Collapse
Affiliation(s)
- Sam Hay
- Department of Biochemistry & Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | |
Collapse
|
18
|
Kanchanawong P, Dahlbom MG, Treynor TP, Reimers JR, Hush NS, Boxer SG. Charge Delocalization in the Special-Pair Radical Cation of Mutant Reaction Centers of Rhodobacter sphaeroides from Stark Spectra and Nonadiabatic Spectral Simulations. J Phys Chem B 2006; 110:18688-702. [PMID: 16970500 DOI: 10.1021/jp0623894] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stark and absorption spectra for the hole-transfer band of the bacteriochlorophyll special pair in the wild-type and L131LH, M160LH, and L131LH/M160LH mutants of the bacterial reaction center of Rhodobacter sphaeroides are presented, along with extensive analyses based on nonadiabatic spectral simulations. Dramatic changes in the Stark spectra are induced by the mutations, changes that are readily interpreted in terms of the redox-energy asymmetry and degree of charge localization in the special-pair radical cation. The effect of mutagenesis on key properties such as the electronic coupling within the special pair and the reorganization energy associated with intervalence hole transfer are determined for the first time. Results for the L131LH and M160LH/L131LH mutants indicate that these species can be considered as influencing the special pair primarily through modulation of the redox asymmetry, as is usually conceptualized, but M160LH is shown to develop a wide range of effects that can be interpreted in terms of significant mutation-induced structural changes in and around the special pair. The nonadiabatic spectra simulations are performed using both a simple two-state 1-mode and an extensive four-state 70-mode model, which includes the descriptions of additional electronic states and explicitly treats the major vibrational modes involved. Excellent agreement between the two simulation approaches is obtained. The simple model is shown to reproduce key features of the Stark effect of the main intervalence transition, while the extensive model quantitatively reproduces most features of the observed spectra for both the electronic and the phase-phonon regions, thus giving a more comprehensive description of the effect of the mutations on the properties of the special-pair radical cation. These results for a series of closely related mixed-valence complexes show that the Stark spectra provide a sensitive indicator for the properties of the mixed-valence complexes and should serve as an instructive example on the application of nonadiabatic simulations to the study of mixed-valence complexes in general as well as other chemical systems akin to the photosynthetic special pair.
Collapse
Affiliation(s)
- Pakorn Kanchanawong
- Biophysics Program and Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA
| | | | | | | | | | | |
Collapse
|
19
|
Garcia-Martin A, Kwa LG, Strohmann B, Robert B, Holzwarth AR, Braun P. Structural Role of (Bacterio)chlorophyll Ligated in the Energetically Unfavorable β-Position. J Biol Chem 2006; 281:10626-34. [PMID: 16484226 DOI: 10.1074/jbc.m510731200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chlorophyll is attached to apoprotein in diastereotopically distinct ways, by beta- and alpha-ligation. Both the beta- and alpha-ligated chlorophylls of photosystem I are shown to have ample contacts to apoprotein within their proteinaceous binding sites, in particular, at C-13 of the isocyclic ring. The H-bonding patterns for the C-13(1) oxo groups, however, are clearly distinct for the beta-ligated and alpha-ligated chlorophylls. The beta-ligated chlorophylls frequently employ their C-13(1) oxo in H-bonds to neighboring helices and subunits. In contrast, the C-13(1) oxo of alpha-ligated chlorophylls are significantly less involved in H-bonding interactions, particularly to neighboring helices. Remarkably, in the peripheral antenna, light harvesting complex (LH2) from Rhodobacter sphaeroides, a single mutation in the alpha-subunit, introduced to eliminate H-bonding to the beta-bacteriochlorophyll-B850, which is ligated in the "beta-position," results in significant thermal destabilization of the LH2 in the membrane. In addition, in comparison with wild type LH2, the expression level of the LH2 lacking this H-bond is significantly reduced. These findings show that H-bonding to the C-13(1) keto group ofbeta-ligated (bacterio)-chlorophyll is a key structural motif and significantly contributes to the stability of bacteriochlorophyll proteins in the native membrane. Our analysis of photosystem I and II suggests that this hitherto unrecognized motif involving H-bonding to beta-ligated chlorophylls may be equally critical for the stable assembly of the inner core antenna of these multicomponent chlorophyll proteins.
Collapse
|
20
|
Yakovlev AG, Jones MR, Potter JA, Fyfe PK, Vasilieva LG, Shkuropatov AY, Shuvalov VA. Primary charge separation between P* and BA: Electron-transfer pathways in native and mutant GM203L bacterial reaction centers. Chem Phys 2005. [DOI: 10.1016/j.chemphys.2005.08.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Potter JA, Fyfe PK, Frolov D, Wakeham MC, van Grondelle R, Robert B, Jones MR. Strong Effects of an Individual Water Molecule on the Rate of Light-driven Charge Separation in the Rhodobacter sphaeroides Reaction Center. J Biol Chem 2005; 280:27155-64. [PMID: 15908429 DOI: 10.1074/jbc.m501961200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of a water molecule (water A) located between the primary electron donor (P) and first electron acceptor bacteriochlorophyll (B(A)) in the purple bacterial reaction center was investigated by mutation of glycine M203 to leucine (GM203L). The x-ray crystal structure of the GM203L reaction center shows that the new leucine residue packs in such a way that water A is sterically excluded from the complex, but the structure of the protein-cofactor system around the mutation site is largely undisturbed. The results of absorbance and resonance Raman spectroscopy were consistent with either the removal of a hydrogen bond interaction between water A and the keto carbonyl group of B(A) or a change in the local electrostatic environment of this carbonyl group. Similarities in the spectroscopic properties and x-ray crystal structures of reaction centers with leucine and aspartic acid mutations at the M203 position suggested that the effects of a glycine to aspartic acid substitution at the M203 position can also be explained by steric exclusion of water A. In the GM203L mutant, loss of water A was accompanied by an approximately 8-fold slowing of the rate of decay of the primary donor excited state, indicating that the presence of water A is important for optimization of the rate of primary electron transfer. Possible functions of this water molecule are discussed, including a switching role in which the redox potential of the B(A) acceptor is rapidly modulated in response to oxidation of the primary electron donor.
Collapse
Affiliation(s)
- Jane A Potter
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
22
|
Trammell SA, Spano A, Price R, Lebedev N. Effect of protein orientation on electron transfer between photosynthetic reaction centers and carbon electrodes. Biosens Bioelectron 2005; 21:1023-8. [PMID: 15955689 DOI: 10.1016/j.bios.2005.03.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 03/21/2005] [Accepted: 03/23/2005] [Indexed: 11/20/2022]
Abstract
A new type of monolayer of photosynthetic reaction centers (RC) with the primary donor facing the carbon electrode has been constructed using a new bifunctional linker and genetically engineered protein. Comparison of protein in two different orientations with linkers binding to the opposite sides of the protein demonstrates the possibility of utilizing the constructed surfaces as photoelectronic devices. The results show improvement of the electron transfer efficiency when RC is bound with the primary donor (P) facing the electrode (P-side). In either protein orientation, electron transfer within the protein is unidirectional and when applying a voltage RC operates as a photorectifier. Electron transfer between the protein and carbon electrodes in the constructed devices is most likely occurring by tunneling.
Collapse
Affiliation(s)
- Scott A Trammell
- Center for Bio/Molecular Science & Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | | | | | | |
Collapse
|
23
|
Bio-nanocomposite Photoelectrode Composed of the BacteriaPhotosynthetic Reaction Center Entrapped on a NanocrystallineTiO2 Matrix. SENSORS 2005. [DOI: 10.3390/s5040258] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Mix LJ, Haig D, Cavanaugh CM. Phylogenetic analyses of the core antenna domain: investigating the origin of photosystem I. J Mol Evol 2005; 60:153-63. [PMID: 15785845 DOI: 10.1007/s00239-003-0181-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2003] [Accepted: 07/29/2004] [Indexed: 10/25/2022]
Abstract
Phototrophy, the conversion of light to biochemical energy, occurs throughout the Bacteria and plants, however, debate continues over how different phototrophic mechanisms and the bacteria that contain them are related. There are two types of phototrophic mechanisms in the Bacteria: reaction center type 1 (RC1) has core and core antenna domains that are parts of a single polypeptide, whereas reaction center type 2 (RC2) is composed of short core proteins without antenna domains. In cyanobacteria, RC2 is associated with separate core antenna proteins that are homologous to the core antenna domains of RC1. We reconstructed evolutionary relationships among phototrophic mechanisms based on a phylogeny of core antenna domains/proteins. Core antenna domains of 46 polypeptides were aligned, including the RC1 core proteins of heliobacteria, green sulfur bacteria, and photosystem I (PSI) of cyanobacteria and plastids, plus core antenna proteins of photosystem II (PSII) from cyanobacteria and plastids. Maximum likelihood, parsimony, and neighbor joining methods all supported a single phylogeny in which PSII core antenna proteins (PsbC, PsbB) arose within the cyanobacteria from duplications of the RC1-associated core antenna domains and accessory antenna proteins (IsiA, PcbA, PcbC) arose from duplications of PsbB. The data indicate an evolutionary history of RC1 in which an initially homodimeric reaction center was vertically transmitted to green sulfur bacteria, heliobacteria, and an ancestor of cyanobacteria. A heterodimeric RC1 (=PSI) then arose within the cyanobacterial lineage. In this scenario, the current diversity of core antenna domains/proteins is explained without a need to invoke horizontal transfer.
Collapse
Affiliation(s)
- Lucas J Mix
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
25
|
Möbius K, Savitsky A, Schnegg A, Plato M, Fuchs M. High-field EPR spectroscopy applied to biological systems: characterization of molecular switches for electron and ion transfer. Phys Chem Chem Phys 2005; 7:19-42. [DOI: 10.1039/b412180e] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Hay S, Wallace BB, Smith TA, Ghiggino KP, Wydrzynski T. Protein engineering of cytochrome b562 for quinone binding and light-induced electron transfer. Proc Natl Acad Sci U S A 2004; 101:17675-80. [PMID: 15585583 PMCID: PMC539716 DOI: 10.1073/pnas.0406192101] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Indexed: 11/18/2022] Open
Abstract
The central photochemical reaction in photosystem II of green algae and plants and the reaction center of some photosynthetic bacteria involves a one-electron transfer from a light-activated chlorin complex to a bound quinone molecule. Through protein engineering, we have been able to modify a protein to mimic this reaction. A unique quinone-binding site was engineered into the Escherichia coli cytochrome b(562) by introducing a cysteine within the hydrophobic interior of the protein. Various quinones, such as p-benzoquinone and 2,3-dimethoxy-5-methyl-1,4-benzoquinone, were then covalently attached to the protein through a cysteine sulfur addition reaction to the quinone ring. The cysteine placement was designed to bind the quinone approximately 10 A from the edge of the bound porphyrin. Fluorescence measurements confirmed that the bound hydroquinone is incorporated toward the protein's hydrophobic interior and is partially solvent-shielded. The bound quinones remain redox-active and can be oxidized and rereduced in a two-electron process at neutral pH. The semiquinone can be generated at high pH by a one-electron reduction, and the midpoint potential of this can be adjusted by approximately 500 mV by binding different quinones to the protein. The heme-binding site of the modified cytochrome was then reconstituted with the chlorophyll analogue zinc chlorin e(6). By using EPR and fast optical techniques, we show that, in the various chlorin-protein-quinone complexes, light-induced electron transfer can occur from the chlorin to the bound oxidized quinone but not the hydroquinone, with electron transfer rates in the order of 10(8) s(-1).
Collapse
Affiliation(s)
- Sam Hay
- Photobioenergetics Research Group, Research School of Biological Sciences, Australian National University, Canberra, ACT 0200, Australia.
| | | | | | | | | |
Collapse
|
27
|
Reimers JR, Hush NS. A Unified Description of the Electrochemical, Charge Distribution, and Spectroscopic Properties of the Special-Pair Radical Cation in Bacterial Photosynthesis. J Am Chem Soc 2004; 126:4132-44. [PMID: 15053603 DOI: 10.1021/ja036883m] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We apply our four-state 70-vibration vibronic-coupling model for the properties of the photosynthetic special-pair radical cation to: (1) interpret the observed correlations between the midpoint potential and the distribution of spin density between the two bacteriochlorophylls for 30 mutants of Rhodobacter sphaeroides, (2) interpret the observed average intervalence hole-transfer absorption energies as a function of spin density for six mutants, and (3) simulate the recently obtained intervalence electroabsorption Stark spectrum of the wild-type reaction center. While three new parameters describing the location of the sites of mutation with respect to the special pair are required to describe the midpoint-potential data, a priori predictions are made for the transition energies and the Stark spectrum. In general, excellent predictions are made of the observed quantities, with deviations being typically of the order of twice the experimental uncertainties. A unified description of many chemical and spectroscopic properties of the bacterial reaction center is thus provided. Central to the analysis is the assumption that the perturbations made to the reaction center, either via mutations of protein residues or by application of an external electric field, act only to independently modify the oxidation potentials of the two halves of the special pair and hence the redox asymmetry E0. While this appears to be a good approximation, clear evidence is presented that effects of mutation can be more extensive than what is allowed for. A thorough set of analytical equations describing the observed properties is obtained using the Born-Oppenheimer adiabatic approximation. These equations are generally appropriate for intervalence charge-transfer problems and include, for the first time, full treatment of both symmetric and antisymmetric vibrational motions. The limits of validity of the adiabatic approach to the full nonadiabatic problem are obtained.
Collapse
|
28
|
Kwa LG, García-Martín A, Végh AP, Strohmann B, Robert B, Braun P. Hydrogen bonding in a model bacteriochlorophyll-binding site drives assembly of light harvesting complex. J Biol Chem 2004; 279:15067-75. [PMID: 14742420 DOI: 10.1074/jbc.m312429200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, the contribution of intramembrane hydrogen bonding at the interface between polypeptide and cofactor is explored in the native lipid environment by use of model bacteriochlorophyll proteins. In the peripheral antenna complex, LH2, large portions of the transmembrane helices, which make up the dimeric bacteriochlorophyll-binding site, are replaced by simplified, alternating alanine-leucine stretches. Replacement of either one of the two helices with the helices containing the model sequence at a time results in the assembly of complexes with nearly native light harvesting properties. In contrast, replacement of both helices results in the loss of antenna complexes from the membrane. The assembly of such doubly modified complexes is restored by a single intramembrane serine residue at position -4 relative to the liganding histidine of the alpha-subunit. In situ analysis of the spectral properties in a series of site-directed mutants reveals a critical dependence of the model complex assembly on the side chain of the residue at this position in the helix. A hydrogen bond between the hydroxy group of the serine and the 13(1) keto group of one of the central bacteriochlorophylls of the complexes is identified by Raman spectroscopy in the model antenna complex containing one of the alanine-leucine helices. The additional OH group of the serine residue, which participates in hydrogen bonding, increases the thermal stability of the model complexes in the native membrane. Intramembrane hydrogen bonding is thus shown to be a key factor for the binding of bacteriochlorophyll and assembly of this model cofactor-polypeptide site.
Collapse
Affiliation(s)
- Lee G Kwa
- Department Biologie I der Universität München, Botanik, 80638 München, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Kriegl JM, Nienhaus GU. Structural, dynamic, and energetic aspects of long-range electron transfer in photosynthetic reaction centers. Proc Natl Acad Sci U S A 2004; 101:123-8. [PMID: 14691247 PMCID: PMC314149 DOI: 10.1073/pnas.2434740100] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Indexed: 11/18/2022] Open
Abstract
Intramolecular electron transfer within proteins plays an essential role in biological energy transduction. Electron donor and acceptor cofactors are bound in the protein matrix at specific locations, and protein-cofactor interactions as well as protein conformational changes can markedly influence the electron transfer rates. To assess these effects, we have investigated charge recombination from the primary quinone acceptor to the special pair bacteriochlorophyll dimer in wild-type reaction centers of Rhodobacter sphaeroides and four mutants with widely modified free energy gaps. After light-induced charge separation, the recombination kinetics were measured in the light- and dark-adapted forms of the protein from 10 to 300 K. The data were analyzed by using the spin-boson model, which allowed us to self-consistently determine the electronic coupling energy, the distribution of energy gaps, the spectral density of phonons, and the reorganization energy. The analysis revealed slow changes of the energy gap after charge separation. Interesting correlations of the control parameters governing electron transfer were found and related to structural and dynamic properties of the protein.
Collapse
Affiliation(s)
- Jan M Kriegl
- Department of Biophysics, University of Ulm, D-89069 Ulm, Germany
| | | |
Collapse
|
30
|
Rivas JCM, Prabaharan R, de Rosales RTM, Metteau L, Parsons S. LZnX complexes of tripodal ligands with intramolecular RN–H hydrogen bonding groups: structural implications of a hydrogen bonding cavity, and of X/R in the hydrogen bonding geometry/strength. Dalton Trans 2004:2800-7. [PMID: 15514768 DOI: 10.1039/b407790c] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tripodal ligands N(CH2Py)3-n(CH2Py-6-NHR)n(R=H, n=1-3 L1-3, n=0 tpa; R=CH2tBu, n=1-3 L'1-3) are used to investigate the effect of different hydrogen bonding microenvironments on structural features of their LZnX complexes (X=Cl-, NO3-, OH-). The X-ray structures of [(L2)Zn(Cl)](BPh4)2.0.5(H2O.CH3CN), [(L3)Zn(Cl)](BPh4)3.CH3CN, [(L'1)Zn(Cl)](BPh4) 1', [(L'2)Zn(Cl)](BPh4)2'.CH3OH, and [(L'3)Zn(Cl)](BPh4)3' have been determined and exhibit trigonal bipyramidal geometries with intramolecular (internal) N-HCl-Zn hydrogen bonds. The structure of [(L'2)Zn(ONO2)]NO3 4'.H2O with two internal N-HO-Zn hydrogen bonds has also been determined. The axial Zn-Cl distance lengthens from 2.275 A in [(tpa)Zn(Cl)](BPh4) to 2.280-2.347 A in 1-3, 1'-3'. Notably, the average Zn-N(py) distance is also progressively lengthened from 2.069 A in [(tpa)Zn(Cl)](BPh4) to 2.159 and 2.182 A in the triply hydrogen bonding cavity of 3 and 3', respectively. Lengthening of the Zn-Cl and Zn-N(py) bonds is accompanied by a progressive shortening of the trans Zn-N bond from 2.271 A in [(tpa)Zn(Cl)](BPh4) to 2.115 A in 3 (2.113 A in 3'). As a result of the triply hydrogen bonding microenvironment the Zn-Cl and Zn-N(py) distances of 3 are at the upper end of the range observed for axial Zn-Cl bonds, whereas the axial Zn-N distance is one of shortest among N4 ligands that induce a trigonal bipyramidal geometry. Despite the rigidity of these tripodal ligands, the geometry of the intramolecular RN-HX-Zn hydrogen bonds (X=Cl-, OH-, NO3-) is strongly dependent on the nature of X, however, on average, similar for R=H, CH2tBu.
Collapse
Affiliation(s)
- Juan C Mareque Rivas
- School of Chemistry, The University of Edinburgh, Joseph Black Building, King's Buildings, West Mains Road, Edinburgh, UKEH9 3JJ.
| | | | | | | | | |
Collapse
|
31
|
Mareque-Rivas JC, Prabaharan R, de Rosales RTM. Relative importance of hydrogen bonding and coordinating groups in modulating the zinc–water acidity. Chem Commun (Camb) 2004:76-7. [PMID: 14737340 DOI: 10.1039/b310956a] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The presence of second-sphere -NH(2) groups in the proximity of a zinc(ii)-bound water molecule enhances its acidity by ca. 2 pK(a) units.
Collapse
Affiliation(s)
- Juan C Mareque-Rivas
- School of Chemistry, The University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, U.K.EH9 3JJ.
| | | | | |
Collapse
|
32
|
Grotjohann I, Jolley C, Fromme P. Evolution of photosynthesis and oxygen evolution: Implications from the structural comparison of Photosystems I and II. Phys Chem Chem Phys 2004. [DOI: 10.1039/b408980d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Braun P, Végh AP, von Jan M, Strohmann B, Hunter CN, Robert B, Scheer H. Identification of intramembrane hydrogen bonding between 131 keto group of bacteriochlorophyll and serine residue α27 in the LH2 light-harvesting complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2003; 1607:19-26. [PMID: 14556909 DOI: 10.1016/j.bbabio.2003.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intramembrane hydrogen bonding and its effect on the structural integrity of purple bacterial light-harvesting complex 2, LH2, have been assessed in the native membrane environment. A novel hydrogen bond has been identified by Raman resonance spectroscopy between a serine residue of the membrane-spanning region of LH2 alpha-subunit, and the C-13(1) keto carbonyl of bacteriochlorophyll (BChl) B850 bound to the beta-subunit. Replacement of the serine by alanine disrupts this strong hydrogen bond, but this neither alters the strongly red-shifted absorption nor the structural arrangement of the BChls, as judged from circular dichroism. It also decreases only slightly the thermal stability of the mutated LH2 in the native membrane environment. The possibility is discussed that weak H-bonding between the C-13(1) keto carbonyl and a methyl hydrogen of the alanine replacing serine(-4) or the imidazole group of the nearby histidine maintains structural integrity in this very stable bacterial light-harvesting complex. A more widespread occurrence of H-bonding to C-13(1) not only in BChl, but also in chlorophyll proteins, is indicated by a theoretical analysis of chlorophyll/polypeptide contacts at <3.5 A in the high-resolution structure of Photosystem I. Nearly half of the 96 chlorophylls have aa residues suitable as hydrogen bond donors to their keto groups.
Collapse
Affiliation(s)
- P Braun
- Department Biologie 1, Section Botanik, Universität München, Menzinger Str. 67, D-80638 Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
34
|
Paschenko VZ, Gorokhov VV, Knox PP, Krasilnikov PM, Redlin H, Renger G, Rubin AB. Energetics and mechanisms of high efficiency of charge separation and electron transfer processes in Rhodobacter sphaeroides reaction centers. Bioelectrochemistry 2003; 61:73-84. [PMID: 14642912 DOI: 10.1016/s1567-5394(03)00077-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Effects of environmental changes due to D(2)O/H(2)O substitution and cryosolvent addition on the energetics of the special pair and the rate constants of forward and back electron transfer reactions in the picosecond-nanosecond time domain have been studied in isolated reaction centers (RC) of the anaxogenic purple bacterium Rhodobacter sphaeroides. The following results were obtained: (i). replacement of H(2)O by D(2)O or addition of either 70% (v/v) glycerol or 35% (v/v) DMSO do not influence the absorption spectra; (ii). in marked contrast to this invariance of absorption, the maxima of fluorescence spectra are red shifted relative to control by 3.5, 6.8 and 14.5 nm for RCs suspended in glycerol, D(2)O or DMSO, respectively; (iii). D(2)O/H(2)O substitution or DMSO addition give rise to an increase of the time constants of charge separation (tau(e)), and Q(A)(-) formation (tau(Q)) by a factors of 2.5-3.1 and 1.7-2.5, respectively; (iv). addition of 70% glycerol is virtually without effect on the values of tau(e) and tau(Q); (v). the midpoint potential E(m) of P/P(+) is shifted by about 30 and 45 mV towards higher values by addition of 70% glycerol and 35% DMSO, respectively, but remains invariant to D(2)O/H(2)O exchange; and (vi). an additional fast component with tau(1)=0.5-0.8 ns in the kinetics of charge recombination P(+)H(A)(-)-->P*(P)H(A) emerges in RC suspensions modified either by D(2)O/H(2)O substitution or by DMSO treatment. The results have been analysed with special emphasis on the role of deformations of hydrogen bonds for the solvation mechanism of nonequilibrium states of cofactors. Reorientation of hydrogen bonds provides the major contribution of the very fast environmental response to excitation of the special pair P. The Gibbs standard free energy gap between 1P* and P(+)B(A)(-) due to solvation is estimated to be approximately 70, 59 and 48 meV for control, D(2)O- and DMSO-treated RC samples, respectively.
Collapse
Affiliation(s)
- Vladimir Z Paschenko
- Department of Biophysics, Biology Faculty, Lomonosov State University, Moscow 119899, Russia.
| | | | | | | | | | | | | |
Collapse
|
35
|
Reimers JR, Shapley WA, Hush NS. Modelling the bacterial photosynthetic reaction center. V. Assignment of the electronic transition observed at 2200 cm−1in the special-pair radical-cation as a second-highest occupied molecular orbital to highest occupied molecular orbital transition. J Chem Phys 2003. [DOI: 10.1063/1.1569909] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
Reimers JR, Hush NS. Modeling the bacterial photosynthetic reaction center. VII. Full simulation of the intervalence hole–transfer absorption spectrum of the special-pair radical cation. J Chem Phys 2003. [DOI: 10.1063/1.1589742] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
|
38
|
Spiedel D, Jones MR, Robert B. Tuning of the redox potential of the primary electron donor in reaction centres of purple bacteria: effects of amino acid polarity and position. FEBS Lett 2002; 527:171-5. [PMID: 12220655 DOI: 10.1016/s0014-5793(02)03203-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mutation of residues His L168 and Phe M197 in the reaction centre from Rhodobacter sphaeroides has an unusually strong effect on the mid-point redox potential (E(m)) of the pair of bacteriochlorophylls that form the primary donor of electrons, tuning E(m) over a range of nearly 250 mV. This effect is correlated to the accompanying change in the permanent dipole of the L168 or M197 residue, suggesting it is mediated by changes in charge-dipole interactions. Comparisons with mutations made at a variety of other positions show that this correlation is particular to this residue pair, perhaps reflecting their proximity to the ring I regions of the dimer bacteriochlorophylls that form the overlap region between these molecules.
Collapse
Affiliation(s)
- Diane Spiedel
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, S10 2UH, Sheffield, UK
| | | | | |
Collapse
|
39
|
|
40
|
Zhao J, Zou Y, Liu B, Xu C, Kong J. Differentiating the orientations of photosynthetic reaction centers on Au electrodes linked by different bifunctional reagents. Biosens Bioelectron 2002; 17:711-8. [PMID: 12052357 DOI: 10.1016/s0956-5663(02)00026-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The photosynthetic reaction center (RC) composite film was fabricated by self-assembled monolayers (SAMs) on the Au electrode with two different bifunctional reagents, 4-aminothiophenol (ATP) and 2-mercaptoethylamine (MEA), respectively. The square wave voltametry (SWV), bulk electrolysis and photocurrent test were employed for characterizing the composite film. The dramatic different electrochemical characteristics were observed for the two types of films, which strongly suggested an orientational difference for RC arising from the structural difference between the two bifunctional reagents. For RC-MEA film, three redox peaks which implying electron transfer (ET) between the primary donor (P) and the bacteriopheophytin (Bphe) were observed. While for RC-ATP film, two redox peaks implying ET between the nonheme iron and the primary quinone (Q(A)) were observed. The ET behavior driven by electric field also supported the result that the RC could be linked to the electrode at different sites. The site-specific immobilization approach reported here supplies a method to differentiate the protein orientation.
Collapse
Affiliation(s)
- Jiequan Zhao
- Chemistry Department, Fudan University, Shanghai 200433, People's Republic of China
| | | | | | | | | |
Collapse
|
41
|
Zhao J, Liu B, Zou Y, Xu C, Kong J. Photoelectric conversion of photosynthetic reaction center in multilayered films fabricated by layer-by-layer assembly. Electrochim Acta 2002. [DOI: 10.1016/s0013-4686(02)00041-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Spiedel D, Roszak AW, McKendrick K, McAuley KE, Fyfe PK, Nabedryk E, Breton J, Robert B, Cogdell RJ, Isaacs NW, Jones MR. Tuning of the optical and electrochemical properties of the primary donor bacteriochlorophylls in the reaction centre from Rhodobacter sphaeroides: spectroscopy and structure. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1554:75-93. [PMID: 12034473 DOI: 10.1016/s0005-2728(02)00215-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A series of mutations have been introduced at residue 168 of the L-subunit of the reaction centre from Rhodobacter sphaeroides. In the wild-type reaction centre, residue His L168 donates a strong hydrogen bond to the acetyl carbonyl group of one of the pair of bacteriochlorophylls (BChl) that constitutes the primary donor of electrons. Mutation of His L168 to Phe or Leu causes a large decrease in the mid-point redox potential of the primary electron donor, consistent with removal of this strong hydrogen bond. Mutations to Lys, Asp and Arg cause smaller decreases in redox potential, indicative of the presence of weak hydrogen bond and/or an electrostatic effect of the polar residue. A spectroscopic analysis of the mutant complexes suggests that replacement of the wild-type His residue causes a decrease in the strength of the coupling between the two primary donor bacteriochlorophylls. The X-ray crystal structure of the mutant in which His L168 has been replaced by Phe (HL168F) was determined to a resolution of 2.5 A, and the structural model of the HL168F mutant was compared with that of the wild-type complex. The mutation causes a shift in the position of the primary donor bacteriochlorophyll that is adjacent to residue L168, and also affects the conformation of the acetyl carbonyl group of this bacteriochlorophyll. This conformational change constitutes an approximately 27 degrees through-plane rotation, rather than the large into-plane rotation that has been widely discussed in the context of the HL168F mutation. The possible structural basis of the altered spectroscopic properties of the HL168F mutant reaction centre is discussed, as is the relevance of the X-ray crystal structure of the HL168F mutant to the possible structures of the remaining mutant complexes.
Collapse
Affiliation(s)
- Diane Spiedel
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2UH, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Springs SL, Bass SE, Bowman G, Nodelman I, Schutt CE, McLendon GL. A multigeneration analysis of cytochrome b(562) redox variants: evolutionary strategies for modulating redox potential revealed using a library approach. Biochemistry 2002; 41:4321-8. [PMID: 11914078 DOI: 10.1021/bi012066s] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The redox potential of cytochromes sets the energy yield possible in metabolism and is also a key determinant of the rate at which redox reactions proceed. Here, the heme protein, cytochrome b(562), is used to study the in vitro evolution of redox potential within a library of variants containing the same structural archetype, the four-helix bundle. Multisite variations in the active site of cytochrome b(562) were introduced. A library of variants containing random mutations in place of R98 and R106 was created, and the redox potentials of a statistical sampling of this library were measured. This procedure was carried out for both the low- and high-potential variants of a previously studied F61X/F65X, first-generation library [Springs, S. L., Bass, S. E., and McLendon, G. L. (2000) Biochemistry 39, 6075]. The second-generation library reported here has a range of redox potentials which is greater than 40% (160 mV) of the known accessible potential among cytochromes with identical axial ligands (but different folds) and exceeds the range exhibited phylogenetically by the cytochrome c' family which internally maintains the same axial ligation and fold. A statistical analysis of the libraries examined reveals that the redox potential of WT cyt b(562) is found at the high-potential extremum of the distribution, indicating that this protein apparently evolved to differentially stabilize the reduced protein. The 2.7 A crystal structure of F61I/F65Y/R106L (low-potential variant of the second-generation library) was solved and is compared to the wild-type structure and the 2.2 A resolution structure of the F61I/F65Y variant (low-potential variant of the first-generation library). The structures indicate that charge-dipole effects are responsible for shifting the redox equilibrium toward the oxidized state in both the F61I/F65Y and F61I/F65Y/R106L variants. Specifically, a new protein dipole is introduced into the heme microenvironment as a result of the F65Y mutation, two new internal water molecules (one in hydrogen-bonding distance of Y65) are found, and in the case of F61I/F65Y/R106L (DeltaE(m) = 158 mV vs NHE), increased solvent exposure of the heme as a result of the R106L substitution is identified.
Collapse
Affiliation(s)
- Stacy L Springs
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Müh F, Lendzian F, Roy M, Williams JC, Allen JP, Lubitz W. Pigment−Protein Interactions in Bacterial Reaction Centers and Their Influence on Oxidation Potential and Spin Density Distribution of the Primary Donor. J Phys Chem B 2002. [DOI: 10.1021/jp0131119] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Frank Müh
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Department of Chemistry and Biochemistry and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Friedhelm Lendzian
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Department of Chemistry and Biochemistry and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Mason Roy
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Department of Chemistry and Biochemistry and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - JoAnn C. Williams
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Department of Chemistry and Biochemistry and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - James P. Allen
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Department of Chemistry and Biochemistry and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Department of Chemistry and Biochemistry and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
45
|
Lukas AS, Zhao Y, Miller SE, Wasielewski MR. Biomimetic Electron Transfer Using Low Energy Excited States: A Green Perylene-Based Analogue of Chlorophyll a. J Phys Chem B 2002. [DOI: 10.1021/jp014073w] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Aaron S. Lukas
- Department of Chemistry and Center for Nanofabrication and Molecular Self-Assembly, Northwestern University, Evanston, Illinois 60208-3113
| | - Yongyu Zhao
- Department of Chemistry and Center for Nanofabrication and Molecular Self-Assembly, Northwestern University, Evanston, Illinois 60208-3113
| | - Scott E. Miller
- Department of Chemistry and Center for Nanofabrication and Molecular Self-Assembly, Northwestern University, Evanston, Illinois 60208-3113
| | - Michael R. Wasielewski
- Department of Chemistry and Center for Nanofabrication and Molecular Self-Assembly, Northwestern University, Evanston, Illinois 60208-3113
| |
Collapse
|
46
|
Miller SE, Zhao Y, Schaller R, Mulloni V, Just EM, Johnson RC, Wasielewski MR. Ultrafast electron transfer reactions initiated by excited CT states of push–pull perylenes. Chem Phys 2002. [DOI: 10.1016/s0301-0104(01)00518-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Kirmaier C, Cua A, He C, Holten D, Bocian DF. Probing M-Branch Electron Transfer and Cofactor Environment in the Bacterial Photosynthetic Reaction Center by Addition of a Hydrogen Bond to the M-Side Bacteriopheophytin. J Phys Chem B 2001. [DOI: 10.1021/jp012768r] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4899, and Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Agnes Cua
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4899, and Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Chunyan He
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4899, and Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4899, and Department of Chemistry, University of California, Riverside, California 92521-0403
| | - David F. Bocian
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4899, and Department of Chemistry, University of California, Riverside, California 92521-0403
| |
Collapse
|
48
|
Deligiannakis Y, Rutherford AW. Electron spin echo envelope modulation spectroscopy in photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1507:226-46. [PMID: 11687217 DOI: 10.1016/s0005-2728(01)00201-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The applications of electron spin echo envelope modulation (ESEEM) spectroscopy to study paramagnetic centers in photosystem I (PSI) are reviewed with special attention to the novel spectroscopic techniques applied and the structural information obtained. We briefly summarize the physical principles and experimental techniques of ESEEM, the spectral shapes and the methods for their analysis. In PSI, ESEEM spectroscopy has been used to the study of the cation radical form of the primary electron donor chlorophyll species, P(700)(+), and the phyllosemiquinone anion radical, A(1)(-), that acts as a low-potential electron carrier. For P(700)(+), ESEEM has contributed to a debate concerning whether the cation is localized on a one or two chlorophyll molecules. This debate is treated in detail and relevant data from other methods, particularly electron nuclear double resonance (ENDOR), are also discussed. It is concluded that the ESEEM and ENDOR data can be explained in terms of five distinct nitrogen couplings, four from the tetrapyrrole ring and a fifth from an axial ligand. Thus the ENDOR and ESEEM data can be fully accounted for based on the spin density being localized on a single chlorophyll molecule. This does not eliminate the possibility that some of the unpaired spin is shared with the other chlorophyll of P(700)(+); so far, however, no unambiguous evidence has been obtained from these electron paramagnetic resonance methods. The ESEEM of the phyllosemiquinone radical A(1)(-) provided the first evidence for a tryptophan molecule pi-stacked over the semiquinone and for a weaker interaction from an additional nitrogen nucleus. Recent site-directed mutagenesis studies verified the presence of the tryptophan close to A(1), while the recent crystal structure showed that the tryptophan was indeed pi-stacked and that a weak potential H-bond from an amide backbone to one of the (semi)quinone carbonyls is probably the origin of the to the second nitrogen coupling seen in the ESEEM. ESEEM has already played an important role in the structural characterization on PSI and since it specifically probes the radical forms of the chromophores and their protein environment, the information obtained is complimentary to the crystallography. ESEEM then will continue to provide structural information that is often unavailable using other methods.
Collapse
Affiliation(s)
- Y Deligiannakis
- Laboratory of Physical Chemistry, Department of Environment and Natural Resources, University of Ioannina, Greece.
| | | |
Collapse
|
49
|
Hughes JM, Hutter MC, Reimers JR, Hush NS. Modeling the bacterial photosynthetic reaction center. 4. The structural, electrochemical, and hydrogen-bonding properties of 22 mutants of Rhodobacter sphaeroides. J Am Chem Soc 2001; 123:8550-63. [PMID: 11525663 DOI: 10.1021/ja0035710] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Site-directed mutagenesis has been employed by a number of groups to produce mutants of bacterial photosynthetic reaction centers, with the aim of tuning their operation by modifying hydrogen-bond patterns in the close vicinity of the "special pair" of bacteriochlorophylls P identical with P(L)P(M). Direct X-ray structural measurements of the consequences of mutation are rare. Attention has mostly focused on effects on properties such as carbonyl stretching frequencies and midpoint potentials to infer indirectly the induced structural modifications. In this work, the structures of 22 mutants of Rhodobacter sphaeroides have been calculated using a mixed quantum-mechanical molecular-mechanical method by modifying the known structure of the wild type. We determine (i) the orientation of the 2a-acetyl groups in the wild type, FY(M197), and FH(M197) series mutants of the neutral and oxidized reaction center, (ii) the structure of the FY(M197) mutant and possible water penetration near the special pair, (iii) that significant protein chain distortions are required to assemble some M160 series mutants (LS(M160), LN(M160), LQ(M160), and LH(M160) are considered), (iv) that there is competition for hydrogen-bonding between the 9-keto and 10a-ester groups for the introduced histidine in LH(L131) mutants, (v) that the observed midpoint potential of P for HL(M202) heterodimer mutants, including one involving also LH(M160), can be correlated with the change of electrostatic potential experienced at P(L), (vi) that hydrogen-bond cleavage may sometimes be induced by oxidation of the special pair, (vii) that the OH group of tyrosine M210 points away from P(M), and (viii) that competitive hydrogen-bonding effects determine the change in properties of NL(L166) and NH(L166) mutants. A new technique is introduced for the determination of ionization energies at the Koopmans level from QM/MM calculations, and protein-induced Stark effects on vibrational frequencies are considered.
Collapse
Affiliation(s)
- J M Hughes
- Department of Biochemistry, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | |
Collapse
|
50
|
Paschenko VZ, Knox PP, Chamorovsky SK, Krasilnikov PM, Mamedov MD, Semenov AY, Zakharova NI, Renger G, Rubin AB. Effect of D2O and cryosolvents on the redox properties of bacteriochlorophyll dimer and electron transfer processes in Rhodobacter sphaeroides reaction centers. Bioelectrochemistry 2001; 53:233-41. [PMID: 11339312 DOI: 10.1016/s0302-4598(01)00098-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Effects of environmental changes on the reaction pattern of excitation energy trapping and transformation into the "stable" radical pair P+Q(A)-, have been analyzed in isolated reaction centers of the anoxygenic purple bacterium Rhodobacter sphaeroides. The following results were obtained: (a) replacement of exchangeable protons by deuterons significantly retarded the electron transfer steps of primary charge separation, leading to the radical pair P+I- and of the subsequent reoxidation of I- by the quinone acceptor Q(A) but has virtually no effect on the midpoint potential of P/P+ that was found to be 430+/-20 mV; (b) addition of 70% (v/v) glycerol causes a shift of Em by about 30 mV towards higher values whereas the kinetics of the electron transfer reactions remain almost unaffected; (c) in the presence of the cryoprotectant DMSO, a combined effect arises, i.e. a retardation of the electron transfer kinetics comparable to that induced by H/D exchange and simultaneously an upshift of the Em value to 475+/-20 mV, resembling the action of glycerol. These results are discussed within the framework of effects on the midpoint potential due to the dielectric constant of the medium and changes of the charge distribution in the vicinity of the redox groups and the influence of relaxation processes on electron transfer reactions.
Collapse
Affiliation(s)
- V Z Paschenko
- Department of Biophysics, Biology Faculty, Lomonosov State University, Moscow, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|