1
|
Ye X, Kotaru S, Lopes R, Cravens S, Lasagna M, Wand AJ. Cooperative Substructure and Energetics of Allosteric Regulation of the Catalytic Core of the E3 Ubiquitin Ligase Parkin by Phosphorylated Ubiquitin. Biomolecules 2024; 14:1338. [PMID: 39456270 PMCID: PMC11506642 DOI: 10.3390/biom14101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Mutations in the parkin gene product Parkin give rise to autosomal recessive juvenile parkinsonism. Parkin is an E3 ubiquitin ligase that is a critical participant in the process of mitophagy. Parkin has a complex structure that integrates several allosteric signals to maintain precise control of its catalytic activity. Though its allosterically controlled structural reorganization has been extensively characterized by crystallography, the energetics and mechanisms of allosteric regulation of Parkin are much less well understood. Allostery is fundamentally linked to the energetics of the cooperative (sub)structure of the protein. Herein, we examine the mechanism of allosteric activation by phosphorylated ubiquitin binding to the enzymatic core of Parkin, which lacks the antagonistic Ubl domain. In this way, the allosteric effects of the agonist phosphorylated ubiquitin can be isolated. Using native-state hydrogen exchange monitored by mass spectrometry, we find that the five structural domains of the core of Parkin are energetically distinct. Nevertheless, association of phosphorylated ubiquitin destabilizes structural elements that bind the ubiquitin-like domain antagonist while promoting the dissociation of the catalytic domain and energetically poises the protein for transition to the fully activated structure.
Collapse
Affiliation(s)
- Xiang Ye
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sravya Kotaru
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rosana Lopes
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Shannen Cravens
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA 99258, USA
| | - Mauricio Lasagna
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - A. Joshua Wand
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
2
|
Pressure, motion, and conformational entropy in molecular recognition by proteins. BIOPHYSICAL REPORTS 2022; 3:100098. [PMID: 36647534 PMCID: PMC9840116 DOI: 10.1016/j.bpr.2022.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
The thermodynamics of molecular recognition by proteins is a central determinant of complex biochemistry. For over a half-century, detailed cryogenic structures have provided deep insight into the energetic contributions to ligand binding by proteins. More recently, a dynamical proxy based on NMR-relaxation methods has revealed an unexpected richness in the contributions of conformational entropy to the thermodynamics of ligand binding. Here, we report the pressure dependence of fast internal motion within the ribonuclease barnase and its complex with the protein barstar. In what we believe is a first example, we find that protein dynamics are conserved along the pressure-binding thermodynamic cycle. The femtomolar affinity of the barnase-barstar complex exists despite a penalty by -TΔSconf of +11.7 kJ/mol at ambient pressure. At high pressure, however, the overall change in side-chain dynamics is zero, and binding occurs with no conformational entropy penalty, suggesting an important role of conformational dynamics in the adaptation of protein function to extreme environments. Distinctive clustering of the pressure sensitivity is observed in response to both pressure and binding, indicating the presence of conformational heterogeneity involving less efficiently packed alternative conformation(s). The structural segregation of dynamics observed in barnase is striking and shows how changes in both the magnitude and the sign of regional contributions of conformational entropy to the thermodynamics of protein function are possible.
Collapse
|
3
|
Zhang S, McCallum SA, Gillilan R, Wang J, Royer CA. High Pressure CPMG and CEST Reveal That Cavity Position Dictates Distinct Dynamic Disorder in the PP32 Repeat Protein. J Phys Chem B 2022; 126:10597-10607. [PMID: 36455152 PMCID: PMC10314987 DOI: 10.1021/acs.jpcb.2c05498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Given the central role of conformational dynamics in protein function, it is essential to characterize the time scales and structures associated with these transitions. High pressure (HP) perturbation favors transitions to excited states because they typically occupy a smaller molar volume, thus facilitating characterization of conformational dynamics. Repeat proteins, with their straightforward architecture, provide good models for probing the sequence dependence of protein conformational dynamics. Investigations of chemical exchange by 15N CPMG relaxation dispersion analysis revealed that introduction of a cavity via substitution of isoleucine 7 by alanine in the N-terminal capping motif of the pp32 leucine-rich repeat protein leads to pressure-dependent conformational exchange detected on the 500 μs-2 ms CPMG time scale. Exchange amplitude decreased from the N- to C-terminus, revealing a gradient of conformational exchange across the protein. In contrast, introduction of a cavity in the central core of pp32 via the L60A mutation led to pressure-induced exchange on a slower (>2 ms) time scale detected by 15N-CEST analysis. Excited state 15N chemical shifts indicated that in the excited state detected by HP CEST, the N-terminal region is mostly unfolded, while the core retains native-like structure. These HP chemical exchange measurements reveal that cavity position dictates exchange on distinct time scales, highlighting the subtle, yet central role of sequence in determining protein conformational dynamics.
Collapse
Affiliation(s)
- Siwen Zhang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy NY USA 12180
| | - Scott A. McCallum
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy NY USA 12180
| | - Richard Gillilan
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY USA 14853
| | - Jinqiu Wang
- Graduate Program in Biochemistry and Biophysics, Rensselaer Polytechnic Institute, Troy NY USA 12180
| | - Catherine A. Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY USA 12180
| |
Collapse
|
4
|
Kuwajima K, Yagi-Utsumi M, Yanaka S, Kato K. DMSO-Quenched H/D-Exchange 2D NMR Spectroscopy and Its Applications in Protein Science. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123748. [PMID: 35744871 PMCID: PMC9230524 DOI: 10.3390/molecules27123748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
Hydrogen/deuterium (H/D) exchange combined with two-dimensional (2D) NMR spectroscopy has been widely used for studying the structure, stability, and dynamics of proteins. When we apply the H/D-exchange method to investigate non-native states of proteins such as equilibrium and kinetic folding intermediates, H/D-exchange quenching techniques are indispensable, because the exchange reaction is usually too fast to follow by 2D NMR. In this article, we will describe the dimethylsulfoxide (DMSO)-quenched H/D-exchange method and its applications in protein science. In this method, the H/D-exchange buffer is replaced by an aprotic DMSO solution, which quenches the exchange reaction. We have improved the DMSO-quenched method by using spin desalting columns, which are used for medium exchange from the H/D-exchange buffer to the DMSO solution. This improvement has allowed us to monitor the H/D exchange of proteins at a high concentration of salts or denaturants. We describe methodological details of the improved DMSO-quenched method and present a case study using the improved method on the H/D-exchange behavior of unfolded human ubiquitin in 6 M guanidinium chloride.
Collapse
Affiliation(s)
- Kunihiro Kuwajima
- Department of Physics, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Correspondence: (K.K.); (K.K.)
| | - Maho Yagi-Utsumi
- Exploratory Research Center on Life and Living Systems and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Aichi, Japan; (M.Y.-U.); (S.Y.)
- Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (the Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Aichi, Japan
| | - Saeko Yanaka
- Exploratory Research Center on Life and Living Systems and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Aichi, Japan; (M.Y.-U.); (S.Y.)
- Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (the Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Aichi, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Aichi, Japan; (M.Y.-U.); (S.Y.)
- Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (the Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Aichi, Japan
- Correspondence: (K.K.); (K.K.)
| |
Collapse
|
5
|
Dubois C, Lahfa M, Pissarra J, de Guillen K, Barthe P, Kroj T, Roumestand C, Padilla A. Combining High-Pressure NMR and Geometrical Sampling to Obtain a Full Topological Description of Protein Folding Landscapes: Application to the Folding of Two MAX Effectors from Magnaporthe oryzae. Int J Mol Sci 2022; 23:ijms23105461. [PMID: 35628267 PMCID: PMC9141691 DOI: 10.3390/ijms23105461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
Despite advances in experimental and computational methods, the mechanisms by which an unstructured polypeptide chain regains its unique three-dimensional structure remains one of the main puzzling questions in biology. Single-molecule techniques, ultra-fast perturbation and detection approaches and improvement in all-atom and coarse-grained simulation methods have greatly deepened our understanding of protein folding and the effects of environmental factors on folding landscape. However, a major challenge remains the detailed characterization of the protein folding landscape. Here, we used high hydrostatic pressure 2D NMR spectroscopy to obtain high-resolution experimental structural information in a site-specific manner across the polypeptide sequence and along the folding reaction coordinate. We used this residue-specific information to constrain Cyana3 calculations, in order to obtain a topological description of the entire folding landscape. This approach was used to describe the conformers populating the folding landscape of two small globular proteins, AVR-Pia and AVR-Pib, that belong to the structurally conserved but sequence-unrelated MAX effectors superfamily. Comparing the two folding landscapes, we found that, in spite of their divergent sequences, the folding pathway of these two proteins involves a similar, inescapable, folding intermediate, even if, statistically, the routes used are different.
Collapse
Affiliation(s)
- Cécile Dubois
- Centre de Biologie Structurale, University of Montpellier, INSERM U1054, CNRS UMR 5048, 34000 Montpellier, France
| | - Mounia Lahfa
- Centre de Biologie Structurale, University of Montpellier, INSERM U1054, CNRS UMR 5048, 34000 Montpellier, France
| | - Joana Pissarra
- Centre de Biologie Structurale, University of Montpellier, INSERM U1054, CNRS UMR 5048, 34000 Montpellier, France
| | - Karine de Guillen
- Centre de Biologie Structurale, University of Montpellier, INSERM U1054, CNRS UMR 5048, 34000 Montpellier, France
| | - Philippe Barthe
- Centre de Biologie Structurale, University of Montpellier, INSERM U1054, CNRS UMR 5048, 34000 Montpellier, France
| | - Thomas Kroj
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000 Montpellier, France
| | - Christian Roumestand
- Centre de Biologie Structurale, University of Montpellier, INSERM U1054, CNRS UMR 5048, 34000 Montpellier, France
| | - André Padilla
- Centre de Biologie Structurale, University of Montpellier, INSERM U1054, CNRS UMR 5048, 34000 Montpellier, France
| |
Collapse
|
6
|
Pozza A, Giraud F, Cece Q, Casiraghi M, Point E, Damian M, Le Bon C, Moncoq K, Banères JL, Lescop E, Catoire LJ. Exploration of the dynamic interplay between lipids and membrane proteins by hydrostatic pressure. Nat Commun 2022; 13:1780. [PMID: 35365643 PMCID: PMC8975810 DOI: 10.1038/s41467-022-29410-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 03/14/2022] [Indexed: 02/06/2023] Open
Abstract
Cell membranes represent a complex and variable medium in time and space of lipids and proteins. Their physico-chemical properties are determined by lipid components which can in turn influence the biological function of membranes. Here, we used hydrostatic pressure to study the close dynamic relationships between lipids and membrane proteins. Experiments on the β–barrel OmpX and the α–helical BLT2 G Protein-Coupled Receptor in nanodiscs of different lipid compositions reveal conformational landscapes intimately linked to pressure and lipids. Pressure can modify the conformational landscape of the membrane protein per se, but also increases the gelation of lipids, both being monitored simultaneously at high atomic resolution by NMR. Our study also clearly shows that a membrane protein can modulate, at least locally, the fluidity of the bilayer. The strategy proposed herein opens new perspectives to scrutinize the dynamic interplay between membrane proteins and their surrounding lipids. Direct information on the dynamic interplay between membrane proteins and lipids is scarce. Here the authors report a detailed description of these close relationships by combining lipid nanodiscs and high-pressure NMR. They report the link between pressure and lipid compositions to the conformational landscape of the β-barrel OmpX and the α-helical BLT2 G Protein-Coupled Receptor in nanodiscs.
Collapse
Affiliation(s)
- Alexandre Pozza
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS/Université de Paris, Institut de Biologie Physico-Chimique (IBPC, FRC 550), 75005, Paris, France
| | - François Giraud
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Quentin Cece
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS/Université de Paris, Institut de Biologie Physico-Chimique (IBPC, FRC 550), 75005, Paris, France.,Laboratoire Cibles Thérapeutiques et Conception de Médicaments (CiTCoM), UMR 8038, CNRS/Université de Paris, Faculté de Pharmacie, 75270, Paris, Cedex 06, France
| | - Marina Casiraghi
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS/Université de Paris, Institut de Biologie Physico-Chimique (IBPC, FRC 550), 75005, Paris, France.,Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 94305, Stanford, CA, USA
| | - Elodie Point
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS/Université de Paris, Institut de Biologie Physico-Chimique (IBPC, FRC 550), 75005, Paris, France
| | - Marjorie Damian
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, Pôle Chimie Balard Recherche, 34293, Montpellier, cedex 5, France
| | - Christel Le Bon
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS/Université de Paris, Institut de Biologie Physico-Chimique (IBPC, FRC 550), 75005, Paris, France
| | - Karine Moncoq
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS/Université de Paris, Institut de Biologie Physico-Chimique (IBPC, FRC 550), 75005, Paris, France
| | - Jean-Louis Banères
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, Pôle Chimie Balard Recherche, 34293, Montpellier, cedex 5, France
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 91198, Gif-sur-Yvette, France.
| | - Laurent J Catoire
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS/Université de Paris, Institut de Biologie Physico-Chimique (IBPC, FRC 550), 75005, Paris, France.
| |
Collapse
|
7
|
Comparative Assessment of NMR Probes for the Experimental Description of Protein Folding Pathways with High-Pressure NMR. BIOLOGY 2021; 10:biology10070656. [PMID: 34356511 PMCID: PMC8301334 DOI: 10.3390/biology10070656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 11/17/2022]
Abstract
Multidimensional NMR intrinsically provides multiple probes that can be used for deciphering the folding pathways of proteins: NH amide and CαHα groups are strategically located on the backbone of the protein, while CH3 groups, on the side-chain of methylated residues, are involved in important stabilizing interactions in the hydrophobic core. Combined with high hydrostatic pressure, these observables provide a powerful tool to explore the conformational landscapes of proteins. In the present study, we made a comparative assessment of the NH, CαHα, and CH3 groups for analyzing the unfolding pathway of ∆+PHS Staphylococcal Nuclease. These probes yield a similar description of the folding pathway, with virtually identical thermodynamic parameters for the unfolding reaction, despite some notable differences. Thus, if partial unfolding begins at identical pressure for these observables (especially in the case of backbone probes) and concerns similar regions of the molecule, the residues involved in contact losses are not necessarily the same. In addition, an unexpected slight shift toward higher pressure was observed in the sequence of the scenario of unfolding with CαHα when compared to amide groups.
Collapse
|
8
|
Harish B, Gillilan RE, Zou J, Wang J, Raleigh DP, Royer CA. Protein unfolded states populated at high and ambient pressure are similarly compact. Biophys J 2021; 120:2592-2598. [PMID: 33961866 DOI: 10.1016/j.bpj.2021.04.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022] Open
Abstract
The relationship between the dimensions of pressure-unfolded states of proteins compared with those at ambient pressure is controversial; resolving this issue is related directly to the mechanisms of pressure denaturation. Moreover, a significant pressure dependence of the compactness of unfolded states would complicate the interpretation of folding parameters from pressure perturbation and make comparison to those obtained using alternative perturbation approaches difficult. Here, we determined the compactness of the pressure-unfolded state of a small, cooperatively folding model protein, CTL9-I98A, as a function of temperature. This protein undergoes both thermal unfolding and cold denaturation, and the temperature dependence of the compactness at atmospheric pressure is known. High-pressure small angle x-ray scattering studies, yielding the radius of gyration and high-pressure diffusion ordered spectroscopy NMR experiments, yielding the hydrodynamic radius were carried out as a function of temperature at 250 MPa, a pressure at which the protein is unfolded. The radius of gyration values obtained at any given temperature at 250 MPa were similar to those reported previously at ambient pressure, and the trends with temperature are similar as well, although the pressure-unfolded state appears to undergo more pronounced expansion at high temperature than the unfolded state at atmospheric pressure. At 250 MPa, the compaction of the unfolded chain was maximal between 25 and 30°C, and the chain expanded upon both cooling and heating. These results reveal that the pressure-unfolded state of this protein is very similar to that observed at ambient pressure, demonstrating that pressure perturbation represents a powerful approach for observing the unfolded states of proteins under otherwise near-native conditions.
Collapse
Affiliation(s)
| | | | - Junjie Zou
- Department of Chemistry, Stony Brook University, Stony Brook, New York; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York
| | - Jinqiu Wang
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York
| | - Daniel P Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, New York; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York
| | - Catherine A Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York.
| |
Collapse
|
9
|
Dubois C, Herrada I, Barthe P, Roumestand C. Combining High-Pressure Perturbation with NMR Spectroscopy for a Structural and Dynamical Characterization of Protein Folding Pathways. Molecules 2020; 25:E5551. [PMID: 33256081 PMCID: PMC7731413 DOI: 10.3390/molecules25235551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022] Open
Abstract
High-hydrostatic pressure is an alternative perturbation method that can be used to destabilize globular proteins. Generally perfectly reversible, pressure exerts local effects on regions or domains of a protein containing internal voids, contrary to heat or chemical denaturant that destabilize protein structures uniformly. When combined with NMR spectroscopy, high pressure (HP) allows one to monitor at a residue-level resolution the structural transitions occurring upon unfolding and to determine the kinetic properties of the process. The use of HP-NMR has long been hampered by technical difficulties. Owing to the recent development of commercially available high-pressure sample cells, HP-NMR experiments can now be routinely performed. This review summarizes recent advances of HP-NMR techniques for the characterization at a quasi-atomic resolution of the protein folding energy landscape.
Collapse
Affiliation(s)
| | | | | | - Christian Roumestand
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université de Montpellier, 34090 Montpellier, France; (C.D.); (I.H.); (P.B.)
| |
Collapse
|
10
|
Funneled angle landscapes for helical proteins. J Inorg Biochem 2020; 208:111091. [PMID: 32497828 DOI: 10.1016/j.jinorgbio.2020.111091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 11/23/2022]
Abstract
We use crystallographic data for four helical iron proteins (cytochrome c-b562, cytochrome c', sperm whale myoglobin, human cytoglobin) to calculate radial and angular signatures as each unfolds from the native state stepwise though four unfolded states. From these data we construct an angle phase diagram to display the evolution of each protein from its native state; and, in turn, the phase diagram is used to construct a funneled angle landscape for comparison with the topography of its folding energy landscape. We quantify the departure of individual helical and turning regions from the areal, angular profile of corresponding regions of the native state. This procedure allows us to identify the similarities and differences among individual helical and turning regions in the early stages of unfolding of the four helical heme proteins.
Collapse
|
11
|
Abstract
Although many proteins possess a distinct folded structure lying at a minimum in a funneled free energy landscape, thermal energy causes any protein to continuously access lowly populated excited states. The existence of excited states is an integral part of biological function. Although transitions into the excited states may lead to protein misfolding and aggregation, little structural information is currently available for them. Here, we show how NMR spectroscopy, coupled with pressure perturbation, brings these elusive species to light. As pressure acts to favor states with lower partial molar volume, NMR follows the ensuing change in the equilibrium spectroscopically, with residue-specific resolution. For T4 lysozyme L99A, relaxation dispersion NMR was used to follow the increase in population of a previously identified "invisible" folded state with pressure, as this is driven by the reduction in cavity volume by the flipping-in of a surface aromatic group. Furthermore, multiple partly disordered excited states were detected at equilibrium using pressure-dependent H/D exchange NMR spectroscopy. Here, unfolding reduced partial molar volume by the removal of empty internal cavities and packing imperfections through subglobal and global unfolding. A close correspondence was found for the distinct pressure sensitivities of various parts of the protein and the amount of internal cavity volume that was lost in each unfolding event. The free energies and populations of excited states allowed us to determine the energetic penalty of empty internal protein cavities to be 36 cal⋅Å-3.
Collapse
|
12
|
Roche J, Royer CA, Roumestand C. Exploring Protein Conformational Landscapes Using High-Pressure NMR. Methods Enzymol 2019; 614:293-320. [DOI: 10.1016/bs.mie.2018.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Claesen J, Politis A. POPPeT: a New Method to Predict the Protection Factor of Backbone Amide Hydrogens. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:67-76. [PMID: 30338451 PMCID: PMC6318252 DOI: 10.1007/s13361-018-2068-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/13/2018] [Accepted: 08/28/2018] [Indexed: 05/29/2023]
Abstract
Hydrogen exchange (HX) has become an important tool to monitor protein structure and dynamics. The interpretation of HX data with respect to protein structure requires understanding of the factors that influence exchange. Simulated protein structures can be validated by comparing experimental deuteration profiles with the profiles derived from the modeled protein structure. To do this, we propose here a new method, POPPeT, for protection factor prediction based on protein motions that enable HX. By comparing POPPeT with two existing methods, the phenomenological approximation and COREX, we show enhanced predictability measured at both protection factor and deuteration level. This method can be subsequently used by modeling strategies for protein structure prediction. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
| | - Argyris Politis
- Department of Chemistry, King's College London, 7 Trinity Street, London, SE1 1DB, UK.
| |
Collapse
|
14
|
Characterization of low-lying excited states of proteins by high-pressure NMR. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:350-358. [PMID: 30366154 DOI: 10.1016/j.bbapap.2018.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 12/26/2022]
Abstract
Hydrostatic pressure alters the free energy of proteins by a few kJ mol-1, with the amount depending on their partial molar volumes. Because the folded ground state of a protein contains cavities, it is always a state of large partial molar volume. Therefore pressure always destabilises the ground state and increases the population of partially and completely unfolded states. This is a mild and reversible conformational change, which allows the study of excited states under thermodynamic equilibrium conditions. Many of the excited states studied in this way are functionally relevant; they also seem to be very similar to kinetic folding intermediates, thus suggesting that evolution has made use of the 'natural' dynamic energy landscape of the protein fold and sculpted it to optimise function. This includes features such as ligand binding, structural change during the catalytic cycle, and dynamic allostery.
Collapse
|
15
|
Caro JA, Wand AJ. Practical aspects of high-pressure NMR spectroscopy and its applications in protein biophysics and structural biology. Methods 2018; 148:67-80. [PMID: 29964175 PMCID: PMC6133745 DOI: 10.1016/j.ymeth.2018.06.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 01/15/2023] Open
Abstract
Pressure and temperature are the two fundamental variables of thermodynamics. Temperature and chemical perturbation are central experimental tools for the exploration of macromolecular structure and dynamics. Though it has long been recognized that hydrostatic pressure offers a complementary and often unique view of macromolecular structure, stability and dynamics, it has not been employed nearly as much. For solution NMR applications the limited use of high-pressure is undoubtedly traced to difficulties of employing pressure in the context of modern multinuclear and multidimensional NMR. Limitations in pressure tolerant NMR sample cells have been overcome and enable detailed studies of macromolecular energy landscapes, hydration, dynamics and function. Here we review the practical considerations for studies of biological macromolecules at elevated pressure, with a particular emphasis on applications in protein biophysics and structural biology.
Collapse
Affiliation(s)
- José A Caro
- Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6509, United States
| | - A Joshua Wand
- Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6509, United States.
| |
Collapse
|
16
|
Roche J, Royer CA, Roumestand C. Monitoring protein folding through high pressure NMR spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 102-103:15-31. [PMID: 29157491 DOI: 10.1016/j.pnmrs.2017.05.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 06/07/2023]
Abstract
High-pressure is a well-known perturbation method used to destabilize globular proteins. It is perfectly reversible, which is essential for a proper thermodynamic characterization of a protein equilibrium. In contrast to other perturbation methods such as heat or chemical denaturant that destabilize protein structures uniformly, pressure exerts local effects on regions or domains of a protein containing internal cavities. When combined with NMR spectroscopy, hydrostatic pressure offers the possibility to monitor at a residue level the structural transitions occurring upon unfolding and to determine the kinetic properties of the process. High-pressure NMR experiments can now be routinely performed, owing to the recent development of commercially available high-pressure sample cells. This review summarizes recent advances and some future directions of high-pressure NMR techniques for the characterization at atomic resolution of the energy landscape of protein folding.
Collapse
Affiliation(s)
- Julien Roche
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Catherine A Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Christian Roumestand
- Centre de Biochimie Structural INSERM U1054, CNRS UMMR 5058, Université de Montpellier, Montpellier 34090, France.
| |
Collapse
|
17
|
Abstract
In vitro, computational, and theoretical studies of protein folding have converged to paint a rich and complex energy landscape. This landscape is sensitively modulated by environmental conditions and subject to evolutionary pressure on protein function. Of these environments, none is more complex than the cell itself, where proteins function in the cytosol, in membranes, and in different compartments. A wide variety of kinetic and thermodynamics experiments, ranging from single-molecule studies to jump kinetics and from nuclear magnetic resonance to imaging on the microscope, have elucidated how protein energy landscapes facilitate folding and how they are subject to evolutionary constraints and environmental perturbation. Here we review some recent developments in the field and refer the reader to some original work and additional reviews that cover this broad topic in protein science.
Collapse
Affiliation(s)
- Martin Gruebele
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, Illinois 61801; , .,Department of Chemistry, University of Illinois, Urbana, Illinois 61801; .,Department of Physics, University of Illinois, Urbana, Illinois 61801
| | - Kapil Dave
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, Illinois 61801; ,
| | - Shahar Sukenik
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801;
| |
Collapse
|
18
|
Alderson TR, Charlier C, Torchia DA, Anfinrud P, Bax A. Monitoring Hydrogen Exchange During Protein Folding by Fast Pressure Jump NMR Spectroscopy. J Am Chem Soc 2017; 139:11036-11039. [PMID: 28766333 DOI: 10.1021/jacs.7b06676] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A method is introduced that permits direct observation of the rates at which backbone amide hydrogens become protected from solvent exchange after rapidly dropping the hydrostatic pressure inside the NMR sample cell from denaturing (2.5 kbar) to native (1 bar) conditions. The method is demonstrated for a pressure-sensitized ubiquitin variant that contains two Val to Ala mutations. Increased protection against hydrogen exchange with solvent is monitored as a function of time during the folding process. Results for 53 backbone amides show narrow clustering with protection occurring with a time constant of ca. 85 ms, but slower protection is observed around a reverse turn near the C-terminus of the protein. Remarkably, the native NMR spectrum returns with this slower time constant of ca. 150 ms, indicating that the almost fully folded protein retains molten globule characteristics with severe NMR line broadening until the final hydrogen bonds are formed. Prior to crossing the transition state barrier, hydrogen exchange protection factors are close to unity, but with slightly elevated values in the β1-β2 hairpin, previously shown to be already lowly populated in the urea-denatured state.
Collapse
Affiliation(s)
- T Reid Alderson
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| | - Cyril Charlier
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| | - Dennis A Torchia
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| | - Philip Anfinrud
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| | - Ad Bax
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
19
|
Nguyen LM, Roche J. High-pressure NMR techniques for the study of protein dynamics, folding and aggregation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 277:179-185. [PMID: 28363306 DOI: 10.1016/j.jmr.2017.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/07/2017] [Accepted: 01/12/2017] [Indexed: 06/07/2023]
Abstract
High-pressure is a well-known perturbation method used to destabilize globular proteins and dissociate protein complexes or aggregates. The heterogeneity of the response to pressure offers a unique opportunity to dissect the thermodynamic contributions to protein stability. In addition, pressure perturbation is generally reversible, which is essential for a proper thermodynamic characterization of a protein equilibrium. When combined with NMR spectroscopy, hydrostatic pressure offers the possibility of monitoring at an atomic resolution the structural transitions occurring upon unfolding and determining the kinetic properties of the process. The recent development of commercially available high-pressure sample cells greatly increased the potential applications for high-pressure NMR experiments that can now be routinely performed. This review summarizes the recent applications and future directions of high-pressure NMR techniques for the characterization of protein conformational fluctuations, protein folding and the stability of protein complexes and aggregates.
Collapse
Affiliation(s)
- Luan M Nguyen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Julien Roche
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
20
|
Malhotra P, Udgaonkar JB. How cooperative are protein folding and unfolding transitions? Protein Sci 2016; 25:1924-1941. [PMID: 27522064 PMCID: PMC5079258 DOI: 10.1002/pro.3015] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/09/2016] [Accepted: 08/09/2016] [Indexed: 11/12/2022]
Abstract
A thermodynamically and kinetically simple picture of protein folding envisages only two states, native (N) and unfolded (U), separated by a single activation free energy barrier, and interconverting by cooperative two-state transitions. The folding/unfolding transitions of many proteins occur, however, in multiple discrete steps associated with the formation of intermediates, which is indicative of reduced cooperativity. Furthermore, much advancement in experimental and computational approaches has demonstrated entirely non-cooperative (gradual) transitions via a continuum of states and a multitude of small energetic barriers between the N and U states of some proteins. These findings have been instrumental towards providing a structural rationale for cooperative versus noncooperative transitions, based on the coupling between interaction networks in proteins. The cooperativity inherent in a folding/unfolding reaction appears to be context dependent, and can be tuned via experimental conditions which change the stabilities of N and U. The evolution of cooperativity in protein folding transitions is linked closely to the evolution of function as well as the aggregation propensity of the protein. A large activation energy barrier in a fully cooperative transition can provide the kinetic control required to prevent the accumulation of partially unfolded forms, which may promote aggregation. Nevertheless, increasing evidence for barrier-less "downhill" folding, as well as for continuous "uphill" unfolding transitions, indicate that gradual non-cooperative processes may be ubiquitous features on the free energy landscape of protein folding.
Collapse
Affiliation(s)
- Pooja Malhotra
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India.
| |
Collapse
|
21
|
Xue M, Kitahara R, Yoshimura Y, Mulder FAA. Aberrant increase of NMR signal in hydrogen exchange experiments. Observation and explanation. Biochem Biophys Res Commun 2016; 478:1185-8. [PMID: 27544032 DOI: 10.1016/j.bbrc.2016.08.092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 08/15/2016] [Indexed: 12/14/2022]
Abstract
Hydrogen exchange (HX) NMR spectroscopy is widely used for monitoring structure, stability and dynamics of proteins at the level of individual residues. The stochastic replacement of protons by deuterons typically leads to an exponential decrease of the NMR signals. However, an unusual signal increase was observed in HX of several amides for T4 lysozyme L99A. This effect can be attributed to peak sharpening as a result of reduced dipolar relaxation from proximal amide protons that experience more rapid hydrogen/deuterium (H/D) exchange. The behavior was specifically observed at the termini of secondary structure elements, where large differences in protection against H/D exchange are observed. This effect is expected to be more widespread in NMR HX studies, and is important for the accurate determination of protection factors.
Collapse
Affiliation(s)
- Mengjun Xue
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, University of Aarhus, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Ryo Kitahara
- College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Yuichi Yoshimura
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, University of Aarhus, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Frans A A Mulder
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, University of Aarhus, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.
| |
Collapse
|
22
|
Tugarinov V, Libich DS, Meyer V, Roche J, Clore GM. The energetics of a three-state protein folding system probed by high-pressure relaxation dispersion NMR spectroscopy. Angew Chem Int Ed Engl 2016; 54:11157-61. [PMID: 26352026 DOI: 10.1002/anie.201505416] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Indexed: 11/11/2022]
Abstract
The energetic and volumetric properties of a three-state protein folding system, comprising a metastable triple mutant of the Fyn SH3 domain, have been investigated using pressure-dependent (15) N-relaxation dispersion NMR from 1 to 2500 bar. Changes in partial molar volumes (ΔV) and isothermal compressibilities (ΔκT ) between all the states along the folding pathway have been determined to reasonable accuracy. The partial volume and isothermal compressibility of the folded state are 100 mL mol(-1) and 40 μL mol(-1) bar(-1) , respectively, higher than those of the unfolded ensemble. Of particular interest are the findings related to the energetic and volumetric properties of the on-pathway folding intermediate. While the latter is energetically close to the unfolded state, its volumetric properties are similar to those of the folded protein. The compressibility of the intermediate is larger than that of the folded state reflecting the less rigid nature of the former relative to the latter.
Collapse
Affiliation(s)
- Vitali Tugarinov
- Laboratory of Chemical Physics, Building 5, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520 (USA).
| | - David S Libich
- Laboratory of Chemical Physics, Building 5, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520 (USA)
| | - Virginia Meyer
- Laboratory of Chemical Physics, Building 5, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520 (USA)
| | - Julien Roche
- Laboratory of Chemical Physics, Building 5, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520 (USA)
| | - G Marius Clore
- Laboratory of Chemical Physics, Building 5, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520 (USA).
| |
Collapse
|
23
|
Englander SW, Mayne L, Kan ZY, Hu W. Protein Folding-How and Why: By Hydrogen Exchange, Fragment Separation, and Mass Spectrometry. Annu Rev Biophys 2016; 45:135-52. [PMID: 27145881 DOI: 10.1146/annurev-biophys-062215-011121] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Advanced hydrogen exchange (HX) methodology can now determine the structure of protein folding intermediates and their progression in folding pathways. Key developments over time include the HX pulse labeling method with nuclear magnetic resonance analysis, the fragment separation method, the addition to it of mass spectrometric (MS) analysis, and recent improvements in the HX MS technique and data analysis. Also, the discovery of protein foldons and their role supplies an essential interpretive link. Recent work using HX pulse labeling with MS analysis finds that a number of proteins fold by stepping through a reproducible sequence of native-like intermediates in an ordered pathway. The stepwise nature of the pathway is dictated by the cooperative foldon unit construction of the protein. The pathway order is determined by a sequential stabilization principle; prior native-like structure guides the formation of adjacent native-like structure. This view does not match the funneled energy landscape paradigm of a very large number of folding tracks, which was framed before foldons were known and is more appropriate for the unguided residue-level search to surmount an initial kinetic barrier rather than for the overall unfolded-state to native-state folding pathway.
Collapse
Affiliation(s)
- S Walter Englander
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059; , , ,
| | - Leland Mayne
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059; , , ,
| | - Zhong-Yuan Kan
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059; , , ,
| | - Wenbing Hu
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059; , , ,
| |
Collapse
|
24
|
Del Galdo S, Amadei A. The unfolding effects on the protein hydration shell and partial molar volume: a computational study. Phys Chem Chem Phys 2016; 18:28175-28182. [DOI: 10.1039/c6cp05029h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper we apply the computational analysis recently proposed by our group to characterize the solvation properties of a native protein in aqueous solution, and to four model aqueous solutions of globular proteins in their unfolded states thus characterizing the protein unfolded state hydration shell and quantitatively evaluating the protein unfolded state partial molar volumes.
Collapse
Affiliation(s)
- Sara Del Galdo
- Department of Chemical Science and Technology
- University of Roma Tor Vergata
- 00133 Roma
- Italy
| | - Andrea Amadei
- Department of Chemical Science and Technology
- University of Roma Tor Vergata
- 00133 Roma
- Italy
| |
Collapse
|
25
|
Roche J, Louis JM, Bax A, Best RB. Pressure-induced structural transition of mature HIV-1 protease from a combined NMR/MD simulation approach. Proteins 2015; 83:2117-23. [PMID: 26385843 DOI: 10.1002/prot.24931] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/01/2015] [Accepted: 09/01/2015] [Indexed: 11/10/2022]
Abstract
We investigate the pressure-induced structural changes in the mature human immunodeficiency virus type 1 protease dimer, using residual dipolar coupling (RDC) measurements in a weakly oriented solution. (1)DNH RDCs were measured under high-pressure conditions for an inhibitor-free PR and an inhibitor-bound complex, as well as for an inhibitor-free multidrug resistant protease bearing 20 mutations (PR20). While PR20 and the inhibitor-bound PR were little affected by pressure, inhibitor-free PR showed significant differences in the RDCs measured at 600 bar compared with 1 bar. The structural basis of such changes was investigated by MD simulations using the experimental RDC restraints, revealing substantial conformational perturbations, specifically a partial opening of the flaps and the penetration of water molecules into the hydrophobic core of the subunits at high pressure. This study highlights the exquisite sensitivity of RDCs to pressure-induced conformational changes and illustrates how RDCs combined with MD simulations can be used to determine the structural properties of metastable intermediate states on the folding energy landscape.
Collapse
Affiliation(s)
- Julien Roche
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| |
Collapse
|
26
|
Tugarinov V, Libich DS, Meyer V, Roche J, Clore GM. The Energetics of a Three-State Protein Folding System Probed by High-Pressure Relaxation Dispersion NMR Spectroscopy. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Maeno A, Sindhikara D, Hirata F, Otten R, Dahlquist FW, Yokoyama S, Akasaka K, Mulder FAA, Kitahara R. Cavity as a source of conformational fluctuation and high-energy state: high-pressure NMR study of a cavity-enlarged mutant of T4 lysozyme. Biophys J 2015; 108:133-45. [PMID: 25564860 DOI: 10.1016/j.bpj.2014.11.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/02/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022] Open
Abstract
Although the structure, function, conformational dynamics, and controlled thermodynamics of proteins are manifested by their corresponding amino acid sequences, the natural rules for molecular design and their corresponding interplay remain obscure. In this study, we focused on the role of internal cavities of proteins in conformational dynamics. We investigated the pressure-induced responses from the cavity-enlarged L99A mutant of T4 lysozyme, using high-pressure NMR spectroscopy. The signal intensities of the methyl groups in the (1)H/(13)C heteronuclear single quantum correlation spectra, particularly those around the enlarged cavity, decreased with the increasing pressure, and disappeared at 200 MPa, without the appearance of new resonances, thus indicating the presence of heterogeneous conformations around the cavity within the ground state ensemble. Above 200 MPa, the signal intensities of >20 methyl groups gradually decreased with the increasing pressure, without the appearance of new resonances. Interestingly, these residues closely matched those sensing a large conformational change between the ground- and high-energy states, at atmospheric pressure. (13)C and (1)H NMR line-shape simulations showed that the pressure-induced loss in the peak intensity could be explained by the increase in the high-energy state population. In this high-energy state, the aromatic side chain of F114 gets flipped into the enlarged cavity. The accommodation of the phenylalanine ring into the efficiently packed cavity may decrease the partial molar volume of the high-energy state, relative to the ground state. We suggest that the enlarged cavity is involved in the conformational transition to high-energy states and in the volume fluctuation of the ground state.
Collapse
Affiliation(s)
- Akihiro Maeno
- High Pressure Protein Research Center, Institute of Advanced Technology, Kinki University, Kinokawa, Wakayama, Japan; RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
| | - Daniel Sindhikara
- College of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Fumio Hirata
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Renee Otten
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts
| | - Frederick W Dahlquist
- Department of Chemistry and Biochemistry and Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara California
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama, Japan; Department of Biophysics and Biochemistry and Laboratory of Structural Biology, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazuyuki Akasaka
- High Pressure Protein Research Center, Institute of Advanced Technology, Kinki University, Kinokawa, Wakayama, Japan; RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
| | - Frans A A Mulder
- Department of Chemistry and Interdisciplinary Nanoscience Center iNANO, University of Aarhus, Aarhus C, Denmark
| | - Ryo Kitahara
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan; College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan.
| |
Collapse
|
28
|
A hypothesis to reconcile the physical and chemical unfolding of proteins. Proc Natl Acad Sci U S A 2015; 112:E2775-84. [PMID: 25964355 DOI: 10.1073/pnas.1500352112] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
High pressure (HP) or urea is commonly used to disturb folding species. Pressure favors the reversible unfolding of proteins by causing changes in the volumetric properties of the protein-solvent system. However, no mechanistic model has fully elucidated the effects of urea on structure unfolding, even though protein-urea interactions are considered to be crucial. Here, we provide NMR spectroscopy and 3D reconstructions from X-ray scattering to develop the "push-and-pull" hypothesis, which helps to explain the initial mechanism of chemical unfolding in light of the physical events triggered by HP. In studying MpNep2 from Moniliophthora perniciosa, we tracked two cooperative units using HP-NMR as MpNep2 moved uphill in the energy landscape; this process contrasts with the overall structural unfolding that occurs upon reaching a threshold concentration of urea. At subdenaturing concentrations of urea, we were able to trap a state in which urea is preferentially bound to the protein (as determined by NMR intensities and chemical shifts); this state is still folded and not additionally exposed to solvent [fluorescence and small-angle X-ray scattering (SAXS)]. This state has a higher susceptibility to pressure denaturation (lower p1/2 and larger ΔVu); thus, urea and HP share concomitant effects of urea binding and pulling and water-inducing pushing, respectively. These observations explain the differences between the molecular mechanisms that control the physical and chemical unfolding of proteins, thus opening up new possibilities for the study of protein folding and providing an interpretation of the nature of cooperativity in the folding and unfolding processes.
Collapse
|
29
|
Abstract
Myriad biological processes proceed through states that defy characterization by conventional atomic-resolution structural biological methods. The invisibility of these 'dark' states can arise from their transient nature, low equilibrium population, large molecular weight, and/or heterogeneity. Although they are invisible, these dark states underlie a range of processes, acting as encounter complexes between proteins and as intermediates in protein folding and aggregation. New methods have made these states accessible to high-resolution analysis by nuclear magnetic resonance (NMR) spectroscopy, as long as the dark state is in dynamic equilibrium with an NMR-visible species. These methods - paramagnetic NMR, relaxation dispersion, saturation transfer, lifetime line broadening, and hydrogen exchange - allow the exploration of otherwise invisible states in exchange with a visible species over a range of timescales, each taking advantage of some unique property of the dark state to amplify its effect on a particular NMR observable. In this review, we introduce these methods and explore two specific techniques - paramagnetic relaxation enhancement and dark state exchange saturation transfer - in greater detail.
Collapse
Affiliation(s)
- Nicholas J. Anthis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| |
Collapse
|
30
|
Roche J, Dellarole M, Royer CA, Roumestand C. Exploring the Protein Folding Pathway with High-Pressure NMR: Steady-State and Kinetics Studies. Subcell Biochem 2015; 72:261-278. [PMID: 26174386 DOI: 10.1007/978-94-017-9918-8_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Defining the physical-chemical determinants of protein folding and stability, under normal and pathological conditions has constituted a major subfield in biophysical chemistry for over 50 years. Although a great deal of progress has been made in recent years towards this goal, a number of important questions remain. These include characterizing the structural, thermodynamic and dynamic properties of the barriers between conformational states on the protein energy landscape, understanding the sequence dependence of folding cooperativity, defining more clearly the role of solvation in controlling protein stability and dynamics and probing the high energy thermodynamic states in the native state basin and their role in misfolding and aggregation. Fundamental to the elucidation of these questions is a complete thermodynamic parameterization of protein folding determinants. In this chapter, we describe the use of high-pressure coupled to Nuclear Magnetic Resonance (NMR) spectroscopy to reveal unprecedented details on the folding energy landscape of proteins.
Collapse
Affiliation(s)
- Julien Roche
- Centre de Biochimie Structurale, UMR UM1&UM2/5048 CNRS/1054 INSERM, 29 rue de Navacelles, 34090, Montpellier, France
| | | | | | | |
Collapse
|
31
|
Abstract
Hydrostatic pressure leads to nonuniform compression of proteins. The structural change is on average only about 0.1 Å kbar(-1), and is therefore within the range of fluctuations at ambient pressure. The largest changes are around cavities and buried water molecules. Sheets distort much more than helices. Hydrogen bonds compress about 0.012 Å kbar(-1), although there is a wide range, including some hydrogen bonds that lengthen. In the presence of ligands and inhibitors, structural changes are smaller. Pressure has little effect on rapid fluctuations, but with larger scale slower motions, pressure increases the population of excited states (if they have smaller overall volume), and slows the fluctuations. In barnase, pressure is shown to be a useful way to characterise fluctuations on the timescale of microseconds, and helps to show that fluctuations in barnase are hierarchical, with the faster fluctuations providing a platform for the slower ones. The excited states populated at high pressure are probably functionally important.
Collapse
Affiliation(s)
- Mike P Williamson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK,
| |
Collapse
|
32
|
Role of cavities and hydration in the pressure unfolding of T4 lysozyme. Proc Natl Acad Sci U S A 2014; 111:13846-51. [PMID: 25201963 DOI: 10.1073/pnas.1410655111] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is well known that high hydrostatic pressures can induce the unfolding of proteins. The physical underpinnings of this phenomenon have been investigated extensively but remain controversial. Changes in solvation energetics have been commonly proposed as a driving force for pressure-induced unfolding. Recently, the elimination of void volumes in the native folded state has been argued to be the principal determinant. Here we use the cavity-containing L99A mutant of T4 lysozyme to examine the pressure-induced destabilization of this multidomain protein by using solution NMR spectroscopy. The cavity-containing C-terminal domain completely unfolds at moderate pressures, whereas the N-terminal domain remains largely structured to pressures as high as 2.5 kbar. The sensitivity to pressure is suppressed by the binding of benzene to the hydrophobic cavity. These results contrast to the pseudo-WT protein, which has a residual cavity volume very similar to that of the L99A-benzene complex but shows extensive subglobal reorganizations with pressure. Encapsulation of the L99A mutant in the aqueous nanoscale core of a reverse micelle is used to examine the hydration of the hydrophobic cavity. The confined space effect of encapsulation suppresses the pressure-induced unfolding transition and allows observation of the filling of the cavity with water at elevated pressures. This indicates that hydration of the hydrophobic cavity is more energetically unfavorable than global unfolding. Overall, these observations point to a range of cooperativity and energetics within the T4 lysozyme molecule and illuminate the fact that small changes in physical parameters can significantly alter the pressure sensitivity of proteins.
Collapse
|
33
|
Silva JL, Oliveira AC, Vieira TCRG, de Oliveira GAP, Suarez MC, Foguel D. High-Pressure Chemical Biology and Biotechnology. Chem Rev 2014; 114:7239-67. [DOI: 10.1021/cr400204z] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jerson L. Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Andrea C. Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Tuane C. R. G. Vieira
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Guilherme A. P. de Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Marisa C. Suarez
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Debora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| |
Collapse
|
34
|
Sibille N, Dellarole M, Royer C, Roumestand C. Measuring residual dipolar couplings at high hydrostatic pressure: robustness of alignment media to high pressure. JOURNAL OF BIOMOLECULAR NMR 2014; 58:9-16. [PMID: 24292655 DOI: 10.1007/s10858-013-9798-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/18/2013] [Indexed: 06/02/2023]
Abstract
Among other perturbations, high hydrostatic pressure has proven to be a mild yet efficient way to unfold proteins. Combining pressure perturbation with NMR spectroscopy allows for a residue-per-residue description of folding reactions. Accessing the full power of NMR spectroscopy under pressure involves the investigation of conformational sampling using orientational restraints such as residual dipolar couplings (RDCs) under conditions of partial alignment. The aim of this study was to identify and characterize stable and pressure resistant alignment media for measurement of RDCs at high pressure. Four alignment media were tested. A C12E5/n-hexanol alcohol mixture remains stable from 1 to 2,500 bar, whereas Pf1 phage and DNA nanotubes undergo a reversible transition between 300 and 900 bar. Phospholipid bicelles are stable only until 300 bar at ambient temperature. Hence, RDCs can be measured at high pressure, and their interpretation will provide atomic details of the structural and dynamic perturbations on unfolded or partially folded states of proteins under pressure.
Collapse
Affiliation(s)
- Nathalie Sibille
- Centre de Biochimie Structurale (CBS), CNRS, UMR 5048, 29 rue de Navacelles, 34090, Montpellier Cedex, France,
| | | | | | | |
Collapse
|
35
|
Roche J, Dellarole M, Caro JA, Norberto DR, Garcia AE, Garcia-Moreno B, Roumestand C, Royer CA. Effect of Internal Cavities on Folding Rates and Routes Revealed by Real-Time Pressure-Jump NMR Spectroscopy. J Am Chem Soc 2013; 135:14610-8. [DOI: 10.1021/ja406682e] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Julien Roche
- Centre de Biochimie
Structurale, INSERM U554, CNRS UMR 5048, Universités de Montpellier, France
| | - Mariano Dellarole
- Centre de Biochimie
Structurale, INSERM U554, CNRS UMR 5048, Universités de Montpellier, France
| | - José A. Caro
- Department
of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Douglas R. Norberto
- Department
of Biochemistry, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Angel E. Garcia
- Department
of Physics and Applied Physics and Center for Biotechnology and Interdisciplinary
Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Bertrand Garcia-Moreno
- Department
of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Christian Roumestand
- Centre de Biochimie
Structurale, INSERM U554, CNRS UMR 5048, Universités de Montpellier, France
| | - Catherine A. Royer
- Centre de Biochimie
Structurale, INSERM U554, CNRS UMR 5048, Universités de Montpellier, France
| |
Collapse
|
36
|
Fu Y, Wand AJ. Partial alignment and measurement of residual dipolar couplings of proteins under high hydrostatic pressure. JOURNAL OF BIOMOLECULAR NMR 2013; 56:353-7. [PMID: 23807390 PMCID: PMC3758465 DOI: 10.1007/s10858-013-9754-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/12/2013] [Indexed: 05/06/2023]
Abstract
High-pressure NMR spectroscopy has emerged as a complementary approach for investigating various structural and thermodynamic properties of macromolecules. Noticeably absent from the array of experimental restraints that have been employed to characterize protein structures at high hydrostatic pressure is the residual dipolar coupling, which requires the partial alignment of the macromolecule of interest. Here we examine five alignment media that are commonly used at ambient pressure for this purpose. We find that the spontaneous alignment of Pf1 phage, d(GpG) and a C12E5/n-hexnanol mixture in a magnetic field is preserved under high hydrostatic pressure. However, DMPC/DHPC bicelles and collagen gel are found to be unsuitable. Evidence is presented to demonstrate that pressure-induced structural changes can be identified using the residual dipolar coupling.
Collapse
Affiliation(s)
| | - A. Joshua Wand
- Corresponding Author Information, , Tel: 215-573-7288, Fax: 215-573-7290
| |
Collapse
|
37
|
Kitahara R, Hata K, Li H, Williamson MP, Akasaka K. Pressure-induced chemical shifts as probes for conformational fluctuations in proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 71:35-58. [PMID: 23611314 DOI: 10.1016/j.pnmrs.2012.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 12/18/2012] [Indexed: 06/02/2023]
Affiliation(s)
- Ryo Kitahara
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Japan
| | | | | | | | | |
Collapse
|
38
|
Roche J, Dellarole M, Caro JA, Guca E, Norberto DR, Yang Y, Garcia AE, Roumestand C, García-Moreno B, Royer CA. Remodeling of the folding free energy landscape of staphylococcal nuclease by cavity-creating mutations. Biochemistry 2012; 51:9535-46. [PMID: 23116341 DOI: 10.1021/bi301071z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The folding of staphylococcal nuclease (SNase) is known to proceed via a major intermediate in which the central OB subdomain is folded and the C-terminal helical subdomain is disordered. To identify the structural and energetic determinants of this folding free energy landscape, we have examined in detail, using high-pressure NMR, the consequences of cavity creating mutations in each of the two subdomains of an ultrastable SNase, Δ+PHS. The stabilizing mutations of Δ+PHS enhanced the population of the major folding intermediate. Cavity creation in two different regions of the Δ+PHS reference protein, despite equivalent effects on global stability, had very distinct consequences on the complexity of the folding free energy landscape. The L125A substitution in the C-terminal helix of Δ+PHS slightly suppressed the major intermediate and promoted an additional excited state involving disorder in the N-terminus, but otherwise decreased landscape heterogeneity with respect to the Δ+PHS background protein. The I92A substitution, located in the hydrophobic OB-fold core, had a much more profound effect, resulting in a significant increase in the number of intermediate states and implicating the entire protein structure. Denaturant (GuHCl) had very subtle and specific effects on the landscape, suppressing some states and favoring others, depending upon the mutational context. These results demonstrate that disrupting interactions in a region of the protein with highly cooperative, unfrustrated folding has very profound effects on the roughness of the folding landscape, whereas the effects are less pronounced for an energetically equivalent substitution in an already frustrated region.
Collapse
Affiliation(s)
- Julien Roche
- Centre de Biochimie Structurale, INSERM U554, CNRS UMR 5048, Universités de Montpellier, Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Akdogan Y, Anbazhagan V, Hinderberger D, Schneider D. Heme Binding Constricts the Conformational Dynamics of the Cytochrome b559′ Heme Binding Cavity. Biochemistry 2012; 51:7149-56. [DOI: 10.1021/bi300489s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yasar Akdogan
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz,
Germany
| | - Veerappan Anbazhagan
- Institut für Pharmazie
und Biochemie, Johannes Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
| | - Dariush Hinderberger
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz,
Germany
| | - Dirk Schneider
- Institut für Pharmazie
und Biochemie, Johannes Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
| |
Collapse
|
40
|
Skinner JJ, Lim WK, Bédard S, Black BE, Englander SW. Protein dynamics viewed by hydrogen exchange. Protein Sci 2012; 21:996-1005. [PMID: 22544544 DOI: 10.1002/pro.2081] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 04/09/2012] [Indexed: 01/19/2023]
Abstract
To examine the relationship between protein structural dynamics and measurable hydrogen exchange (HX) data, the detailed exchange behavior of most of the backbone amide hydrogens of Staphylococcal nuclease was compared with that of their neighbors, with their structural environment, and with other information. Results show that H-bonded hydrogens are protected from exchange, with HX rate effectively zero, even when they are directly adjacent to solvent. The transition to exchange competence requires a dynamic structural excursion that removes H-bond protection and allows exposure to solvent HX catalyst. The detailed data often make clear the nature of the dynamic excursion required. These range from whole molecule unfolding, through smaller cooperative unfolding reactions of secondary structural elements, and down to local fluctuations that involve as little as a single peptide group or side chain or water molecule. The particular motion that dominates the exchange of any hydrogen is the one that allows the fastest HX rate. The motion and the rate it produces are determined by surrounding structure and not by nearness to solvent or the strength of the protecting H-bond itself or its acceptor type (main chain, side chain, structurally bound water). Many of these motions occur over time scales that are appropriate for biochemical function.
Collapse
Affiliation(s)
- John J Skinner
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059, USA.
| | | | | | | | | |
Collapse
|
41
|
Fu Y, Kasinath V, Moorman VR, Nucci NV, Hilser VJ, Wand AJ. Coupled motion in proteins revealed by pressure perturbation. J Am Chem Soc 2012; 134:8543-50. [PMID: 22452540 PMCID: PMC3415598 DOI: 10.1021/ja3004655] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cooperative nature of protein substructure and internal motion is a critical aspect of their functional competence about which little is known experimentally. NMR relaxation is used here to monitor the effects of high pressure on fast internal motion in the protein ubiquitin. In contrast to the main chain, the motions of the methyl-bearing side chains have a large and variable pressure dependence. Within the core, this pressure sensitivity correlates with the magnitude of motion at ambient pressure. Spatial clustering of the dynamic response to applied hydrostatic pressure is also seen, indicating localized cooperativity of motion on the sub-nanosecond time scale and suggesting regions of variable compressibility. These and other features indicate that the native ensemble contains a significant fraction of members with characteristics ascribed to the recently postulated "dry molten globule". The accompanying variable side-chain conformational entropy helps complete our view of the thermodynamic architecture underlying protein stability, folding, and function.
Collapse
Affiliation(s)
- Yinan Fu
- Graduate Group in Biochemistry and Molecular Biophysics and Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
| | - Vignesh Kasinath
- Graduate Group in Biochemistry and Molecular Biophysics and Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
| | - Veronica R. Moorman
- Graduate Group in Biochemistry and Molecular Biophysics and Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
| | - Nathaniel V. Nucci
- Graduate Group in Biochemistry and Molecular Biophysics and Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
| | - Vincent J. Hilser
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218 USA
| | - A. Joshua Wand
- Graduate Group in Biochemistry and Molecular Biophysics and Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
| |
Collapse
|
42
|
Abstract
It has been known for nearly 100 years that pressure unfolds proteins, yet the physical basis of this effect is not understood. Unfolding by pressure implies that the molar volume of the unfolded state of a protein is smaller than that of the folded state. This decrease in volume has been proposed to arise from differences between the density of bulk water and water associated with the protein, from pressure-dependent changes in the structure of bulk water, from the loss of internal cavities in the folded states of proteins, or from some combination of these three factors. Here, using 10 cavity-containing variants of staphylococcal nuclease, we demonstrate that pressure unfolds proteins primarily as a result of cavities that are present in the folded state and absent in the unfolded one. High-pressure NMR spectroscopy and simulations constrained by the NMR data were used to describe structural and energetic details of the folding landscape of staphylococcal nuclease that are usually inaccessible with existing experimental approaches using harsher denaturants. Besides solving a 100-year-old conundrum concerning the detailed structural origins of pressure unfolding of proteins, these studies illustrate the promise of pressure perturbation as a unique tool for examining the roles of packing, conformational fluctuations, and water penetration as determinants of solution properties of proteins, and for detecting folding intermediates and other structural details of protein-folding landscapes that are invisible to standard experimental approaches.
Collapse
|
43
|
Bhattacherjee A, Biswas P. Designing Misfolded Proteins by Energy Landscaping. J Phys Chem B 2010; 115:113-9. [DOI: 10.1021/jp108416c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Parbati Biswas
- Department of Chemistry, University of Delhi, Delhi-110007
| |
Collapse
|
44
|
Tjong H, Zhou HX. The folding transition-state ensemble of a four-helix bundle protein: helix propensity as a determinant and macromolecular crowding as a probe. Biophys J 2010; 98:2273-80. [PMID: 20483336 DOI: 10.1016/j.bpj.2010.01.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 12/21/2009] [Accepted: 01/05/2010] [Indexed: 10/19/2022] Open
Abstract
The four-helix bundle protein Rd-apocyt b(562), a redesigned stable variant of apocytochrome b(562), exhibits two-state folding kinetics. Its transition-state ensemble has been characterized by Phi-value analysis. To elucidate the molecular basis of the transition-state ensemble, we have carried out high-temperature molecular dynamics simulations of the unfolding process. In six parallel simulations, unfolding started with the melting of helix I and the C-terminal half of helix IV, and followed by helix III, the N-terminal half of helix IV and helix II. This ordered melting of the helices is consistent with the conclusion from native-state hydrogen exchange, and can be rationalized by differences in intrinsic helix propensity. Guided by experimental Phi-values, a putative transition-state ensemble was extracted from the simulations. The residue helical probabilities of this transition-state ensemble show good correlation with the Phi-values. To further validate the putative transition-state ensemble, the effect of macromolecular crowding on the relative stability between the unfolded ensemble and the transition-state ensemble was calculated. The resulting effect of crowding on the folding kinetics agrees well with experimental observations. This study shows that molecular dynamics simulations combined with calculation of crowding effects provide an avenue for characterize the transition-state ensemble in atomic details.
Collapse
Affiliation(s)
- Harianto Tjong
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
| | | |
Collapse
|
45
|
Grigera JR, McCarthy AN. The behavior of the hydrophobic effect under pressure and protein denaturation. Biophys J 2010; 98:1626-31. [PMID: 20409483 DOI: 10.1016/j.bpj.2009.12.4298] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2009] [Revised: 11/18/2009] [Accepted: 12/07/2009] [Indexed: 11/25/2022] Open
Abstract
It is well known that proteins denature under high pressure. The mechanism that underlies such a process is still not clearly understood, however, giving way to controversial interpretations. Using molecular dynamics simulation on systems that may be regarded experimentally as limiting examples of the effect of high pressure on globular proteins, such as lysozyme and apomyoglobin, we have effectively reproduced such similarities and differences in behavior as are interpreted from experiment. From the analysis of such data, we explain the experimental evidence at hand through the effect of pressure on the change of water structure, and hence the weakening of the hydrophobic effect that is known to be the main driving force in protein folding.
Collapse
Affiliation(s)
- J Raúl Grigera
- Institute of Physics of Fluids and Biological Systems, (La Plata UNLP-CONICET) 59-789, B1900BTE, La Plata, Argentina.
| | | |
Collapse
|
46
|
Ortore MG, Spinozzi F, Mariani P, Paciaroni A, Barbosa LRS, Amenitsch H, Steinhart M, Ollivier J, Russo D. Combining structure and dynamics: non-denaturing high-pressure effect on lysozyme in solution. J R Soc Interface 2009; 6 Suppl 5:S619-34. [PMID: 19570795 PMCID: PMC2843975 DOI: 10.1098/rsif.2009.0163.focus] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 06/03/2009] [Indexed: 11/12/2022] Open
Abstract
Small-angle X-ray scattering (SAXS) and elastic and quasi-elastic neutron scattering techniques were used to investigate the high-pressure-induced changes on interactions, the low-resolution structure and the dynamics of lysozyme in solution. SAXS data, analysed using a global-fit procedure based on a new approach for hydrated protein form factor description, indicate that lysozyme completely maintains its globular structure up to 1500 bar, but significant modifications in the protein-protein interaction potential occur at approximately 600-1000 bar. Moreover, the mass density of the protein hydration water shows a clear discontinuity within this pressure range. Neutron scattering experiments indicate that the global and the local lysozyme dynamics change at a similar threshold pressure. A clear evolution of the internal protein dynamics from diffusing to more localized motions has also been probed. Protein structure and dynamics results have then been discussed in the context of protein-water interface and hydration water dynamics. According to SAXS results, the new configuration of water in the first hydration layer induced by pressure is suggested to be at the origin of the observed local mobility changes.
Collapse
Affiliation(s)
- Maria Grazia Ortore
- Dipartimento SAIFET, Sezione Scienze Fisiche, Università Politecnica delle Marche and CNISM, Ancona, Italy
| | - Francesco Spinozzi
- Dipartimento SAIFET, Sezione Scienze Fisiche, Università Politecnica delle Marche and CNISM, Ancona, Italy
| | - Paolo Mariani
- Dipartimento SAIFET, Sezione Scienze Fisiche, Università Politecnica delle Marche and CNISM, Ancona, Italy
| | - Alessandro Paciaroni
- Dipartimento di Fisica, Università degli Studi di Perugia and CNISM, Perugia, Italy
| | | | - Heinz Amenitsch
- Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, Graz, Austria
| | - Milos Steinhart
- Institute of Macromolecular Chemistry, Prague, Czech Republic
| | | | - Daniela Russo
- CNR-INFM and CRS-SOFT, c/o Institut Laue-Langevin, Grenoble, France
| |
Collapse
|
47
|
Gledhill JM, Walters BT, Wand AJ. AMORE-HX: a multidimensional optimization of radial enhanced NMR-sampled hydrogen exchange. JOURNAL OF BIOMOLECULAR NMR 2009; 45:233-9. [PMID: 19633974 PMCID: PMC3042283 DOI: 10.1007/s10858-009-9357-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 06/29/2009] [Indexed: 05/19/2023]
Abstract
The Cartesian sampled three-dimensional HNCO experiment is inherently limited in time resolution and sensitivity for the real time measurement of protein hydrogen exchange. This is largely overcome by use of the radial HNCO experiment that employs the use of optimized sampling angles. The significant practical limitation presented by use of three-dimensional data is the large data storage and processing requirements necessary and is largely overcome by taking advantage of the inherent capabilities of the 2D-FT to process selective frequency space without artifact or limitation. Decomposition of angle spectra into positive and negative ridge components provides increased resolution and allows statistical averaging of intensity and therefore increased precision. Strategies for averaging ridge cross sections within and between angle spectra are developed to allow further statistical approaches for increasing the precision of measured hydrogen occupancy. Intensity artifacts potentially introduced by over-pulsing are effectively eliminated by use of the BEST approach.
Collapse
Affiliation(s)
| | | | - A. Joshua Wand
- To whom correspondence should be addressed. , Contact Information: Professor A. J. Wand, Department of Biochemistry & Biophysics, University of Pennsylvania, 905 Stellar-Chance Laboratories, 422 Curie Blvd., Philadelphia, PA 19104-6059, telephone: 215-573-7288, facsimile: 215-573-7290
| |
Collapse
|
48
|
Kielec JM, Valentine KG, Wand AJ. A method for solution NMR structural studies of large integral membrane proteins: reverse micelle encapsulation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:150-60. [PMID: 19665988 DOI: 10.1016/j.bbamem.2009.07.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 07/22/2009] [Indexed: 10/20/2022]
Abstract
The structural study of membrane proteins perhaps represents one of the greatest challenges of the post-genomic era. While membrane proteins comprise over 50% of current and potential drug targets, their structural characterization lags far behind that of soluble proteins. Nuclear magnetic resonance (NMR) offers great potential not only with respect to structural characterization of integral membrane proteins but may also provide the ability to study the details of small ligand interactions. However, the size limitations of solution NMR have restricted comprehensive structural characterization of membrane protein NMR structures to the relatively small beta-barrel proteins or helical proteins of relatively simple topology. In an effort to escape the barriers presented by slow molecular reorientation of large integral membrane proteins solubilized by detergent micelles in water, we have adapted the reverse micelle encapsulation strategy originally developed for the study of large soluble proteins by solution NMR methods. Here we review a novel approach to the solubilization of large integral membrane proteins in reverse micelle surfactants dissolved in low viscosity alkane solvents. The procedure is illustrated with a 54kDa construct of the homotetrameric KcsA potassium channel.
Collapse
Affiliation(s)
- Joseph M Kielec
- Johnson Research Foundation and Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104-6059
| | | | | |
Collapse
|
49
|
Abstract
Cytochrome cb(562) is a variant of an Escherichia coli four-helix bundle b-type heme protein in which the porphyrin prosthetic group is covalently ligated to the polypeptide near the terminus of helix 4. Studies from other laboratories have shown that the apoprotein folds rapidly without the formation of intermediates, whereas the holoprotein loses heme before native structure can be attained. Time-resolved fluorescence energy transfer (TRFET) measurements of cytochrome cb(562) refolding triggered using an ultrafast continuous-flow mixer (150 micros dead time) reveal that heme attachment to the polypeptide does not interfere with rapid formation of the native structure. Analyses of the TRFET data produce distributions of Trp-59-heme distances in the protein before, during, and after refolding. Characterization of the moments and time evolution of these distributions provides compelling evidence for a refolding mechanism that does not involve significant populations of intermediates. These observations suggest that the cytochrome b(562) folding energy landscape is minimally frustrated and able to tolerate the introduction of substantial perturbations (i.e., the heme prosthetic group) without the formation of deep misfolded traps.
Collapse
|
50
|
Kielec JM, Valentine KG, Babu CR, Wand AJ. Reverse micelles in integral membrane protein structural biology by solution NMR spectroscopy. Structure 2009; 17:345-51. [PMID: 19278649 PMCID: PMC2712881 DOI: 10.1016/j.str.2009.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 01/30/2009] [Accepted: 01/30/2009] [Indexed: 11/28/2022]
Abstract
Integral membrane proteins remain a significant challenge to structural studies by solution NMR spectroscopy. This is due not only to spectral complexity, but also because the effects of slow molecular reorientation are exacerbated by the need to solubilize the protein in aqueous detergent micelles. These assemblies can be quite large and require deuteration for optimal use of the TROSY effect. In principle, another approach is to employ reverse micelle encapsulation to solubilize the protein in a low-viscosity solvent in which the rapid tumbling of the resulting particle allows for use of standard triple-resonance methods. The preparation of such samples of membrane proteins is difficult. Using a 54 kDa construct of the homotetrameric potassium channel KcsA, we demonstrate a strategy that employs a hybrid surfactant to transfer the protein to the reverse micelle system.
Collapse
Affiliation(s)
- Joseph M Kielec
- Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| | | | | | | |
Collapse
|