1
|
Salazar Marcano DE, Savić ND, Declerck K, Abdelhameed SAM, Parac-Vogt TN. Reactivity of metal-oxo clusters towards biomolecules: from discrete polyoxometalates to metal-organic frameworks. Chem Soc Rev 2024; 53:84-136. [PMID: 38015569 DOI: 10.1039/d3cs00195d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Metal-oxo clusters hold great potential in several fields such as catalysis, materials science, energy storage, medicine, and biotechnology. These nanoclusters of transition metals with oxygen-based ligands have also shown promising reactivity towards several classes of biomolecules, including proteins, nucleic acids, nucleotides, sugars, and lipids. This reactivity can be leveraged to address some of the most pressing challenges we face today, from fighting various diseases, such as cancer and viral infections, to the development of sustainable and environmentally friendly energy sources. For instance, metal-oxo clusters and related materials have been shown to be effective catalysts for biomass conversion into renewable fuels and platform chemicals. Furthermore, their reactivity towards biomolecules has also attracted interest in the development of inorganic drugs and bioanalytical tools. Additionally, the structural versatility of metal-oxo clusters allows for the efficiency and selectivity of the biomolecular reactions they promote to be readily tuned, thereby providing a pathway towards reaction optimization. The properties of the catalyst can also be improved through incorporation into solid supports or by linking metal-oxo clusters together to form Metal-Organic Frameworks (MOFs), which have been demonstrated to be powerful heterogeneous catalysts. Therefore, this review aims to provide a comprehensive and critical analysis of the state of the art on biomolecular transformations promoted by metal-oxo clusters and their applications, with a particular focus on structure-activity relationships.
Collapse
Affiliation(s)
| | - Nada D Savić
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Kilian Declerck
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | | | | |
Collapse
|
2
|
Wang Y, Hanrahan G, Azar FA, Mittermaier A. Binding interactions in a kinase active site modulate background ATP hydrolysis. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140720. [PMID: 34597835 DOI: 10.1016/j.bbapap.2021.140720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/31/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Kinases play central roles in many cellular processes, transferring the terminal phosphate groups of nucleoside triphosphates (NTPs) onto substrates. In the absence of substrates, kinases can also hydrolyse NTPs producing NDPs and inorganic phosphate. Hydrolysis is usually much less efficient than the native phosphoryl transfer reaction. This may be related to the fact that NTP hydrolysis is metabolically unfavorable as it unproductively consumes the cell's energy stores. It has been suggested that substrate interactions could drive changes in NTP binding pocket, activating catalysis only when substrates are present. Structural data show substrate-induced conformational rearrangements, however there is a lack of corresponding functional information. To better understand this phenomenon, we developed a suite of isothermal titration calorimetry (ITC) kinetics methods to characterize ATP hydrolysis by the antibiotic resistance enzyme aminoglycoside-3'-phosphotransferase-IIIa (APH(3')-IIIa). We measured Km, kcat, and product inhibition constants and single-turnover kinetics in the presence and absence of non-substrate aminoglycosides (nsAmgs) that are structurally similar to the native substrates. We found that the presence of an nsAmg increased the chemical step of cleaving the ATP γ-phosphate by at least 10- to 20-fold under single-turnover conditions, supporting the existence of interactions that link substrate binding to substantially enhanced catalytic rates. Our detailed kinetic data on the association and dissociation rates of nsAmgs and ADP shed light on the biophysical processes underlying the enzyme's Theorell-Chance reaction mechanism. Furthermore, they provide clues on how to design small-molecule effectors that could trigger efficient ATP hydrolysis and generate selective pressure against bacteria harboring the APH(3')-IIIa.
Collapse
Affiliation(s)
- Yun Wang
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada
| | - Grace Hanrahan
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada
| | - Frederic Abou Azar
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada
| | - Anthony Mittermaier
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada.
| |
Collapse
|
3
|
Norjmaa G, Solé-Daura A, Besora M, Ricart JM, Carbó JJ. Peptide Hydrolysis by Metal (Oxa)cyclen Complexes: Revisiting the Mechanism and Assessing Ligand Effects. Inorg Chem 2021; 60:807-815. [PMID: 33411534 DOI: 10.1021/acs.inorgchem.0c02859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanism responsible for peptide bond hydrolysis by Co(III) and Cu(II) complexes with (oxa)cyclen ligands has been revisited by means of computational tools. We propose that the mechanism starts by substrate coordination and an outer-sphere attack on the amide C atom of a solvent water molecule assisted by the metal hydroxo moiety as a general base, which occurs through six-membered ring transition states. This new mechanism represents a more likely scenario than the previously proposed mechanisms that involved an inner-sphere nucleophilic attack through more strained four-membered rings transition states. The corresponding computed overall free-energy barrier of 25.2 kcal mol-1 for hydrolysis of the peptide bond in Phe-Ala by a cobalt(III) oxacyclen catalyst (1) is consistent with the experimental values obtained from rate constants. Also, we assessed the influence of the nature of the ligand throughout a systematic replacement of N by O atoms in the (oxa)cyclen ligand. Increasing the number of coordinating O atoms accelerates the reaction by increasing the Lewis acidity of the metal ion. On the other hand, the higher reactivity observed for the copper(II) oxacyclen catalyst with respect to the analogous Co(III) complex can be attributed to the larger Brönsted basicity of the copper(II) hydroxo ligand. Ultimately, the detailed understanding of the ligand and metal nature effects allowed us to identify the double role of the metal hydroxo complexes as Lewis acids and Brönsted bases and to rationalize the observed reactivity trends.
Collapse
Affiliation(s)
- Gantulga Norjmaa
- Department de Química Física i Inorgànica, Universitat Rovira i Virgili (URV), Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Albert Solé-Daura
- Department de Química Física i Inorgànica, Universitat Rovira i Virgili (URV), Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Maria Besora
- Department de Química Física i Inorgànica, Universitat Rovira i Virgili (URV), Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Josep M Ricart
- Department de Química Física i Inorgànica, Universitat Rovira i Virgili (URV), Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Jorge J Carbó
- Department de Química Física i Inorgànica, Universitat Rovira i Virgili (URV), Marcel·lí Domingo 1, 43007 Tarragona, Spain
| |
Collapse
|
4
|
Jayasinghe‐Arachchige VM, Hu Q, Sharma G, Paul TJ, Lundberg M, Quinonero D, Parac‐Vogt TN, Prabhakar R. Hydrolysis of chemically distinct sites of human serum albumin by polyoxometalate: A hybrid QM/MM (ONIOM) study. J Comput Chem 2018; 40:51-61. [DOI: 10.1002/jcc.25528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 12/28/2022]
Affiliation(s)
| | - Qiaoyu Hu
- Department of Chemistry University of Miami Coral Gables Florida 33146
| | - Gaurav Sharma
- Department of Chemistry University of Miami Coral Gables Florida 33146
| | - Thomas J. Paul
- Department of Chemistry University of Miami Coral Gables Florida 33146
| | - Marcus Lundberg
- Department of Chemistry ‐ Ångström Laboratory Uppsala University 751 21, Uppsala Sweden
| | - David Quinonero
- Department of Chemistry Universitat de les Illes Balears Palma de Mallorca Spain
| | | | - Rajeev Prabhakar
- Department of Chemistry University of Miami Coral Gables Florida 33146
| |
Collapse
|
5
|
Das A, Gerlits O, Parks JM, Langan P, Kovalevsky A, Heller WT. Protein Kinase A Catalytic Subunit Primed for Action: Time-Lapse Crystallography of Michaelis Complex Formation. Structure 2015; 23:2331-2340. [PMID: 26585512 DOI: 10.1016/j.str.2015.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/31/2015] [Accepted: 10/01/2015] [Indexed: 10/22/2022]
Abstract
The catalytic subunit of the cyclic AMP-dependent protein kinase A (PKAc) catalyzes the transfer of the γ-phosphate of bound Mg2ATP to a serine or threonine residue of a protein substrate. Here, time-lapse X-ray crystallography was used to capture a series of complexes of PKAc with an oligopeptide substrate and unreacted Mg2ATP, including the Michaelis complex, that reveal important geometric rearrangements in and near the active site preceding the phosphoryl transfer reaction. Contrary to the prevailing view, Mg(2+) binds first to the M1 site as a complex with ATP and is followed by Mg(2+) binding to the M2 site. Concurrently, the target serine hydroxyl of the peptide substrate rotates away from the active site toward the bulk solvent, which breaks the hydrogen bond with D166. Lastly, the serine hydroxyl of the substrate rotates back toward D166 to form the Michaelis complex with the active site primed for phosphoryl transfer.
Collapse
Affiliation(s)
- Amit Das
- Biology & Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Oksana Gerlits
- Biology & Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jerry M Parks
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Paul Langan
- Biology & Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Andrey Kovalevsky
- Biology & Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - William T Heller
- Biology & Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
6
|
Camacho FG, Alves WA. Using IR and Raman spectra to explain the catalytic activity of the Fe(II)/Fe(III) pair toward the cleavage of peptide bonds. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 151:11-15. [PMID: 26117195 DOI: 10.1016/j.saa.2015.06.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/11/2015] [Indexed: 06/04/2023]
Abstract
IR and Raman experiments of formamide (FA) solutions containing variable amounts of Fe(II) and Fe(III) salts were carried out. The νCO vibration is downshifted whereas the νCN mode is upshifted in the presence of the divalent ion. As the trivalent ion is added to the solvent, upshifts of both νCO and νCN vibrations are observed. These spectral patterns are related to the distinct FA forms that are stabilized by each ion. Fe(II) is surrounded by 6 ionic FA species while neutral ones coordinate to the trivalent ion with formation of [Fe(FA)3Cl](2+) and [Fe(FA)2(Cl)2](+). In higher salt compositions [FeCl4](-) is also identified in the spectra. Our vibrational results are very well corroborated by biological studies on the catalytic activity of the Fe(II)/Fe(III) pair in oxidative cleavage processes of polypeptides and proteins.
Collapse
Affiliation(s)
- Felipe G Camacho
- Departamento de Química Inorgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, Caixa Postal 68563, Rio de Janeiro, RJ 21941-909, Brazil
| | - Wagner A Alves
- Departamento de Química Inorgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, Caixa Postal 68563, Rio de Janeiro, RJ 21941-909, Brazil.
| |
Collapse
|
7
|
Zhang T, Zhu X, Prabhakar R. Peptide Hydrolysis by Metal-Cyclen Complexes and Their Analogues: Insights from Theoretical Studies. Organometallics 2014. [DOI: 10.1021/om400903r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tingting Zhang
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Xiaoxia Zhu
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
8
|
Zhang T, Zhu X, Prabhakar R. Mechanistic Insights into Metal (Pd2+, Co2+, and Zn2+)−β-Cyclodextrin Catalyzed Peptide Hydrolysis: A QM/MM Approach. J Phys Chem B 2014; 118:4106-14. [DOI: 10.1021/jp502229s] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tingting Zhang
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Xiaoxia Zhu
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| |
Collapse
|
9
|
Vanhaecht S, Absillis G, Parac-Vogt TN. Amino acid side chain induced selectivity in the hydrolysis of peptides catalyzed by a Zr(iv)-substituted Wells–Dawson type polyoxometalate. Dalton Trans 2013; 42:15437-46. [DOI: 10.1039/c3dt51893k] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Ho PH, Stroobants K, Parac-Vogt TN. Hydrolysis of Serine-Containing Peptides at Neutral pH Promoted by [MoO4]2– Oxyanion. Inorg Chem 2011; 50:12025-33. [DOI: 10.1021/ic2015034] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Phuong Hien Ho
- Katholieke Universiteit Leuven, Department of Chemistry, Celestijnenlaan
200F, B-3001, Leuven, Belgium
| | - Karen Stroobants
- Katholieke Universiteit Leuven, Department of Chemistry, Celestijnenlaan
200F, B-3001, Leuven, Belgium
| | - Tatjana N. Parac-Vogt
- Katholieke Universiteit Leuven, Department of Chemistry, Celestijnenlaan
200F, B-3001, Leuven, Belgium
| |
Collapse
|
11
|
Yeguas V, Campomanes P, López R, Díaz N, Suárez D. Understanding Regioselective Cleavage in Peptide Hydrolysis by a Palladium(II) Aqua Complex: A Theoretical Point of View. J Phys Chem B 2010; 114:8525-35. [DOI: 10.1021/jp101870j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Violeta Yeguas
- Departamento de Química Física y Analítica, Universidad de Oviedo, C/Julián Clavería, 8, 33006 Oviedo, Spain, and Laboratory of Computational Chemistry and Biochemistry, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Pablo Campomanes
- Departamento de Química Física y Analítica, Universidad de Oviedo, C/Julián Clavería, 8, 33006 Oviedo, Spain, and Laboratory of Computational Chemistry and Biochemistry, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ramón López
- Departamento de Química Física y Analítica, Universidad de Oviedo, C/Julián Clavería, 8, 33006 Oviedo, Spain, and Laboratory of Computational Chemistry and Biochemistry, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Natalia Díaz
- Departamento de Química Física y Analítica, Universidad de Oviedo, C/Julián Clavería, 8, 33006 Oviedo, Spain, and Laboratory of Computational Chemistry and Biochemistry, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Dimas Suárez
- Departamento de Química Física y Analítica, Universidad de Oviedo, C/Julián Clavería, 8, 33006 Oviedo, Spain, and Laboratory of Computational Chemistry and Biochemistry, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Khavrutskii IV, Grant B, Taylor SS, McCammon JA. A transition path ensemble study reveals a linchpin role for Mg(2+) during rate-limiting ADP release from protein kinase A. Biochemistry 2009; 48:11532-45. [PMID: 19886670 PMCID: PMC2789581 DOI: 10.1021/bi901475g] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
![]()
Protein kinases are key regulators of diverse signaling networks
critical for growth and development. Protein kinase A (PKA) is an
important kinase prototype that phosphorylates protein targets at
Ser and Thr residues by converting ATP to ADP. Mg2+ ions
play a crucial role in regulating phosphoryl transfer and can limit
overall enzyme turnover by affecting ADP release. However, the mechanism
by which Mg2+ participates in ADP release is poorly understood.
Here we use a novel transition path ensemble technique, the harmonic
Fourier beads method, to explore the atomic and energetic details
of the Mg2+-dependent ADP binding and release. Our studies
demonstrate that adenine-driven ADP binding to PKA creates three ion-binding
sites at the ADP/PKA interface that are absent otherwise. Two of these
sites bind the previously characterized Mg2+ ions, whereas
the third site binds a monovalent cation with high affinity. This
third site can bind the P-3 residue of substrate proteins and may
serve as a reporter of the active site occupation. Binding of Mg2+ ions restricts mobility of the Gly-rich loop that closes
over the active site. We find that simultaneous release of ADP with
Mg2+ ions from the active site is unfeasible. Thus, we
conclude that Mg2+ ions act as a linchpin and that at least
one ion must be removed prior to pyrophosphate-driven ADP release.
The results of the present study enhance understanding of Mg2+-dependent association of nucleotides with protein kinases.
Collapse
Affiliation(s)
- Ilja V Khavrutskii
- Howard Hughes Medical Institute, University of California San Diego,La Jolla, California 92093-0365, USA.
| | | | | | | |
Collapse
|
13
|
Xu F, Du P, Shen H, Hu H, Wu Q, Xie J, Yu L. Correlated mutation analysis on the catalytic domains of serine/threonine protein kinases. PLoS One 2009; 4:e5913. [PMID: 19526051 PMCID: PMC2690836 DOI: 10.1371/journal.pone.0005913] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Accepted: 05/11/2009] [Indexed: 01/15/2023] Open
Abstract
Background Protein kinases (PKs) have emerged as the largest family of signaling proteins in eukaryotic cells and are involved in every aspect of cellular regulation. Great progresses have been made in understanding the mechanisms of PKs phosphorylating their substrates, but the detailed mechanisms, by which PKs ensure their substrate specificity with their structurally conserved catalytic domains, still have not been adequately understood. Correlated mutation analysis based on large sets of diverse sequence data may provide new insights into this question. Methodology/Principal Findings Statistical coupling, residue correlation and mutual information analyses along with clustering were applied to analyze the structure-based multiple sequence alignment of the catalytic domains of the Ser/Thr PK family. Two clusters of highly coupled sites were identified. Mapping these positions onto the 3D structure of PK catalytic domain showed that these two groups of positions form two physically close networks. We named these two networks as θ-shaped and γ-shaped networks, respectively. Conclusions/Significance The θ-shaped network links the active site cleft and the substrate binding regions, and might participate in PKs recognizing and interacting with their substrates. The γ-shaped network is mainly situated in one side of substrate binding regions, linking the activation loop and the substrate binding regions. It might play a role in supporting the activation loop and substrate binding regions before catalysis, and participate in product releasing after phosphoryl transfer. Our results exhibit significant correlations with experimental observations, and can be used as a guide to further experimental and theoretical studies on the mechanisms of PKs interacting with their substrates.
Collapse
Affiliation(s)
- Feng Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
- * E-mail: (FX); (LY)
| | - Pan Du
- Biomedical Informatics Center, Northwestern University, Chicago, Illinois, United States of America
| | - Hongbo Shen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Hairong Hu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Qi Wu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jun Xie
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Long Yu
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
- * E-mail: (FX); (LY)
| |
Collapse
|
14
|
Ligand-induced global transitions in the catalytic domain of protein kinase A. Proc Natl Acad Sci U S A 2009; 106:3023-8. [PMID: 19204278 DOI: 10.1073/pnas.0813266106] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Conformational transitions play a central role in the phosphorylation mechanisms of protein kinase. To understand the nature of these transitions, we investigated the dynamics of nucleotide binding to the catalytic domain of PKA, a prototype for the protein kinase enzyme family. The open-to-closed transition in PKA was constructed as a function of ATP association by using available X-ray data and Brownian dynamics. Analyzing the multiple kinetic trajectories at the residue level, we find that the spatial rearrangement of the residues around the nucleotide-binding pocket, along with suppressed local fluctuations, controls the compaction of the entire molecule. In addition, to accommodate the stresses induced by ATP binding at the early transition stage, partial unfoldings (cracking) and reformations of several native contacts occur at the interfaces between the secondary structure motifs enveloping the binding pocket. This suggests that the enzyme experiences local structural deformations while reaching its functional, ATP-bound state. Our dynamical view of the ligand-induced transitions in PKA suggests that the kinetic hierarchy of local and global dynamics, the variable fluctuation of residues and the necessity of partial local unfolding may be fundamental components in other large scale allosteric transitions.
Collapse
|
15
|
Woodard CL, Keenan SM, Gerena L, Welsh WJ, Geyer JA, Waters NC. Evaluation of broad spectrum protein kinase inhibitors to probe the architecture of the malarial cyclin dependent protein kinase Pfmrk. Bioorg Med Chem Lett 2007; 17:4961-6. [PMID: 17588749 DOI: 10.1016/j.bmcl.2007.06.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 06/07/2007] [Accepted: 06/07/2007] [Indexed: 10/23/2022]
Abstract
We tested Pfmrk against several naphthalene and isoquinoline sulfonamides previously reported as protein kinase A (PKA) inhibitors. Pfmrk is a Cyclin Dependent protein Kinase (CDK) from Plasmodium falciparum, the causative parasite of the most lethal form of malaria. We find that the isoquinoline sulfonamides are potent inhibitors of Pfmrk and that substitution on the 5 position of the isoquinoline ring greatly influences the degree of potency. Molecular modeling studies suggest that the nitrogen atom in the isoquinoline ring plays a key role in ligand-receptor interactions. Structural analysis suggests that even subtle differences in amino acid composition within the active sites are responsible for conferring specificity of these inhibitors for Pfmrk over PKA.
Collapse
Affiliation(s)
- Cassandra L Woodard
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | | | | | | | | |
Collapse
|
16
|
Ung MU, Lu B, McCammon JA. E230Q mutation of the catalytic subunit of cAMP-dependent protein kinase affects local structure and the binding of peptide inhibitor. Biopolymers 2006; 81:428-39. [PMID: 16365849 DOI: 10.1002/bip.20434] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The active site of the mammalian cAMP-dependent protein kinase catalytic subunit (C-subunit) has a cluster of nonconserved acidic residues-Glu127, Glu170, Glu203, Glu230, and Asp241-that are crucial for substrate recognition and binding. Studies have shown that the Glu230 to Gln mutant (E230Q) of the enzyme has physical properties similar to the wild-type enzyme and has decreased affinity for a short peptide substrate, Kemptide. However, recent experiments intended to crystallize ternary complex of the E230Q mutant with MgATP and protein kinase inhibitor (PKI) could only obtain crystals of the apo-enzyme of E230Q mutant. To deduce the possible mechanism that prevented ternary complex formation, we used the relaxed-complex method (Lin, J.-H., et al. J Am Chem Soc 2002, 24, 5632-5633) to study PKI binding to the E230Q mutant C-subunit. In the E230Q mutant, we observed local structural changes of the peptide binding site that correlated closely to the reduced PKI affinity. The structural changes occurred in the F-to-G helix loop and appeared to hinder PKI binding. Reduced electrostatic potential repulsion among Asp241 from the helix loop section and the other acidic residues in the peptide binding site appear to be responsible for the structural change.
Collapse
Affiliation(s)
- Man-Un Ung
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093-0365, USA
| | | | | |
Collapse
|
17
|
Yang S, Rogers KM, Johnson DA. MgATP-induced conformational change of the catalytic subunit of cAMP-dependent protein kinase. Biophys Chem 2005; 113:193-9. [PMID: 15617827 DOI: 10.1016/j.bpc.2004.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/31/2004] [Accepted: 08/31/2004] [Indexed: 11/24/2022]
Abstract
Conformational changes of the cAMP-dependent protein kinase (PKA) catalytic (C) subunit are critical for the catalysis of gamma-phosphate transfer from adenosine 5'-triphosphate (ATP) to target proteins. Time-resolved fluorescence anisotropy (TRFA) was used to investigate the respective roles of Mg(2+), ATP, MgATP, and the inhibitor peptide (IP20) in the conformational changes of a 5,6-carboxyfluorescein succinimidyl ester (CF) labeled C subunit ((CF)C). TRFA decays were fit to a biexponential equation incorporating the fast and slow rotational correlation times phi(F) and phi(S). The (CF)C apoenzyme exhibited the rotational correlation times phi(F)=1.8+/-0.3 ns and phi(S)=20.1+/-0.6 ns which were reduced to phi(F)=1.1+/-0.2 ns and phi(S)=13.3+/-0.9 ns in the presence of MgATP. The reduction in rotational correlation times indicated that the (CF)C subunit adopted a more compact shape upon formation of a (CF)C.MgATP binary complex. Neither Mg(2+) (1-3 mM) nor ATP (0.4 mM) alone induced changes in the (CF)C subunit conformation equivalent to those induced by MgATP. The effect of MgATP was removed in the presence of ethylenediaminetetraacetic acid (EDTA). The addition of IP20 and MgATP to form the (CF)C x MgATP x IP20 ternary complex produced rotational correlation times similar to those of the (CF)C x MgATP binary complex. However, IP20 alone did not elicit an equivalent reduction in rotational correlation times. The results indicate that binding of MgATP to the C subunit may induce conformation changes in the C subunit necessary for the proper stereochemical alignment of substrates in the subsequent phosphorylation.
Collapse
Affiliation(s)
- Shumei Yang
- Department of Chemistry, California State University, San Bernardino, CA 92407, USA.
| | | | | |
Collapse
|
18
|
Iyer GH, Moore MJ, Taylor SS. Consequences of lysine 72 mutation on the phosphorylation and activation state of cAMP-dependent kinase. J Biol Chem 2004; 280:8800-7. [PMID: 15618230 DOI: 10.1074/jbc.m407586200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
General strategies to obtain inactive kinases have utilized mutation of key conserved residues in the kinase core, and the equivalent Lys72 in cAMP-dependent kinase has often been used to generate a "dead" kinase. Here, we have analyzed the consequences of this mutation on kinase structure and function. Mutation of Lys72 to histidine (K72H) generated an inactive enzyme, which was unphosphorylated. Treatment with an exogenous kinase (PDK-1) resulted in a mutant that was phosphorylated only at Thr197 and remained inactive but nevertheless capable of binding ATP. Ser338 in K72H cannot be autophosphorylated, nor can it be phosphorylated in an intermolecular process by active wild type C-subunit. The Lys72 mutant, once phosphorylated on Thr197, can bind with high affinity to the RIalpha subunits. Thus a dead kinase can still act as a scaffold for binding substrates and inhibitors; it is only phosphoryl transfer that is defective. Using a potent inhibitor of C-subunit activity, H-89, Escherichia coli-expressed C-subunit was also obtained in its unphosphorylated state. This protein is able to mature into its active form in the presence of PDK-1 and is able to undergo secondary autophosphorylation on Ser338. Unlike the H-89-treated wild type protein, the mutant protein (K72H) cannot undergo the subsequent cis autophosphorylation following phosphorylation at Thr197. Using these two substrates and mammalian-expressed PDK-1, we can elucidate a possible two-step process for the activation of the C-subunit: initial phosphorylation on the activation loop at Thr197 by PDK-1, or a PDK-1-like enzyme, followed by second cis autophosphorylation step at Ser338.
Collapse
Affiliation(s)
- Ganesh H Iyer
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0654, USA
| | | | | |
Collapse
|
19
|
Akamine P, Wu J, Xuong NH, Ten Eyck LF, Taylor SS. Dynamic features of cAMP-dependent protein kinase revealed by apoenzyme crystal structure. J Mol Biol 2003; 327:159-71. [PMID: 12614615 DOI: 10.1016/s0022-2836(02)01446-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To better understand the mechanism of ligand binding and ligand-induced conformational change, the crystal structure of apoenzyme catalytic (C) subunit of adenosine-3',5'-cyclic monophosphate (cAMP)-dependent protein kinase (PKA) was solved. The apoenzyme structure (Apo) provides a snapshot of the enzyme in the first step of the catalytic cycle, and in this unliganded form the PKA C subunit adopts an open conformation. A hydrophobic junction is formed by residues from the small and large lobes that come into close contact. This "greasy" patch may lubricate the shearing motion associated with domain rotation, and the opening and closing of the active-site cleft. Although Apo appears to be quite dynamic, many important residues for MgATP binding and phosphoryl transfer in the active site are preformed. Residues around the adenine ring of ATP and residues involved in phosphoryl transfer from the large lobe are mostly preformed, whereas residues involved in ribose binding and in the Gly-rich loop are not. Prior to ligand binding, Lys72 and the C-terminal tail, two important ATP-binding elements are also disordered. The surface created in the active site is contoured to bind ATP, but not GTP, and appears to be held in place by a stable hydrophobic core, which includes helices C, E, and F, and beta strand 6. This core seems to provide a network for communicating from the active site, where nucleotide binds, to the peripheral peptide-binding F-to-G helix loop, exemplified by Phe239. Two potential lines of communication are the D helix and the F helix. The conserved Trp222-Phe238 network, which lies adjacent to the F-to-G helix loop, suggests that this network would exist in other protein kinases and may be a conserved means of communicating ATP binding from the active site to the distal peptide-binding ledge.
Collapse
Affiliation(s)
- Pearl Akamine
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0654, USA
| | | | | | | | | |
Collapse
|
20
|
Keskin O. Comparison of full-atomic and coarse-grained models to examine the molecular fluctuations of c-AMP dependent protein kinase. J Biomol Struct Dyn 2002; 20:333-45. [PMID: 12437372 DOI: 10.1080/07391102.2002.10506852] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Molecular fluctuations of the native conformation of c-AMP dependent protein kinase (cAPK) have been investigated with three different approaches. The first approach is the full atomic normal mode analysis (NMA) with empirical force fields. The second and third approaches are based on a coarse-grained model with a single single-parameter- harmonic potential between close residues in the crystal structure of the molecule without any residue specificity. The second method calculates only the magnitude of fluctuations whereas the third method is developed to find the directionality of the fluctuations which are essential to understand the functional importance of biological molecules. The aim, in this study, is to determine whether using such coarse-grained models are appropriate for elucidating the global dynamic characteristics of large proteins which reduces the size of the system at least by a factor of ten. The mean-square fluctuations of C(alpha) atoms and the residue cross-correlations are obtained by three approaches. These results are then compared to test the results of coarse grained models on the overall collective motions. All three of the approaches show that highly flexible regions correspond to the activation and solvent exposed loops, whereas the conserved residues (especially in substrate binding regions) exhibit almost no flexibility, adding stability to the structure. The anti-correlated motions of the two lobes of the catalytic core provide flexibility to the molecule. High similarities among the results of these methods indicate that the slowest modes governing the most global motions are preserved in the coarse grained models for proteins. This finding may suggest that the general shapes of the structures are representative of their dynamic characteristics and the dominant motions of protein structures are robust at coarse-grained levels.
Collapse
Affiliation(s)
- Ozlem Keskin
- Koc University, College of Arts and Sciences, Department of Chemistry, Rumelifeneri Yolu, 80910 Sariyer, Istanbul, Turkey.
| |
Collapse
|
21
|
Johnson RR, Wagner RL, Verhey SD, Walker-Simmons MK. The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences. PLANT PHYSIOLOGY 2002; 130:837-46. [PMID: 12376648 PMCID: PMC166610 DOI: 10.1104/pp.001354] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2001] [Revised: 02/26/2002] [Accepted: 06/03/2002] [Indexed: 05/19/2023]
Abstract
The abscisic acid (ABA)-induced protein kinase PKABA1 is present in dormant seeds and is a component of the signal transduction pathway leading to ABA-suppressed gene expression in cereal grains. We have identified a member of the ABA response element-binding factor (ABF) family of basic leucine zipper transcription factors from wheat (Triticum aestivum) that is specifically bound by PKABA1. This protein (TaABF) has highest sequence similarity to the Arabidopsis ABA response protein ABI5. In two-hybrid assays TaABF bound only to PKABA1, but not to a mutant version of PKABA1 lacking the nucleotide binding domain, suggesting that binding of TaABF requires prior binding of ATP as would be expected for binding of a protein substrate by a protein kinase. TaABF mRNA accumulated together with PKABA1 mRNA during wheat grain maturation and dormancy acquisition and TaABF transcripts increased transiently during imbibition of dormant grains. In contrast to PKABA1 mRNA, TaABF mRNA is seed specific and did not accumulate in vegetative tissues in response to stress or ABA application. PKABA1 produced in transformed cell lines was able to phosphorylate synthetic peptides representing three specific regions of TaABF. These data suggest that TaABF may serve as a physiological substrate for PKABA1 in the ABA signal transduction pathway during grain maturation, dormancy expression, and ABA-suppressed gene expression.
Collapse
|
22
|
Li F, Gangal M, Juliano C, Gorfain E, Taylor SS, Johnson DA. Evidence for an internal entropy contribution to phosphoryl transfer: a study of domain closure, backbone flexibility, and the catalytic cycle of cAMP-dependent protein kinase. J Mol Biol 2002; 315:459-69. [PMID: 11786025 DOI: 10.1006/jmbi.2001.5256] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
While there is no question that ligands can induce large-scale domain movements that narrow (close) the active-site cleft of the catalytic (C) subunit of cAMP-dependent protein kinase (cAPK), the results from small-angle X-ray scattering, protein footprinting, and thermostability studies are inconsistent with regard to which ligands induce these movements. This inconsistency suggests a greater complexity of cAPK conformational dynamics than is generally recognized. As an initial step to study this issue in relation to the catalysis, a new method to measure cAPK domain closure was developed, and the state of domain closure and the local segmental flexibility at major steps of the cAPK catalytic cycle were examined with site-directed labeling and fluorescence spectroscopy. To achieve this, a C subunit mutant (F239C/C199A) was engineered that allowed for fluorescein 5-maleimide (donor) conjugation of F239C in the large lobe and tetramethylrhodamine (acceptor) conjugation of C343 in the small lobe. Domain closure was assessed as an increase in the efficiency of energy transfer between donor and acceptor. The anisotropy decay of fluoroscein 5-maleimide, conjugated to a site of cysteine substitution (K81C) in the small lobe of the C subunit was used to assess the local backbone flexibility around the B helix. The effects of substrate/pseudosubstrate (ATP and PKI(5-24)), a fragment of protein kinase inhibitor) and products (ADP and phosphorylated PKS) on domain closure and B helix flexibility were measured. The results show that domain closure is not tightly coupled to the flexibility around K81C. Moreover, although substrates/pseudosubstrate and products independently close the active-site cleft, only the substrates substantially decreased the backbone flexibility around the B helix. Because this order-to-disorder transition coincides with the phosphoryl transfer transition, the results suggest the existence of an internal entropy contribution to catalysis.
Collapse
Affiliation(s)
- Fei Li
- Division of Biomedical Sciences, University of California, Riverside, CA 92521-0121, USA
| | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- J A Adams
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0506, USA.
| |
Collapse
|
24
|
Andersen MD, Shaffer J, Jennings PA, Adams JA. Structural characterization of protein kinase A as a function of nucleotide binding. Hydrogen-deuterium exchange studies using matrix-assisted laser desorption ionization-time of flight mass spectrometry detection. J Biol Chem 2001; 276:14204-11. [PMID: 11278927 DOI: 10.1074/jbc.m011543200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transient state kinetic studies indicate that substrate phosphorylation in protein kinase A is partially rate-limited by conformational changes, some of which may be associated with nucleotide binding (Shaffer, J., and Adams, J. A. (1999) Biochemistry 38, 12072-12079). To assess whether specific structural changes are associated with the binding of nucleotides, hydrogen-deuterium exchange experiments were performed on the enzyme in the absence and presence of ADP. Four regions of the protein are protected from exchange in the presence of ADP. Two regions encompass the catalytic and glycine-rich loops and are integral parts of the active site. Conversely, protection of probes in the C terminus is consistent with nucleotide-induced domain closure. One protected probe encompasses a portion of helix C, a secondary structural element that does not make any direct contacts with the nucleotide but has been reported to undergo segmental motion upon the activation of some protein kinases. The combined data suggest that binding of the nucleotide has distal structural effects that may include stabilizing the closed state of the enzyme and altering the position of a critical helix outside the active site. The latter represents the first evidence that the nucleotide alone can induce changes in helix C in solution.
Collapse
Affiliation(s)
- M D Andersen
- Department of Pharmacology and Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla 92093-0506, USA
| | | | | | | |
Collapse
|
25
|
Grant KB, Pattabhi S. Use of a fluorescence microplate reader for the detection and characterization of metal-assisted peptide hydrolysis. Anal Biochem 2001; 289:196-201. [PMID: 11161313 DOI: 10.1006/abio.2000.4963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metal ions and complexes that hydrolyze peptides under nondenaturing conditions of temperature and pH hold great promise for use in protein structural studies. However, the extreme stability of the peptide amide bond has placed limits on the number of reagents available. In addition, the development of new cleavage strategies has been hindered by the fact that no facile procedure exists for the detection and characterization of metal-assisted peptide hydrolysis. Here we describe a rapid assay in which a microplate reader is used to detect fluorescence produced by the reaction of fluorescamine with hydrolyzed peptides. We have employed this assay to detect Zn(II) and Pd(II)-assisted peptide hydrolysis in multiple samples and in each case have extended our approach to a successful analysis of reaction kinetics. Aliquots from multiple time points are treated with fluorescamine in a single 96-well plate. Because the plate is scanned in a microplate reader in only 58 s, the assay is very convenient compared to conventional approaches which rely on NMR and HPLC to monitor individual reactions. Using our assay, rate constants and half-lives are easily derived from the kinetic data by means of linear regression curve fits of triplicate runs.
Collapse
Affiliation(s)
- K B Grant
- Department of Chemistry, Center for Biotechnology and Drug Design, Georgia State University, University Plaza, Atlanta, GA 30303-3083, USA.
| | | |
Collapse
|
26
|
Cheng X, Phelps C, Taylor SS. Differential binding of cAMP-dependent protein kinase regulatory subunit isoforms Ialpha and IIbeta to the catalytic subunit. J Biol Chem 2001; 276:4102-8. [PMID: 11110787 DOI: 10.1074/jbc.m006447200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Limited trypsin digestion of type I cAMP-dependent protein kinase holoenzyme results in a proteolytic-resistant Delta(1-72) regulatory subunit core, indicating that interaction between the regulatory and catalytic subunits extends beyond the autoinhibitory site in the R subunit at the NH(2) terminus. Sequence alignment of the two R subunit isoforms, RI and RII, reveals a significantly sequence diversity at this specific region. To determine whether this sequence diversity is functionally important for interaction with the catalytic subunit, specific mutations, R133A and D328A, are introduced into sites adjacent to the active site cleft in the catalytic subunit. While replacing Arg(133) with Ala decreases binding affinity for RII, interaction between the catalytic subunit and RI is not affected. In contrast, mutant C(D328A) showed a decrease in affinity for binding RI while maintaining similar affinities for RII as compared with the wild-type catalytic subunit. These results suggest that sequence immediately NH(2)-terminal to the consensus inhibition site in RI and RII interacts with different sites at the proximal region of the active site cleft in the catalytic subunit. These isoform-specific differences would dictate a significantly different domain organization in the type I and type II holoenzymes.
Collapse
Affiliation(s)
- X Cheng
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, School of Medicine, University of California, San Diego, La Jolla, California 92093-0654, USA
| | | | | |
Collapse
|
27
|
Metzler DE, Metzler CM, Sauke DJ. Transferring Groups by Displacement Reactions. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Ni Q, Shaffer J, Adams JA. Insights into nucleotide binding in protein kinase A using fluorescent adenosine derivatives. Protein Sci 2000; 9:1818-27. [PMID: 11045627 PMCID: PMC2144695 DOI: 10.1110/ps.9.9.1818] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The binding of the methylanthraniloyl derivatives of ATP (mant-ATP), ADP (mant-ADP), 2'deoxyATP (mant-2'deoxyATP), and 3'deoxyATP (mant-3'deoxyATP) to the catalytic subunit of protein kinase A was studied to gain insights into the mechanism of nucleotide binding. The binding of the mant nucleotides leads to a large increase in fluorescence energy transfer at 440 nm, allowing direct measurements of nucleotide affinity. The dissociation constant of mant-ADP is identical to that for ADP, while that for mant-ATP is approximately threefold higher than that for ATP. The dissociation constant for mant-3'deoxyATP is approximately fivefold higher than that for 3'deoxyATP while derivatization of 2'deoxyATP does not affect affinity. The time-dependent binding of mant-ATP, mant-2'deoxyATP, and mant-ADP, measured using stopped-flow fluorescence spectroscopy, is best fit to three exponentials. The fast phase is ligand dependent, while the two slower phases are ligand independent. The slower phases are similar but not identical in rate, and have opposite fluorescence amplitudes. Both isomers of mant-ATP are equivalent substrates, as judged by reversed-phase chromatography, although the rate of phosphorylation is approximately 20-fold lower than the natural nucleotide. The kinetic data are consistent with a three-step binding mechanism in which initial association of the nucleotide derivatives produces a highly fluorescent complex. Either one or two conformational changes can occur after the formation of this binary species, but one of the isomerized forms must have low fluorescence compared to the initial binary complex. These data soundly attest to the structural plasticity within the kinase core that may be essential for catalysis. Overall, the mant nucleotides present a useful reporter system for gauging these conformational changes in light of the prevailing three-dimensional models for the enzyme.
Collapse
Affiliation(s)
- Q Ni
- Department of Pharmacology, University of California, San Diego, La Jolla 92093-0506, USA
| | | | | |
Collapse
|
29
|
Aimes RT, Hemmer W, Taylor SS. Serine-53 at the tip of the glycine-rich loop of cAMP-dependent protein kinase: role in catalysis, P-site specificity, and interaction with inhibitors. Biochemistry 2000; 39:8325-32. [PMID: 10889042 DOI: 10.1021/bi992800w] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The glycine-rich loop, one of the most important motifs in the conserved protein kinase catalytic core, embraces the entire nucleotide, is very mobile, and is exquisitely sensitive to what occupies the active site cleft. Of the three conserved glycines [G(50)TG(52)SFG(55) in cAMP-dependent protein kinase (cAPK)], Gly(52) is the most important for catalysis because it allows the backbone amide of Ser(53) at the tip of the loop to hydrogen bond to the gamma-phosphate of ATP [Grant, B. D. et al. (1998) Biochemistry 37, 7708]. The structural model of the catalytic subunit:ATP:PKI((5)(-)(24)) (heat-stable protein kinase inhibitor) ternary complex in the closed conformation suggests that Ser(53) also might be essential for stabilization of the peptide substrate-enzyme complex via a hydrogen bond between the P-site carbonyl in PKI and the Ser(53) side-chain hydroxyl [Bossemeyer, D. et al. (1993) EMBO J. 12, 849]. To address the importance of the Ser(53) side chain in catalysis, inhibition, and P-site specificity, Ser(53) was replaced with threonine, glycine, and proline. Removal of the side chain (i.e., mutation to glycine) had no effect on the steady-state phosphorylation of a peptide substrate (LRRASLG) or on the interaction with physiological inhibitors, including the type-I and -II regulatory subunits and PKI. However, this mutation did affect the P-site specificity; the glycine mutant can more readily phosphorylate a P-site threonine in a peptide substrate (5-6-fold better than wild-type). The proline mutant is compromised catalytically with altered k(cat) and K(m) for both peptide and ATP and with altered sensitivity to both regulatory subunits and PKI. Steric constraints as well as restricted flexibility could account for these effects. These combined results demonstrate that while the backbone amide of Ser(53) may be required for efficient catalysis, the side chain is not.
Collapse
Affiliation(s)
- R T Aimes
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, California 92093-0654, USA
| | | | | |
Collapse
|
30
|
Smith CM, Radzio-Andzelm E, Akamine P, Taylor SS. The catalytic subunit of cAMP-dependent protein kinase: prototype for an extended network of communication. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1999; 71:313-41. [PMID: 10354702 DOI: 10.1016/s0079-6107(98)00059-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The protein kinase catalytic core in essence comprises an extended network of interactions that link distal parts of the molecule to the active site where they facilitate phosphoryl transfer from ATP to protein substrate. This review defines key sequence and structural elements, describes what is currently known about the molecular interactions, and how they are involved in catalysis.
Collapse
Affiliation(s)
- C M Smith
- San Diego Supercomputer Center, University of California, La Jolla 92093-0505, USA.
| | | | | | | |
Collapse
|
31
|
Taylor SS, Radzio-Andzelm E, Cheng X, Ten Eyck L, Narayana N. Catalytic subunit of cyclic AMP-dependent protein kinase: structure and dynamics of the active site cleft. Pharmacol Ther 1999; 82:133-41. [PMID: 10454192 DOI: 10.1016/s0163-7258(99)00007-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The catalytic subunit of cyclic AMP-dependent protein kinase serves as a structural template for the entire family of Ser, Thr, and Tyr specific protein kinases. We review here the dynamics of the active catalytic subunit. These dynamics correlate with an opening and closing of the active site cleft, and are considered to be a requirement for catalysis. The motions, described by a set of several crystal structures, reveal a very fluid active site cleft. This active site cleft with its dynamic opening and closing is a prime target for protein kinase inhibitors.
Collapse
Affiliation(s)
- S S Taylor
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla 92093-0654, USA
| | | | | | | | | |
Collapse
|