1
|
Nixon C, Lim SA, Sternke M, Barrick D, Harms MJ, Marqusee S. The importance of input sequence set to consensus-derived proteins and their relationship to reconstructed ancestral proteins. Protein Sci 2024; 33:e5011. [PMID: 38747388 PMCID: PMC11094778 DOI: 10.1002/pro.5011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 05/19/2024]
Abstract
A protein sequence encodes its energy landscape-all the accessible conformations, energetics, and dynamics. The evolutionary relationship between sequence and landscape can be probed phylogenetically by compiling a multiple sequence alignment of homologous sequences and generating common ancestors via Ancestral Sequence Reconstruction or a consensus protein containing the most common amino acid at each position. Both ancestral and consensus proteins are often more stable than their extant homologs-questioning the differences between them and suggesting that both approaches serve as general methods to engineer thermostability. We used the Ribonuclease H family to compare these approaches and evaluate how the evolutionary relationship of the input sequences affects the properties of the resulting consensus protein. While the consensus protein derived from our full Ribonuclease H sequence alignment is structured and active, it neither shows properties of a well-folded protein nor has enhanced stability. In contrast, the consensus protein derived from a phylogenetically-restricted set of sequences is significantly more stable and cooperatively folded, suggesting that cooperativity may be encoded by different mechanisms in separate clades and lost when too many diverse clades are combined to generate a consensus protein. To explore this, we compared pairwise covariance scores using a Potts formalism as well as higher-order sequence correlations using singular value decomposition (SVD). We find the SVD coordinates of a stable consensus sequence are close to coordinates of the analogous ancestor sequence and its descendants, whereas the unstable consensus sequences are outliers in SVD space.
Collapse
Affiliation(s)
- Charlotte Nixon
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | - Shion A. Lim
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | - Matt Sternke
- The T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Doug Barrick
- The T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Michael J. Harms
- Department of Chemistry and BiochemistryUniversity of OregonEugeneOregonUSA
| | - Susan Marqusee
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyCaliforniaUSA
- Department of ChemistryUniversity of California, BerkeleyBerkeleyCaliforniaUSA
- California Institute for Quantitative Biosciences (QB3)BerkeleyCaliforniaUSA
| |
Collapse
|
2
|
Nixon C, Lim SA, Sternke M, Barrick D, Harms M, Marqusee S. The importance of input sequence set to consensus-derived proteins and their relationship to reconstructed ancestral proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547063. [PMID: 37425932 PMCID: PMC10327145 DOI: 10.1101/2023.06.29.547063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
A protein sequence encodes its energy landscape - all the accessible conformations, energetics, and dynamics. The evolutionary relationship between sequence and landscape can be probed phylogenetically by compiling a multiple sequence alignment of homologous sequences and generating common ancestors via Ancestral Sequence Reconstruction or a consensus protein containing the most common amino acid at each position. Both ancestral and consensus proteins are often more stable than their extant homologs - questioning the differences and suggesting that both approaches serve as general methods to engineer thermostability. We used the Ribonuclease H family to compare these approaches and evaluate how the evolutionary relationship of the input sequences affects the properties of the resulting consensus protein. While the overall consensus protein is structured and active, it neither shows properties of a well-folded protein nor has enhanced stability. In contrast, the consensus protein derived from a phylogenetically-restricted region is significantly more stable and cooperatively folded, suggesting that cooperativity may be encoded by different mechanisms in separate clades and lost when too many diverse clades are combined to generate a consensus protein. To explore this, we compared pairwise covariance scores using a Potts formalism as well as higher-order couplings using singular value decomposition (SVD). We find the SVD coordinates of a stable consensus sequence are close to coordinates of the analogous ancestor sequence and its descendants, whereas the unstable consensus sequences are outliers in SVD space.
Collapse
Affiliation(s)
- Charlotte Nixon
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Shion A Lim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Matt Sternke
- The T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Doug Barrick
- The T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Mike Harms
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
- California Institute for Quantitative Biosciences (QB3), Berkeley
| |
Collapse
|
3
|
Akram F, Haq IU, Shah FI, Aqeel A, Ahmed Z, Mir AS, Qureshi SS, Raja SI. Genus Thermotoga: A valuable home of multifunctional glycoside hydrolases (GHs) for industrial sustainability. Bioorg Chem 2022; 127:105942. [PMID: 35709577 DOI: 10.1016/j.bioorg.2022.105942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Nature is a dexterous and prolific chemist for cataloging a number of hostile niches that are the ideal residence of various thermophiles. Apart from having other species, these subsurface environments are considered a throne of bacterial genus Thermotoga. The genome sequence of Thermotogales encodes complex and incongruent clusters of glycoside hydrolases (GHs), which are superior to their mesophilic counterparts and play a prominent role in various applications due to their extreme intrinsic stability. They have a tremendous capacity to use a wide variety of simple and multifaceted carbohydrates through GHs, formulate fermentative hydrogen and bioethanol at extraordinary yield, and catalyze high-temperature reactions for various biotechnological applications. Nevertheless, no stringent rules exist for the thermo-stabilization of biocatalysts present in the genus Thermotoga. These enzymes endure immense attraction in fundamental aspects of how these polypeptides attain and stabilize their distinctive three-dimensional (3D) structures to accomplish their physiological roles. Moreover, numerous genome sequences from Thermotoga species have revealed a significant fraction of genes most closely related to those of archaeal species, thus firming a staunch belief of lateral gene transfer mechanism. However, the question of its magnitude is still in its infancy. In addition to GHs, this genus is a paragon of encapsulins which carry pharmacological and industrial significance in the field of life sciences. This review highlights an intricate balance between the genomic organizations, factors inducing the thermostability, and pharmacological and industrial applications of GHs isolated from genus Thermotoga.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan.
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan; Pakistan Academy of Science, Islamabad, Pakistan
| | - Fatima Iftikhar Shah
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Amna Aqeel
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Zeeshan Ahmed
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Azka Shahzad Mir
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Sumbal Sajid Qureshi
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Saleha Ibadat Raja
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| |
Collapse
|
4
|
Nguyen C, Yearwood LM, McCully ME. Thermostabilization mechanisms in thermophilic versus mesophilic three-helix bundle proteins. J Comput Chem 2022; 43:197-205. [PMID: 34738662 PMCID: PMC8665064 DOI: 10.1002/jcc.26782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/22/2021] [Accepted: 10/24/2021] [Indexed: 11/21/2022]
Abstract
The engineered three‐helix bundle, UVF, is thermostabilized entropically due to heightened, native‐state dynamics. However, it is unclear whether this thermostabilization strategy is observed in natural proteins from thermophiles. We performed all‐atom, explicit solvent molecular dynamics simulations of two three‐helix bundles from thermophilic H. butylicus (2lvsN and 2lvsC) and compared their dynamics to a mesophilic three‐helix bundle, the Engrailed homeodomain (EnHD). Like UVF, 2lvsC had heightened native dynamics, which it maintained without unfolding at 100°C. Shortening and rigidification of loops in 2lvsN and 2lvsC and increased surface hydrogen bonds in 2lvsN were observed, as is common in thermophilic proteins. A buried disulfide and salt bridge in 2lvsN and 2lvsC, respectively, provided some stabilization, and addition of a homologous disulfide bond in EnHD slowed unfolding. The transferability and commonality of stabilization strategies among members of the three‐helix bundle fold suggest that these strategies may be general and deployable in designing thermostable proteins.
Collapse
Affiliation(s)
- Catrina Nguyen
- Department of Biology, Santa Clara University, Santa Clara, California, USA
| | - Lauren M Yearwood
- Department of Biology, Santa Clara University, Santa Clara, California, USA
| | - Michelle E McCully
- Department of Biology, Santa Clara University, Santa Clara, California, USA
| |
Collapse
|
5
|
To P, Whitehead B, Tarbox HE, Fried SD. Nonrefoldability is Pervasive Across the E. coli Proteome. J Am Chem Soc 2021; 143:11435-11448. [PMID: 34308638 DOI: 10.1021/jacs.1c03270] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Decades of research on protein folding have primarily focused on a subset of small proteins that can reversibly refold from a denatured state. However, these studies have generally not been representative of the complexity of natural proteomes, which consist of many proteins with complex architectures and domain organizations. Here, we introduce an experimental approach to probe protein refolding kinetics for whole proteomes using mass spectrometry-based proteomics. Our study covers the majority of the soluble E. coli proteome expressed during log-phase growth, and among this group, we find that one-third of the E. coli proteome is not intrinsically refoldable on physiological time scales, a cohort that is enriched with certain fold-types, domain organizations, and other biophysical features. We also identify several properties and fold-types that are correlated with slow refolding on the minute time scale. Hence, these results illuminate when exogenous factors and processes, such as chaperones or cotranslational folding, might be required for efficient protein folding.
Collapse
Affiliation(s)
- Philip To
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Briana Whitehead
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Haley E Tarbox
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Stephen D Fried
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
6
|
Ando N, Barquera B, Bartlett DH, Boyd E, Burnim AA, Byer AS, Colman D, Gillilan RE, Gruebele M, Makhatadze G, Royer CA, Shock E, Wand AJ, Watkins MB. The Molecular Basis for Life in Extreme Environments. Annu Rev Biophys 2021; 50:343-372. [PMID: 33637008 DOI: 10.1146/annurev-biophys-100120-072804] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sampling and genomic efforts over the past decade have revealed an enormous quantity and diversity of life in Earth's extreme environments. This new knowledge of life on Earth poses the challenge of understandingits molecular basis in such inhospitable conditions, given that such conditions lead to loss of structure and of function in biomolecules from mesophiles. In this review, we discuss the physicochemical properties of extreme environments. We present the state of recent progress in extreme environmental genomics. We then present an overview of our current understanding of the biomolecular adaptation to extreme conditions. As our current and future understanding of biomolecular structure-function relationships in extremophiles requires methodologies adapted to extremes of pressure, temperature, and chemical composition, advances in instrumentation for probing biophysical properties under extreme conditions are presented. Finally, we briefly discuss possible future directions in extreme biophysics.
Collapse
Affiliation(s)
- Nozomi Ando
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14853, USA.,Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Blanca Barquera
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA;
| | - Douglas H Bartlett
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202, USA
| | - Eric Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, USA
| | - Audrey A Burnim
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Amanda S Byer
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Daniel Colman
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, USA
| | - Richard E Gillilan
- Center for High Energy X-ray Sciences (CHEXS), Ithaca, New York 14853, USA
| | - Martin Gruebele
- Department of Chemistry, University of Illinois, Urbana-Champaign, Illinois 61801, USA.,Department of Physics, University of Illinois, Urbana-Champaign, Illinois 61801, USA.,Center for Biophysics and Quantitative Biology, University of Illinois, Urbana-Champaign, Illinois 61801, USA
| | - George Makhatadze
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA;
| | - Catherine A Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA;
| | - Everett Shock
- GEOPIG, School of Earth & Space Exploration, School of Molecular Sciences, Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona 85287, USA
| | - A Joshua Wand
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77845, USA.,Department of Chemistry, Texas A&M University, College Station, Texas 77845, USA.,Department of Molecular & Cellular Medicine, Texas A&M University, College Station, Texas 77845, USA
| | - Maxwell B Watkins
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14853, USA.,Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
7
|
Lindorff-Larsen K, Teilum K. Linking thermodynamics and measurements of protein stability. Protein Eng Des Sel 2021; 34:6173616. [PMID: 33724431 DOI: 10.1093/protein/gzab002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/21/2020] [Accepted: 01/12/2021] [Indexed: 11/13/2022] Open
Abstract
We review the background, theory and general equations for the analysis of equilibrium protein unfolding experiments, focusing on denaturant and heat-induced unfolding. The primary focus is on the thermodynamics of reversible folding/unfolding transitions and the experimental methods that are available for extracting thermodynamic parameters. We highlight the importance of modelling both how the folding equilibrium depends on a perturbing variable such as temperature or denaturant concentration, and the importance of modelling the baselines in the experimental observables.
Collapse
Affiliation(s)
- Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kaare Teilum
- Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Martin JA, Robustelli P, Palmer AG. Quantifying the Relationship between Conformational Dynamics and Enzymatic Activity in Ribonuclease HI Homologues. Biochemistry 2020; 59:3201-3205. [PMID: 32813972 DOI: 10.1021/acs.biochem.0c00500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribonuclease HI (RNHI), a ubiquitous, non-sequence-specific endonuclease, cleaves the RNA strand in RNA/DNA hybrids. RNHI functions in replication and genome maintenance, and retroviral reverse transcriptases contain an essential ribonuclease H domain. Nuclear magnetic resonance (NMR) spectroscopy combined with molecular dynamics (MD) simulations suggests a model in which the extended handle region domain of Escherichia coli RNHI populates (substrate-binding-competent) "open" and (substrate-binding-incompetent) "closed" states, while the thermophilic Thermus thermophilus RNHI mainly populates the closed state at 300 K [Stafford, K. A., Robustelli, P., and Palmer, A. G., III (2013) PLoS Comput. Biol. 9, 1-10]. In addition, an in silico-designed mutant E. coli Val98Ala RNHI was predicted to populate primarily the closed state. The work presented here validates this model and confirms the predicted properties of the designed mutant. MD simulations suggest that the conformational preferences of the handle region correlate with the conformations of Trp85, Thr92, and Val101. NMR residual dipolar coupling constants, three-bond scalar coupling constants, and chemical shifts experimentally define the conformational states of these residues and hence of the handle domain. These NMR parameters correlate with the Michaelis constants for RNHI homologues, confirming the important role of the handle region in the modulation of substrate recognition and illustrating the power of NMR spectroscopy in dissecting the conformational preferences underlying enzyme function.
Collapse
Affiliation(s)
- James A Martin
- Department of Biological Sciences, Columbia University, New York, New York 10027, United States
| | - Paul Robustelli
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Arthur G Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| |
Collapse
|
9
|
Sternke M, Tripp KW, Barrick D. The use of consensus sequence information to engineer stability and activity in proteins. Methods Enzymol 2020; 643:149-179. [PMID: 32896279 DOI: 10.1016/bs.mie.2020.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The goal of protein design is to create proteins that are stable, soluble, and active. Here we focus on one approach to protein design in which sequence information is used to create a "consensus" sequence. Such consensus sequences comprise the most common residue at each position in a multiple sequence alignment (MSA). After describing some general ideas that relate MSA and consensus sequences and presenting a statistical thermodynamic framework that relates consensus and non-consensus sequences to stability, we detail the process of designing a consensus sequence and survey reports of consensus design and characterization from the literature. Many of these consensus proteins retain native biological activities including ligand binding and enzyme activity. Remarkably, in most cases the consensus protein shows significantly higher stability than extant versions of the protein, as measured by thermal or chemical denaturation, consistent with the statistical thermodynamic model. To understand this stability increase, we compare various features of consensus sequences with the extant MSA sequences from which they were derived. Consensus sequences show enrichment in charged residues (most notably glutamate and lysine) and depletion of uncharged polar residues (glutamine, serine, and asparagine). Surprisingly, a survey of stability changes resulting from point substitutions show little correlation with residue frequencies at the corresponding positions within the MSA, suggesting that the high stability of consensus proteins may result from interactions among residue pairs or higher-order clusters. Whatever the source, the large number of reported successes demonstrates that consensus design is a viable route to generating active and in many cases highly stabilized proteins.
Collapse
Affiliation(s)
- Matt Sternke
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States; Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, United States
| | - Katherine W Tripp
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States
| | - Doug Barrick
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
10
|
Nguyen C, Young JT, Slade GG, Oliveira RJ, McCully ME. A Dynamic Hydrophobic Core and Surface Salt Bridges Thermostabilize a Designed Three-Helix Bundle. Biophys J 2019; 116:621-632. [PMID: 30704856 PMCID: PMC6382955 DOI: 10.1016/j.bpj.2019.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 11/24/2022] Open
Abstract
Thermostable proteins are advantageous in industrial applications, as pharmaceuticals or biosensors, and as templates for directed evolution. As protein-design methodologies improve, bioengineers are able to design proteins to perform a desired function. Although many rationally designed proteins end up being thermostable, how to intentionally design de novo, thermostable proteins is less clear. UVF is a de novo-designed protein based on the backbone structure of the Engrailed homeodomain (EnHD) and is highly thermostable (Tm > 99°C vs. 52°C for EnHD). Although most proteins generally have polar amino acids on their surfaces and hydrophobic amino acids buried in their cores, protein engineers followed this rule exactly when designing UVF. To investigate the contributions of the fully hydrophobic core versus the fully polar surface to UVF’s thermostability, we built two hybrid, chimeric proteins combining the sets of buried and surface residues from UVF and EnHD. Here, we determined a structural, dynamic, and thermodynamic explanation for UVF’s thermostability by performing 4 μs of all-atom, explicit-solvent molecular dynamics simulations at 25 and 100°C, Tanford-Kirkwood solvent accessibility Monte Carlo electrostatic calculations, and a thermodynamic analysis of 40 temperature runs by the weighted-histogram analysis method of heavy-atom, structure-based models of UVF, EnHD, and both chimeric proteins. Our models showed that UVF was highly dynamic because of its fully hydrophobic core, leading to a smaller loss of entropy upon folding. The charged residues on its surface made favorable electrostatic interactions that contributed enthalpically to its thermostability. In the chimeric proteins, both the hydrophobic core and charged surface independently imparted thermostability.
Collapse
Affiliation(s)
- Catrina Nguyen
- Department of Biology, Santa Clara University, Santa Clara, California
| | - Jennifer T Young
- Department of Biology, Santa Clara University, Santa Clara, California
| | - Gabriel G Slade
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Ronaldo J Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | | |
Collapse
|
11
|
Lim SA, Marqusee S. The burst-phase folding intermediate of ribonuclease H changes conformation over evolutionary history. Biopolymers 2018; 109:e23086. [PMID: 29152711 PMCID: PMC6047922 DOI: 10.1002/bip.23086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 11/06/2022]
Abstract
The amino acid sequence encodes the energy landscape of a protein. Therefore, we expect evolutionary mutations to change features of the protein energy landscape, including the conformations adopted by a polypeptide as it folds to its native state. Ribonucleases H (RNase H) from Escherichia coli and Thermus thermophilus both fold via a partially folded intermediate in which the core region of the protein (helices A-D and strands 4-5) is structured. Strand 1, however, uniquely contributes to the T. thermophilus RNase H folding intermediate (Icore+1 ), but not the E. coli RNase H intermediate (Icore ) (Rosen & Marqusee, PLoS One 2015). We explore the origin of this difference by characterizing the folding intermediate of seven ancestral RNases H spanning the evolutionary history of these two homologs. Using fragment models with or without strand 1 and FRET probes to characterize the folding intermediate of each ancestor, we find a distinct evolutionary trend across the family-the involvement of strand 1 in the folding intermediate is an ancestral feature that is maintained in the thermophilic lineage and is gradually lost in the mesophilic lineage. Evolutionary sequence changes indeed modulate the conformations present on the folding landscape and altered the folding trajectory of RNase H.
Collapse
Affiliation(s)
- Shion An Lim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, United States
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
12
|
Lisi GP, Currier AA, Loria JP. Glutamine Hydrolysis by Imidazole Glycerol Phosphate Synthase Displays Temperature Dependent Allosteric Activation. Front Mol Biosci 2018; 5:4. [PMID: 29468164 PMCID: PMC5808140 DOI: 10.3389/fmolb.2018.00004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/09/2018] [Indexed: 11/13/2022] Open
Abstract
The enzyme imidazole glycerol phosphate synthase (IGPS) is a model for studies of long-range allosteric regulation in enzymes. Binding of the allosteric effector ligand N'-[5'-phosphoribulosyl)formimino]-5-aminoimidazole-4-carboxamide-ribonucleotide (PRFAR) stimulates millisecond (ms) timescale motions in IGPS that enhance its catalytic function. We studied the effect of temperature on these critical conformational motions and the catalytic mechanism of IGPS from the hyperthermophile Thermatoga maritima in an effort to understand temperature-dependent allostery. Enzyme kinetic and NMR dynamics measurements show that apo and PRFAR-activated IGPS respond differently to changes in temperature. Multiple-quantum Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments performed at 303, 323, and 343 K (30, 50, and 70°C) reveal that millisecond flexibility is enhanced to a higher degree in apo IGPS than in the PRFAR-bound enzyme as the sample temperature is raised. We find that the flexibility of the apo enzyme is nearly identical to that of its PRFAR activated state at 343 K, whereas conformational motions are considerably different between these two forms of the enzyme at room temperature. Arrhenius analyses of these flexible sites show a varied range of activation energies that loosely correlate to allosteric communities identified by computational methods and reflect local changes in dynamics that may facilitate conformational sampling of the active conformation. In addition, kinetic assays indicate that allosteric activation by PRFAR decreases to 65-fold at 343 K, compared to 4,200-fold at 303 K, which mirrors the decreased effect of PRFAR on ms motions relative to the unactivated enzyme. These studies indicate that at the growth temperature of T. maritima, PFRAR is a weaker allosteric activator than it is at room temperature and illustrate that the allosteric mechanism of IGPS is temperature dependent.
Collapse
Affiliation(s)
- George P Lisi
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Allen A Currier
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - J Patrick Loria
- Department of Chemistry, Yale University, New Haven, CT, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
13
|
Evolutionary trend toward kinetic stability in the folding trajectory of RNases H. Proc Natl Acad Sci U S A 2016; 113:13045-13050. [PMID: 27799545 DOI: 10.1073/pnas.1611781113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proper folding of proteins is critical to producing the biological machinery essential for cellular function. The rates and energetics of a protein's folding process, which is described by its energy landscape, are encoded in the amino acid sequence. Over the course of evolution, this landscape must be maintained such that the protein folds and remains folded over a biologically relevant time scale. How exactly a protein's energy landscape is maintained or altered throughout evolution is unclear. To study how a protein's energy landscape changed over time, we characterized the folding trajectories of ancestral proteins of the ribonuclease H (RNase H) family using ancestral sequence reconstruction to access the evolutionary history between RNases H from mesophilic and thermophilic bacteria. We found that despite large sequence divergence, the overall folding pathway is conserved over billions of years of evolution. There are robust trends in the rates of protein folding and unfolding; both modern RNases H evolved to be more kinetically stable than their most recent common ancestor. Finally, our study demonstrates how a partially folded intermediate provides a readily adaptable folding landscape by allowing the independent tuning of kinetics and thermodynamics.
Collapse
|
14
|
Zeiske T, Stafford KA, Palmer AG. Thermostability of Enzymes from Molecular Dynamics Simulations. J Chem Theory Comput 2016; 12:2489-92. [PMID: 27123810 DOI: 10.1021/acs.jctc.6b00120] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thermodynamic stability is a central requirement for protein function, and one goal of protein engineering is improvement of stability, particularly for applications in biotechnology. Herein, molecular dynamics simulations are used to predict in vitro thermostability of members of the bacterial ribonuclease HI (RNase H) family of endonucleases. The temperature dependence of the generalized order parameter, S, for four RNase H homologues, from psychrotrophic, mesophilic, and thermophilic organisms, is highly correlated with experimentally determined melting temperatures and with calculated free energies of folding at the midpoint temperature of the simulations. This study provides an approach for in silico mutational screens to improve thermostability of biologically and industrially relevant enzymes.
Collapse
Affiliation(s)
- Tim Zeiske
- Department of Biochemistry and Molecular Biophysics, Columbia University , New York, New York 10032, United States
| | - Kate A Stafford
- Department of Biochemistry and Molecular Biophysics, Columbia University , New York, New York 10032, United States
| | - Arthur G Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University , New York, New York 10032, United States
| |
Collapse
|
15
|
Tych KM, Batchelor M, Hoffmann T, Wilson MC, Paci E, Brockwell DJ, Dougan L. Tuning protein mechanics through an ionic cluster graft from an extremophilic protein. SOFT MATTER 2016; 12:2688-2699. [PMID: 26809452 DOI: 10.1039/c5sm02938d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Proteins from extremophilic organisms provide excellent model systems to determine the role of non-covalent interactions in defining protein stability and dynamics as well as being attractive targets for the development of robust biomaterials. Hyperthermophilic proteins have a prevalence of salt bridges, relative to their mesophilic homologues, which are thought to be important for enhanced thermal stability. However, the impact of salt bridges on the mechanical properties of proteins is far from understood. Here, a combination of protein engineering, biophysical characterisation, single molecule force spectroscopy (SMFS) and molecular dynamics (MD) simulations directly investigates the role of salt bridges in the mechanical stability of two cold shock proteins; BsCSP from the mesophilic organism Bacillus subtilis and TmCSP from the hyperthermophilic organism Thermotoga maritima. Single molecule force spectroscopy shows that at ambient temperatures TmCSP is mechanically stronger yet, counter-intuitively, its native state can withstand greater deformation before unfolding (i.e. it is mechanically soft) compared with BsCSP. MD simulations were used to identify the location and quantify the population of salt bridges, and reveal that TmCSP contains a larger number of highly occupied salt bridges than BsCSP. To test the hypothesis that salt-bridges endow these mechanical properties on the hyperthermophilic CSP, a charged triple mutant (CTM) variant of BsCSP was generated by grafting an ionic cluster from TmCSP into the BsCSP scaffold. As expected CTM is thermodynamically more stable and mechanically softer than BsCSP. We show that a grafted ionic cluster can increase the mechanical softness of a protein and speculate that it could provide a mechanical recovery mechanism and that it may be a design feature applicable to other proteins.
Collapse
Affiliation(s)
- Katarzyna M Tych
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | | | | | |
Collapse
|
16
|
Rigidity Emerges during Antibody Evolution in Three Distinct Antibody Systems: Evidence from QSFR Analysis of Fab Fragments. PLoS Comput Biol 2015; 11:e1004327. [PMID: 26132144 PMCID: PMC4489365 DOI: 10.1371/journal.pcbi.1004327] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/14/2015] [Indexed: 11/21/2022] Open
Abstract
The effects of somatic mutations that transform polyspecific germline (GL) antibodies to affinity mature (AM) antibodies with monospecificity are compared among three GL-AM Fab pairs. In particular, changes in conformational flexibility are assessed using a Distance Constraint Model (DCM). We have previously established that the DCM can be robustly applied across a series of antibody fragments (VL to Fab), and subsequently, the DCM was combined with molecular dynamics (MD) simulations to similarly characterize five thermostabilizing scFv mutants. The DCM is an ensemble based statistical mechanical approach that accounts for enthalpy/entropy compensation due to network rigidity, which has been quite successful in elucidating conformational flexibility and Quantitative Stability/Flexibility Relationships (QSFR) in proteins. Applied to three disparate antibody systems changes in QSFR quantities indicate that the VH domain is typically rigidified, whereas the VL domain and CDR L2 loop become more flexible during affinity maturation. The increase in CDR H3 loop rigidity is consistent with other studies in the literature. The redistribution of conformational flexibility is largely controlled by nonspecific changes in the H-bond network, although certain Arg to Asp salt bridges create highly localized rigidity increases. Taken together, these results reveal an intricate flexibility/rigidity response that accompanies affinity maturation. Antibodies are protective proteins used by the immune system to recognize and neutralize foreign objects through interactions with a specific part of the target, called an antigen. Antibody structures are Y-shaped, contain multiple protein chains, and include two antigen-binding sites. The binding sites are located at the end of the Fab fragments, which are the upward facing arms of the Y-structure. The Fab fragments maintain binding affinity by themselves, and are thus often used as surrogates to student antibody-antigen interactions. High affinity antibodies are produced during the course of an immune response by successive mutations to germline gene-encoded antibodies. Germline antibodies are more likely to be polyspecific, whereas the affinity maturation process yields monoclonal antibodies that bind specifically to the target antigen. In this work, we use a computational Distance Constraint Model to characterize how mechanical properties change as three disparate germline antibodies are converted to affinity mature. Our results reveal a rich set of mechanical responses throughout the Fab structure. Nevertheless, increased rigidity in the VH domain is consistently observed, which is consistent with the transition from polyspecificity to monospecificity. That is, flexible antibody structures are able to recognize multiple antigens, while increased affinity and specificity is achieved—in part—by structural rigidification.
Collapse
|
17
|
Pacheco S, Béhar G, Maillasson M, Mouratou B, Pecorari F. Affinity transfer to the archaeal extremophilic Sac7d protein by insertion of a CDR. Protein Eng Des Sel 2015; 27:431-8. [PMID: 25301962 DOI: 10.1093/protein/gzu042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Artificially transforming a scaffold protein into binders often consists of introducing diversity into its natural binding region by directed mutagenesis. We have previously developed the archaeal extremophilic Sac7d protein as a scaffold to derive affinity reagents (Affitins) by randomization of only a flat surface, or a flat surface and two short loops with natural lengths. Short loops are believed to contribute to stability of extremophilic proteins, and loop extension has been reported detrimental for the thermal and chemical stabilities of mesophilic proteins. In this work, we wanted to evaluate the possibility of designing target-binding proteins based on Sac7d by using a complementary determining region (CDR). To this aim, we inserted into three different loops a 10 residues CDR from the cAb-Lys3 anti-lysozyme camel antibody. The chimeras obtained were as stable as wild-type (WT) Sac7d at extreme pH and their structural integrity was supported. Chimeras were thermally stable, but with T(m)s from 60.9 to 66.3°C (cf. 91°C for Sac7d) which shows that loop extension is detrimental for thermal stability of Sac7d. The loop 3 enabled anti-lysozyme activity. These results pave the way for the use of CDR(s) from antibodies and/or extended randomized loop(s) to increase the potential of binding of Affitins.
Collapse
Affiliation(s)
- Sabino Pacheco
- CRCNA - UMR 892 INSERM, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France 6299 CNRS, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France University of Nantes, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France Institut Pasteur, CNRS UMR 3528, Unité de Microbiologie Structurale, 25 rue du Dr. Roux, 72724 Paris Cedex 15, France
| | - Ghislaine Béhar
- CRCNA - UMR 892 INSERM, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France 6299 CNRS, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France University of Nantes, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France
| | - Mike Maillasson
- CRCNA - UMR 892 INSERM, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France 6299 CNRS, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France University of Nantes, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France Plate-forme IMPACT Biogenouest, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France
| | - Barbara Mouratou
- CRCNA - UMR 892 INSERM, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France 6299 CNRS, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France University of Nantes, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France
| | - Frédéric Pecorari
- CRCNA - UMR 892 INSERM, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France 6299 CNRS, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France University of Nantes, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France
| |
Collapse
|
18
|
Rosen LE, Marqusee S. Autonomously folding protein fragments reveal differences in the energy landscapes of homologous RNases H. PLoS One 2015; 10:e0119640. [PMID: 25803034 PMCID: PMC4372590 DOI: 10.1371/journal.pone.0119640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/02/2015] [Indexed: 11/19/2022] Open
Abstract
An important approach to understanding how a protein sequence encodes its energy landscape is to compare proteins with different sequences that fold to the same general native structure. In this work, we compare E. coli and T. thermophilus homologs of the protein RNase H. Using protein fragments, we create equilibrium mimics of two different potential partially-folded intermediates (I(core) and I(core+1)) hypothesized to be present on the energy landscapes of these two proteins. We observe that both T. thermophilus RNase H (ttRNH) fragments are folded and have distinct stabilities, indicating that both regions are capable of autonomous folding and that both intermediates are present as local minima on the ttRNH energy landscape. In contrast, the two E. coli RNase H (ecRNH) fragments have very similar stabilities, suggesting that the presence of additional residues in the I(core+1) fragment does not affect the folding or structure as compared to I(core). NMR experiments provide additional evidence that only the I(core) intermediate is populated by ecRNH. This is one of the biggest differences that has been observed between the energy landscapes of these two proteins. Additionally, we used a FRET experiment in the background of full-length ttRNH to specifically monitor the formation of the I(core+1) intermediate. We determine that the ttRNH I(core+1) intermediate is likely the intermediate populated prior to the rate-limiting barrier to global folding, in contrast to E. coli RNase H for which I(core) is the folding intermediate. This result provides new insight into the nature of the rate-limiting barrier for the folding of RNase H.
Collapse
Affiliation(s)
- Laura E. Rosen
- Biophysics Graduate Group, University of California, Berkeley, CA, United States of America
- California Institute for Quantitative Biosciences – Berkeley, Berkeley, CA, United States of America
| | - Susan Marqusee
- Biophysics Graduate Group, University of California, Berkeley, CA, United States of America
- California Institute for Quantitative Biosciences – Berkeley, Berkeley, CA, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States of America
- * E-mail:
| |
Collapse
|
19
|
Stafford KA, Trbovic N, Butterwick JA, Abel R, Friesner RA, Palmer AG. Conformational preferences underlying reduced activity of a thermophilic ribonuclease H. J Mol Biol 2014; 427:853-866. [PMID: 25550198 DOI: 10.1016/j.jmb.2014.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/14/2014] [Indexed: 11/30/2022]
Abstract
The conformational basis for reduced activity of the thermophilic ribonuclease HI enzyme from Thermus thermophilus, compared to its mesophilic homolog from Escherichia coli, is elucidated using a combination of NMR spectroscopy and molecular dynamics (MD) simulations. Explicit-solvent all-atom MD simulations of the two wild-type proteins and an E. coli mutant in which a glycine residue is inserted after position 80 to mimic the T. thermophilus protein reproduce the differences in conformational dynamics determined from (15)N spin-relaxation NMR spectroscopy of three loop regions that surround the active site and contain functionally important residues: the glycine-rich region, the handle region, and the β5/αE loop. Examination of the MD trajectories indicates that the thermophilic protein samples conformations productive for substrate binding and activity less frequently than the mesophilic enzyme, although these differences may manifest as either increased or decreased relative flexibility of the different regions. Additional MD simulations indicate that mutations increasing activity of the T. thermophilus enzyme at mesophilic temperatures do so by reconfiguring the local environments of the mutated sites to more closely resemble active conformations. Taken together, the results show that both locally increased and decreased flexibility contribute to an overall reduction in activity of T. thermophilus ribonuclease H compared to its mesophilic E. coli homolog.
Collapse
Affiliation(s)
- Kate A Stafford
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Nikola Trbovic
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Joel A Butterwick
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Robert Abel
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | | | - Arthur G Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
20
|
Abstract
Tracking the evolution of thermostability in resurrected ancestors of a heat-tolerant extremophile protein and its less heat tolerant Escherichia coli homologue shows how thermostability has probably explored different mechanisms of protein stabilization over evolutionary time. Proteins from thermophiles are generally more thermostable than their mesophilic homologs, but little is known about the evolutionary process driving these differences. Here we attempt to understand how the diverse thermostabilities of bacterial ribonuclease H1 (RNH) proteins evolved. RNH proteins from Thermus thermophilus (ttRNH) and Escherichia coli (ecRNH) share similar structures but differ in melting temperature (Tm) by 20°C. ttRNH's greater stability is caused in part by the presence of residual structure in the unfolded state, which results in a low heat capacity of unfolding (ΔCp) relative to ecRNH. We first characterized RNH proteins from a variety of extant bacteria and found that Tm correlates with the species' growth temperatures, consistent with environmental selection for stability. We then used ancestral sequence reconstruction to statistically infer evolutionary intermediates along lineages leading to ecRNH and ttRNH from their common ancestor, which existed approximately 3 billion years ago. Finally, we synthesized and experimentally characterized these intermediates. The shared ancestor has a melting temperature between those of ttRNH and ecRNH; the Tms of intermediate ancestors along the ttRNH lineage increased gradually over time, while the ecRNH lineage exhibited an abrupt drop in Tm followed by relatively little change. To determine whether the underlying mechanisms for thermostability correlate with the changes in Tm, we measured the thermodynamic basis for stabilization—ΔCp and other thermodynamic parameters—for each of the ancestors. We observed that, while the Tm changes smoothly, the mechanistic basis for stability fluctuates over evolutionary time. Thus, even while overall stability appears to be strongly driven by selection, the proteins explored a wide variety of mechanisms of stabilization, a phenomenon we call “thermodynamic system drift.” This suggests that even on lineages with strong selection to increase stability, proteins have wide latitude to explore sequence space, generating biophysical diversity and potentially opening new evolutionary pathways. The biophysical properties of proteins must adjust to accommodate environmental temperatures because of the narrow range over which any given protein sequence can remain folded and functional. We compared the evolution of homologous bacterial enzymes (ribonucleases H1) from two lineages: one from Escherichia coli, which live at moderate temperatures, the other from Thermus thermophilus, which live at extremely high temperatures. Our aim was to investigate how these structurally homologous proteins can have such different thermostabilities, unfolding at temperatures that are 20°C apart. We used bioinformatics to reconstruct the sequences of ancestral proteins along each lineage, synthesized the proteins in the lab, and experimentally traced the evolution of ribonuclease H1 stability. While thermostability appears to have been strongly shaped by selection, the biophysical mechanisms used to tune protein stability appear to have varied throughout evolutionary history; this suggests that proteins have wide latitude to explore different mechanisms of stabilization, generating biophysical diversity and opening up new evolutionary pathways.
Collapse
|
21
|
Narayan A, Naganathan AN. Evidence for the sequential folding mechanism in RNase H from an ensemble-based model. J Phys Chem B 2014; 118:5050-8. [PMID: 24762044 DOI: 10.1021/jp500934f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The number of distinct protein folding pathways starting from an unfolded ensemble, and hence, the folding mechanism is an intricate function of protein size, sequence complexity, and stability conditions. This has traditionally been a contentious issue particularly because of the ensemble nature of conventional experiments that can mask the complexity of the underlying folding landscape. Recent hydrogen-exchange experiments combined with mass spectrometry (HX-MS) reveal that the folding of RNase H proceeds in a hierarchical fashion with distinct intermediates and following a single discrete path. In our current work, we provide computational evidence for this unique folding mechanism by employing a structure-based statistical mechanical model. Upon calibrating the energetic terms of the model with equilibrium measurements, we predict multiple intermediate states in the folding of RNase H that closely resemble experimental observations. Remarkably, a simplified landscape representation adequately captures the folding complexity and predicts the possibility of a well-defined sequence of folding events. We supplement the statistical model study with both explicit solvent molecular simulations of the helical units and electrostatic calculations to provide structural and energetic insights into the early and late stages of RNase H folding that hint at the frustrated nature of its folding landscape.
Collapse
Affiliation(s)
- Abhishek Narayan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras , Chennai 600036, India
| | | |
Collapse
|
22
|
Corkrey R, McMeekin TA, Bowman JP, Ratkowsky DA, Olley J, Ross T. Protein thermodynamics can be predicted directly from biological growth rates. PLoS One 2014; 9:e96100. [PMID: 24787650 PMCID: PMC4006894 DOI: 10.1371/journal.pone.0096100] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/03/2014] [Indexed: 11/18/2022] Open
Abstract
Life on Earth is capable of growing from temperatures well below freezing to above the boiling point of water, with some organisms preferring cooler and others hotter conditions. The growth rate of each organism ultimately depends on its intracellular chemical reactions. Here we show that a thermodynamic model based on a single, rate-limiting, enzyme-catalysed reaction accurately describes population growth rates in 230 diverse strains of unicellular and multicellular organisms. Collectively these represent all three domains of life, ranging from psychrophilic to hyperthermophilic, and including the highest temperature so far observed for growth (122°C). The results provide credible estimates of thermodynamic properties of proteins and obtain, purely from organism intrinsic growth rate data, relationships between parameters previously identified experimentally, thus bridging a gap between biochemistry and whole organism biology. We find that growth rates of both unicellular and multicellular life forms can be described by the same temperature dependence model. The model results provide strong support for a single highly-conserved reaction present in the last universal common ancestor (LUCA). This is remarkable in that it means that the growth rate dependence on temperature of unicellular and multicellular life forms that evolved over geological time spans can be explained by the same model.
Collapse
Affiliation(s)
- Ross Corkrey
- Tasmanian Institute of Agriculture/School of Agricultural Science, University of Tasmania, Hobart, Tasmania, Australia
- * E-mail:
| | - Tom A. McMeekin
- Tasmanian Institute of Agriculture/School of Agricultural Science, University of Tasmania, Hobart, Tasmania, Australia
| | - John P. Bowman
- Tasmanian Institute of Agriculture/School of Agricultural Science, University of Tasmania, Hobart, Tasmania, Australia
| | - David A. Ratkowsky
- Tasmanian Institute of Agriculture/School of Agricultural Science, University of Tasmania, Hobart, Tasmania, Australia
| | - June Olley
- Tasmanian Institute of Agriculture/School of Agricultural Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Tom Ross
- Tasmanian Institute of Agriculture/School of Agricultural Science, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
23
|
Li T, Tracka MB, Uddin S, Casas-Finet J, Jacobs DJ, Livesay DR. Redistribution of flexibility in stabilizing antibody fragment mutants follows Le Châtelier's principle. PLoS One 2014; 9:e92870. [PMID: 24671209 PMCID: PMC3966838 DOI: 10.1371/journal.pone.0092870] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/26/2014] [Indexed: 11/18/2022] Open
Abstract
Le Châtelier's principle is the cornerstone of our understanding of chemical equilibria. When a system at equilibrium undergoes a change in concentration or thermodynamic state (i.e., temperature, pressure, etc.), La Châtelier's principle states that an equilibrium shift will occur to offset the perturbation and a new equilibrium is established. We demonstrate that the effects of stabilizing mutations on the rigidity ⇔ flexibility equilibrium within the native state ensemble manifest themselves through enthalpy-entropy compensation as the protein structure adjusts to restore the global balance between the two. Specifically, we characterize the effects of mutation to single chain fragments of the anti-lymphotoxin-β receptor antibody using a computational Distance Constraint Model. Statistically significant changes in the distribution of both rigidity and flexibility within the molecular structure is typically observed, where the local perturbations often lead to distal shifts in flexibility and rigidity profiles. Nevertheless, the net gain or loss in flexibility of individual mutants can be skewed. Despite all mutants being exclusively stabilizing in this dataset, increased flexibility is slightly more common than increased rigidity. Mechanistically the redistribution of flexibility is largely controlled by changes in the H-bond network. For example, a stabilizing mutation can induce an increase in rigidity locally due to the formation of new H-bonds, and simultaneously break H-bonds elsewhere leading to increased flexibility distant from the mutation site via Le Châtelier. Increased flexibility within the VH β4/β5 loop is a noteworthy illustration of this long-range effect.
Collapse
Affiliation(s)
- Tong Li
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | | | - Shahid Uddin
- Department of Formulation Sciences, MedImmune Ltd., Cambridge, United Kingdom
| | - Jose Casas-Finet
- Analytical Biochemistry Department, MedImmune LLC, Gaithersburg, Maryland, United States of America
| | - Donald J. Jacobs
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Dennis R. Livesay
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| |
Collapse
|
24
|
Liu CC, LiCata VJ. The stability ofTaqDNA polymerase results from a reduced entropic folding penalty; identification of other thermophilic proteins with similar folding thermodynamics. Proteins 2013; 82:785-93. [DOI: 10.1002/prot.24458] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/26/2013] [Accepted: 10/10/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Chin-Chi Liu
- Department of Biological Sciences; Louisiana State University; Baton Rouge Louisiana 70803
| | - Vince J. LiCata
- Department of Biological Sciences; Louisiana State University; Baton Rouge Louisiana 70803
| |
Collapse
|
25
|
Tischer A, Auton M. Urea-temperature phase diagrams capture the thermodynamics of denatured state expansion that accompany protein unfolding. Protein Sci 2013; 22:1147-60. [PMID: 23813497 PMCID: PMC3776328 DOI: 10.1002/pro.2301] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/18/2013] [Accepted: 06/18/2013] [Indexed: 11/11/2022]
Abstract
We have analyzed the thermodynamic properties of the von Willebrand factor (VWF) A3 domain using urea-induced unfolding at variable temperature and thermal unfolding at variable urea concentrations to generate a phase diagram that quantitatively describes the equilibrium between native and denatured states. From this analysis, we were able to determine consistent thermodynamic parameters with various spectroscopic and calorimetric methods that define the urea-temperature parameter plane from cold denaturation to heat denaturation. Urea and thermal denaturation are experimentally reversible and independent of the thermal scan rate indicating that all transitions are at equilibrium and the van't Hoff and calorimetric enthalpies obtained from analysis of individual thermal transitions are equivalent demonstrating two-state character. Global analysis of the urea-temperature phase diagram results in a significantly higher enthalpy of unfolding than obtained from analysis of individual thermal transitions and significant cross correlations describing the urea dependence of ΔH0 and ΔCP0 that define a complex temperature dependence of the m-value. Circular dichroism (CD) spectroscopy illustrates a large increase in secondary structure content of the urea-denatured state as temperature increases and a loss of secondary structure in the thermally denatured state upon addition of urea. These structural changes in the denatured ensemble make up ∼40% of the total ellipticity change indicating a highly compact thermally denatured state. The difference between the thermodynamic parameters obtained from phase diagram analysis and those obtained from analysis of individual thermal transitions illustrates that phase diagrams capture both contributions to unfolding and denatured state expansion and by comparison are able to decipher these contributions.
Collapse
Affiliation(s)
- Alexander Tischer
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
26
|
Uchiyama S, Ohshima A, Yoshida T, Ohkubo T, Kobayashi Y. Thermodynamic assessment of domain-domain interactions and in vitro activities of mesophilic and thermophilic ribosome recycling factors. Biopolymers 2013; 100:366-79. [DOI: 10.1002/bip.22233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 02/20/2013] [Accepted: 02/28/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering; Osaka University; Suita; 565-0871; Japan
| | - Atsushi Ohshima
- Department of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences; Osaka University; Suita; 565-0871; Japan
| | - Takuya Yoshida
- Department of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences; Osaka University; Suita; 565-0871; Japan
| | - Tadayasu Ohkubo
- Department of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences; Osaka University; Suita; 565-0871; Japan
| | | |
Collapse
|
27
|
Hayashi Y, Nagao S, Osuka H, Komori H, Higuchi Y, Hirota S. Domain Swapping of the Heme and N-Terminal α-Helix in Hydrogenobacter thermophilus Cytochrome c552 Dimer. Biochemistry 2012; 51:8608-16. [DOI: 10.1021/bi3011303] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yugo Hayashi
- Graduate School
of Materials
Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Satoshi Nagao
- Graduate School
of Materials
Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Hisao Osuka
- Department of Life Science,
Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Hirofumi Komori
- Department of Life Science,
Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yoshiki Higuchi
- Department of Life Science,
Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Shun Hirota
- Graduate School
of Materials
Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
28
|
Verma D, Jacobs DJ, Livesay DR. Changes in Lysozyme Flexibility upon Mutation Are Frequent, Large and Long-Ranged. PLoS Comput Biol 2012; 8:e1002409. [PMID: 22396637 PMCID: PMC3291535 DOI: 10.1371/journal.pcbi.1002409] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 01/11/2012] [Indexed: 11/18/2022] Open
Abstract
We investigate changes in human c-type lysozyme flexibility upon mutation via a Distance Constraint Model, which gives a statistical mechanical treatment of network rigidity. Specifically, two dynamical metrics are tracked. Changes in flexibility index quantify differences within backbone flexibility, whereas changes in the cooperativity correlation quantify differences within pairwise mechanical couplings. Regardless of metric, the same general conclusions are drawn. That is, small structural perturbations introduced by single point mutations have a frequent and pronounced affect on lysozyme flexibility that can extend over long distances. Specifically, an appreciable change occurs in backbone flexibility for 48% of the residues, and a change in cooperativity occurs in 42% of residue pairs. The average distance from mutation to a site with a change in flexibility is 17–20 Å. Interestingly, the frequency and scale of the changes within single point mutant structures are generally larger than those observed in the hen egg white lysozyme (HEWL) ortholog, which shares 61% sequence identity with human lysozyme. For example, point mutations often lead to substantial flexibility increases within the β-subdomain, which is consistent with experimental results indicating that it is the nucleation site for amyloid formation. However, β-subdomain flexibility within the human and HEWL orthologs is more similar despite the lowered sequence identity. These results suggest compensating mutations in HEWL reestablish desired properties. The functional importance of protein dynamics is universally accepted, making the study of dynamical similarities and differences among proteins of the same function an intriguing problem. While some metrics are likely to be conserved across family, differences are also very common. In previous works we have used a Distance Constraint Model to quantify flexibility differences across sets of orthologous proteins, which reproduce this diversity. In the same manner, this work investigates changes occurring upon individual point mutations. Somewhat surprisingly, the small structural perturbations caused by mutation lead to changes throughout the protein. These changes can be quite large, actually surpassing the scale for differences between ortholog pairs. Moreover, changes in flexibility frequently occur at sites far from the mutation site. These results underscore the sensitivity of protein dynamics in connection with allostery, and help explain why differences across protein families are so common.
Collapse
Affiliation(s)
- Deeptak Verma
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Donald J. Jacobs
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
- * E-mail: (DJJ); (DRL)
| | - Dennis R. Livesay
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
- * E-mail: (DJJ); (DRL)
| |
Collapse
|
29
|
Abstract
The distance constraint model (DCM) is a unique computational modeling paradigm that integrates mechanical and thermodynamic descriptions of macromolecular structure. That is, network rigidity calculations are used to account for nonadditivity within entropy components, thus restoring the utility of free-energy decomposition. The DCM outputs a large number of structural characterizations that collectively allow for quantified stability-flexibility relationships (QSFR) to be identified. In this review, we describe the theoretical underpinnings of the DCM and introduce several common QSFR metrics. Application of the DCM across protein families highlights the sensitivity within the set of protein structure residue-to-residue couplings. Further, we have developed a perturbation method to identify putative allosteric sites, where large changes in QSFR upon rigidification (mimicking ligand-binding) detect sites likely to invoke allosteric changes.
Collapse
|
30
|
Menichelli E, Edgcomb SP, Recht MI, Williamson JR. The structure of Aquifex aeolicus ribosomal protein S8 reveals a unique subdomain that contributes to an extremely tight association with 16S rRNA. J Mol Biol 2011; 415:489-502. [PMID: 22079365 DOI: 10.1016/j.jmb.2011.10.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/14/2011] [Accepted: 10/26/2011] [Indexed: 12/01/2022]
Abstract
The assembly of ribonucleoprotein complexes occurs under a broad range of conditions, but the principles that promote assembly and allow function at high temperature are poorly understood. The ribosomal protein S8 from Aquifex aeolicus (AS8) is unique in that there is a 41-residue insertion in the consensus S8 sequence. In addition, AS8 exhibits an unusually high affinity for the 16S ribosomal RNA, characterized by a picomolar dissociation constant that is approximately 26,000-fold tighter than the equivalent interaction from Escherichia coli. Deletion analysis demonstrated that binding to the minimal site on helix 21 occurred at the same nanomolar affinity found for other bacterial species. The additional affinity required the presence of a three-helix junction between helices 20, 21, and 22. The crystal structure of AS8 was solved, revealing the helix-loop-helix geometry of the unique AS8 insertion region, while the core of the molecule is conserved with known S8 structures. The AS8 structure was modeled onto the structure of the 30S ribosomal subunit from E. coli, suggesting the possibility that the unique subdomain provides additional backbone and side-chain contacts between the protein and an unpaired base within the three-way junction of helices 20, 21, and 22. Point mutations in the protein insertion subdomain resulted in a significantly reduced RNA binding affinity with respect to wild-type AS8. These results indicate that the AS8-specific subdomain provides additional interactions with the three-way junction that contribute to the extremely tight binding to ribosomal RNA.
Collapse
Affiliation(s)
- Elena Menichelli
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
31
|
Gill ML, Palmer AG. Multiplet-filtered and gradient-selected zero-quantum TROSY experiments for 13C1H3 methyl groups in proteins. JOURNAL OF BIOMOLECULAR NMR 2011; 51:245-51. [PMID: 21918814 PMCID: PMC3280329 DOI: 10.1007/s10858-011-9533-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/11/2011] [Indexed: 05/03/2023]
Abstract
Multiplet-filtered and gradient-selected heteronuclear zero-quantum coherence (gsHZQC) TROSY experiments are described for measuring (1)H-(13)C correlations for (13)CH(3) methyl groups in proteins. These experiments provide improved suppression of undesirable, broad outer components of the heteronuclear zero-quantum multiplet in medium-sized proteins, or in flexible sites of larger proteins, compared to previously described HZQC sequences (Tugarinov et al. in J Am Chem Soc 126:4921-4925, 2004; Ollerenshaw et al. in J Biomol NMR 33:25-41, 2005). Hahn-echo versions of the gsHZQC experiment also are described for measuring zero- and double-quantum transverse relaxation rate constants for identification of chemical exchange broadening. Application of the proposed pulse sequences to Escherichia coli ribonuclease HI, with a molecular mass of 18 kD, indicates that improved multiplet suppression is obtained without substantial loss of sensitivity.
Collapse
Affiliation(s)
- Michelle L. Gill
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Arthur G. Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| |
Collapse
|
32
|
Chan CH, Yu TH, Wong KB. Stabilizing salt-bridge enhances protein thermostability by reducing the heat capacity change of unfolding. PLoS One 2011; 6:e21624. [PMID: 21720566 PMCID: PMC3123365 DOI: 10.1371/journal.pone.0021624] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Accepted: 06/03/2011] [Indexed: 11/19/2022] Open
Abstract
Most thermophilic proteins tend to have more salt bridges, and achieve higher thermostability by up-shifting and broadening their protein stability curves. While the stabilizing effect of salt-bridge has been extensively studied, experimental data on how salt-bridge influences protein stability curves are scarce. Here, we used double mutant cycles to determine the temperature-dependency of the pair-wise interaction energy and the contribution of salt-bridges to ΔCp in a thermophilic ribosomal protein L30e. Our results showed that the pair-wise interaction energies for the salt-bridges E6/R92 and E62/K46 were stabilizing and insensitive to temperature changes from 298 to 348 K. On the other hand, the pair-wise interaction energies between the control long-range ion-pair of E90/R92 were negligible. The ΔCp of all single and double mutants were determined by Gibbs-Helmholtz and Kirchhoff analyses. We showed that the two stabilizing salt-bridges contributed to a reduction of ΔCp by 0.8–1.0 kJ mol−1 K−1. Taken together, our results suggest that the extra salt-bridges found in thermophilic proteins enhance the thermostability of proteins by reducing ΔCp, leading to the up-shifting and broadening of the protein stability curves.
Collapse
Affiliation(s)
- Chi-Ho Chan
- School of Life Sciences, Centre for Protein Science and Crystallography, The Chinese University of Hong Kong, Hong Kong, Shatin, Hong Kong SAR, China
| | - Tsz-Ha Yu
- School of Life Sciences, Centre for Protein Science and Crystallography, The Chinese University of Hong Kong, Hong Kong, Shatin, Hong Kong SAR, China
| | - Kam-Bo Wong
- School of Life Sciences, Centre for Protein Science and Crystallography, The Chinese University of Hong Kong, Hong Kong, Shatin, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
33
|
Groussin M, Gouy M. Adaptation to Environmental Temperature Is a Major Determinant of Molecular Evolutionary Rates in Archaea. Mol Biol Evol 2011; 28:2661-74. [DOI: 10.1093/molbev/msr098] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
34
|
Allosteric response is both conserved and variable across three CheY orthologs. Biophys J 2011; 99:2245-54. [PMID: 20923659 DOI: 10.1016/j.bpj.2010.07.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 07/16/2010] [Accepted: 07/22/2010] [Indexed: 11/22/2022] Open
Abstract
A computational method to identify residues likely to initiate allosteric signals has been developed. The method is based on differences within stability and flexibility profiles between wild-type and perturbed structures as computed by a distance constraint model. Application of the approach to three bacterial chemotaxis protein Y (CheY) orthologs provides a comparison of allosteric response across protein family divergence. Interestingly, we observe a rich mixture of both conservation and variability within the identified allosteric sites. While similarity within the overall response parallels the evolutionary relationships, >50% of the best scoring putative sites are only identified in a single ortholog. These results suggest that detailed descriptions of intraprotein communication are substantially more variable than structure and function, yet do maintain some evolutionary relationships. Finally, structural clusters of large response identify four allosteric hotspots, including the β4/α4 loop known to be critical to relaying the CheY phosphorylation signal.
Collapse
|
35
|
Tanaka SI, Koga Y, Takano K, Kanaya S. Inhibition of chymotrypsin- and subtilisin-like serine proteases with Tk-serpin from hyperthermophilic archaeon Thermococcus kodakaraensis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:299-307. [PMID: 21112419 DOI: 10.1016/j.bbapap.2010.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 11/05/2010] [Accepted: 11/09/2010] [Indexed: 12/16/2022]
Abstract
A serpin homologue (Tk-serpin) from the hyperthermophilic archaeon Thermococcus kodakaraensis was overproduced in E. coli, purified, and characterized. Tk-serpin irreversibly inhibits Tk-subtilisin (TKS) from the same organism with the second-order association rate constants (k(ass)) of 5.2×10³ M⁻¹ s⁻¹ at 40°C and 3.1×10⁵ M⁻¹ s⁻¹ at 80°C, indicating that Tk-serpin inhibits TKS more strongly at 80°C than at 40°C. It also irreversibly inhibits chymotrypsin, subtilisin Carlsberg, and proteinase K at 40°C with the k(ass) values comparable to that for TKS at 80°C. Casein zymography showed that Tk-serpin inhibits these proteases by forming a SDS-resistant complex, which is typical to inhibitory serpins. The ratio of moles of Tk-serpin needed to inhibit 1 mol of protease (stoichiometry of inhibition, SI) varies from 40 to 80 at 20°C, but decreases to the minimum values of 3-7 as the temperature increases. The inhibitory activities of Tk-serpin for these proteases increase as the stabilities of these proteases decrease, suggesting that a flexibility of the active-site of protease is one of the determinants for susceptibility of protease to inhibition by Tk-serpin. This report showed for the first time that Tk-serpin inhibits both chymotrypsin- and subtilisin-like serine proteases and its inhibitory activity increases as the temperature increases up to 100°C.
Collapse
Affiliation(s)
- Shun-ichi Tanaka
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
36
|
Ratcliff K, Marqusee S. Identification of residual structure in the unfolded state of ribonuclease H1 from the moderately thermophilic Chlorobium tepidum: comparison with thermophilic and mesophilic homologues. Biochemistry 2010; 49:5167-75. [PMID: 20491485 DOI: 10.1021/bi1001097] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribonucleases H from organisms that grow at different temperatures demonstrate a variable change in heat capacity upon unfolding (DeltaC degrees (P)) [Ratcliff, K., et al. (2009) Biochemistry 48, 5890-5898]. This DeltaC degrees (P) has been shown to correlate with a tolerance to higher temperatures and residual structure in the unfolded state of the thermophilic proteins. In the RNase H from Thermus thermophilus, the low DeltaC degrees (P) has been shown to arise from the same region as the folding core of the protein, and mutagenic studies have shown that loss of a hydrophobic residue in this region can disrupt this residual unfolded state structure and result in a return to a more mesophile-like DeltaC degrees (P) [Robic, S., et al. (2002) Protein Sci. 11, 381-389; Robic, S., et al. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 11345-11349]. To understand further how residual structure in the unfolded state is encoded in the sequences of these thermophilic proteins, we subjected the RNase H from Chlorobium tepidum to similar studies. Analysis of new chimeric proteins reveals that like T. thermophilus RNase H, the folding core of C. tepidum RNase H plays an important role in the unfolded state of this protein. Mutagenesis studies, based on both a computational investigation of the hydrophobic networks in the core region and comparisons with similar studies on T. thermophilus RNase H, identify new residues involved in this residual structure and suggest that the residual structure in the unfolded state of C. tepidum RNase H is more restricted than that of T. thermophilus. We conclude that while the folding core region determines the thermophilic-like behavior of this family of proteins, the residue-specific details vary.
Collapse
Affiliation(s)
- Kathleen Ratcliff
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
37
|
Okada J, Okamoto T, Mukaiyama A, Tadokoro T, You DJ, Chon H, Koga Y, Takano K, Kanaya S. Evolution and thermodynamics of the slow unfolding of hyperstable monomeric proteins. BMC Evol Biol 2010; 10:207. [PMID: 20615256 PMCID: PMC2927913 DOI: 10.1186/1471-2148-10-207] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 07/09/2010] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The unfolding speed of some hyperthermophilic proteins is dramatically lower than that of their mesostable homologs. Ribonuclease HII from the hyperthermophilic archaeon Thermococcus kodakaraensis (Tk-RNase HII) is stabilized by its remarkably slow unfolding rate, whereas RNase HI from the thermophilic bacterium Thermus thermophilus (Tt-RNase HI) unfolds rapidly, comparable with to that of RNase HI from Escherichia coli (Ec-RNase HI). RESULTS To clarify whether the difference in the unfolding rate is due to differences in the types of RNase H or differences in proteins from archaea and bacteria, we examined the equilibrium stability and unfolding reaction of RNases HII from the hyperthermophilic bacteria Thermotoga maritima (Tm-RNase HII) and Aquifex aeolicus (Aa-RNase HII) and RNase HI from the hyperthermophilic archaeon Sulfolobus tokodaii (Sto-RNase HI). These proteins from hyperthermophiles are more stable than Ec-RNase HI over all the temperature ranges examined. The observed unfolding speeds of all hyperstable proteins at the different denaturant concentrations studied are much lower than those of Ec-RNase HI, which is in accordance with the familiar slow unfolding of hyperstable proteins. However, the unfolding rate constants of these RNases H in water are dispersed, and the unfolding rate constant of thermophilic archaeal proteins is lower than that of thermophilic bacterial proteins. CONCLUSIONS These results suggest that the nature of slow unfolding of thermophilic proteins is determined by the evolutionary history of the organisms involved. The unfolding rate constants in water are related to the amount of buried hydrophobic residues in the tertiary structure.
Collapse
Affiliation(s)
- Jun Okada
- Department of Material and Life Science, Osaka University, Suita, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kamal MZ, Ahmad S, Yedavalli P, Rao NM. Stability curves of laboratory evolved thermostable mutants of a Bacillus subtilis lipase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1850-6. [PMID: 20599630 DOI: 10.1016/j.bbapap.2010.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 06/14/2010] [Accepted: 06/17/2010] [Indexed: 11/26/2022]
Abstract
Shape of the protein stability curves changes to achieve higher melting temperature. Broadly, these changes have been classified as upward shift (increased G(s)), rightward shift (increase in T(s)) and flattening of the stability curves (decrease in C(p)). Comparative studies on homologous mesophilic-thermophilic protein pairs highlighted the differential contribution of these three strategies amongst proteins. But unambiguous way of identification of the strategies, which will be preferred for a protein, is still not achieved. We have performed comparative thermodynamic studies using differential scanning calorimeter (DSC) on thermostable variants of a lipase from Bacillus subtilis. These variants are products of 1, 2, 3 and 4 rounds of directed evolution and harbor mutations having definite contribution in thermostability unlike natural thermophilic proteins. We have shown that upward and rightward shift in stability curves are prime strategies in this lipase. Our results along with that from the other study on laboratory evolved xylanase A suggest that optimization of suboptimal thermodynamic parameters is having a dominant influence in selection of thermodynamic strategies for higher thermostability.
Collapse
Affiliation(s)
- Md Zahid Kamal
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial research, Uppal Road, Hyderabad-500007, India
| | | | | | | |
Collapse
|
39
|
Henzl MT, Davis ME, Tan A. Polcalcin divalent ion-binding behavior and thermal stability: comparison of Bet v 4, Bra n 1, and Bra n 2 to Phl p 7. Biochemistry 2010; 49:2256-68. [PMID: 20143814 DOI: 10.1021/bi902115v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polcalcins are pollen-specific proteins containing two EF-hands. Atypically, the C-terminal EF-hand binding loop in Phl p 7 (from timothy grass) harbors five, rather than four, anionic side chains, due to replacement of the consensus serine at -x by aspartate. This arrangement has been shown to heighten parvalbumin Ca(2+) affinity. To determine whether Phl p 7 likewise exhibits anomalous divalent ion affinity, we have also characterized Bra n 1 and Bra n 2 (both from rapeseed) and Bet v 4 (from birch tree). Relative to Phl p 7, they exhibit N-terminal extensions of one, five, and seven residues, respectively. Interestingly, the divalent ion affinity of Phl p 7 is unexceptional. For example, at -17.84 +/- 0.13 kcal mol(-1), the overall standard free energy for Ca(2+) binding falls within the range observed for the other three proteins (-17.30 +/- 0.10 to -18.15 +/- 0.10 kcal mol(-1)). In further contrast to parvalbumin, replacement of the -x aspartate, via the D55S mutation, actually increases the overall Ca(2+) affinity of Phl p 7, to -18.17 +/- 0.13 kcal mol(-1). Ca(2+)-free Phl p 7 exhibits uncharacteristic thermal stability. Whereas wild-type Phl p 7 and the D55S variant denature at 77.3 and 78.0 degrees C, respectively, the other three polcalcins unfold between 56.1 and 57.9 degrees C. This stability reflects a low denaturational heat capacity increment. Phl p 7 and Phl p 7 D55S exhibit DeltaC(p) values of 0.34 and 0.32 kcal mol(-1) K(-1), respectively. The corresponding values for the other three polcalcins range from 0.66 to 0.95 kcal mol(-1) K(-1).
Collapse
Affiliation(s)
- Michael T Henzl
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | |
Collapse
|
40
|
Vicatos S, Roca M, Warshel A. Effective approach for calculations of absolute stability of proteins using focused dielectric constants. Proteins 2010; 77:670-84. [PMID: 19856460 DOI: 10.1002/prot.22481] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The ability to predict the absolute stability of proteins based on their corresponding sequence and structure is a problem of great fundamental and practical importance. In this work, we report an extensive, refinement and validation of our recent approach (Roca et al., FEBS Lett 2007;581:2065-2071) for predicting absolute values of protein stability DeltaG(fold). This approach employs the semimacroscopic protein dipole Langevin dipole method in its linear response approximation version (PDLD/S-LRA) while using the best fitted values of the dielectric constants epsilon'(p) and epsilon'(eff) for the self energy and charge-charge interactions, respectively. The method is validated on a diverse set of 45 proteins. It is found that the best fitted values of both dielectric constants are around 40. However, the self energy of internal residues and the charge-charge interactions of Lys have to be treated with care, using a somewhat lower values of epsilon'(p) and epsilon'(eff). The predictions of DeltaG(fold) reported here, have an average error of only 1.8 kcal/mole compared to the observed values, making our method very promising for estimating protein stability. It also provides valuable insight into the complex electrostatic phenomena taking place in folded proteins.
Collapse
Affiliation(s)
- Spyridon Vicatos
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | | | | |
Collapse
|
41
|
Robic S. Mathematics, thermodynamics, and modeling to address ten common misconceptions about protein structure, folding, and stability. CBE LIFE SCIENCES EDUCATION 2010; 9:189-95. [PMID: 20810950 PMCID: PMC2931665 DOI: 10.1187/cbe.10-03-0018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 05/06/2010] [Accepted: 05/07/2010] [Indexed: 05/19/2023]
Abstract
To fully understand the roles proteins play in cellular processes, students need to grasp complex ideas about protein structure, folding, and stability. Our current understanding of these topics is based on mathematical models and experimental data. However, protein structure, folding, and stability are often introduced as descriptive, qualitative phenomena in undergraduate classes. In the process of learning about these topics, students often form incorrect ideas. For example, by learning about protein folding in the context of protein synthesis, students may come to an incorrect conclusion that once synthesized on the ribosome, a protein spends its entire cellular life time in its fully folded native confirmation. This is clearly not true; proteins are dynamic structures that undergo both local fluctuations and global unfolding events. To prevent and address such misconceptions, basic concepts of protein science can be introduced in the context of simple mathematical models and hands-on explorations of publicly available data sets. Ten common misconceptions about proteins are presented, along with suggestions for using equations, models, sequence, structure, and thermodynamic data to help students gain a deeper understanding of basic concepts relating to protein structure, folding, and stability.
Collapse
|
42
|
Mottonen JM, Xu M, Jacobs DJ, Livesay DR. Unifying mechanical and thermodynamic descriptions across the thioredoxin protein family. Proteins 2009; 75:610-27. [PMID: 19004018 DOI: 10.1002/prot.22273] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We compare various predicted mechanical and thermodynamic properties of nine oxidized thioredoxins (TRX) using a Distance Constraint Model (DCM). The DCM is based on a nonadditive free energy decomposition scheme, where entropic contributions are determined from rigidity and flexibility of structure based on distance constraints. We perform averages over an ensemble of constraint topologies to calculate several thermodynamic and mechanical response functions that together yield quantitative stability/flexibility relationships (QSFR). Applied to the TRX protein family, QSFR metrics display a rich variety of similarities and differences. In particular, backbone flexibility is well conserved across the family, whereas cooperativity correlation describing mechanical and thermodynamic couplings between the residue pairs exhibit distinctive features that readily standout. The diversity in predicted QSFR metrics that describe cooperativity correlation between pairs of residues is largely explained by a global flexibility order parameter describing the amount of intrinsic flexibility within the protein. A free energy landscape is calculated as a function of the flexibility order parameter, and key values are determined where the native-state, transition-state, and unfolded-state are located. Another key value identifies a mechanical transition where the global nature of the protein changes from flexible to rigid. The key values of the flexibility order parameter help characterize how mechanical and thermodynamic response is linked. Variation in QSFR metrics and key characteristics of global flexibility are related to the native state X-ray crystal structure primarily through the hydrogen bond network. Furthermore, comparison of three TRX redox pairs reveals differences in thermodynamic response (i.e., relative melting point) and mechanical properties (i.e., backbone flexibility and cooperativity correlation) that are consistent with experimental data on thermal stabilities and NMR dynamical profiles. The results taken together demonstrate that small-scale structural variations are amplified into discernible global differences by propagating mechanical couplings through the H-bond network.
Collapse
Affiliation(s)
- James M Mottonen
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | | | | | | |
Collapse
|
43
|
Ku T, Lu P, Chan C, Wang T, Lai S, Lyu P, Hsiao N. Predicting melting temperature directly from protein sequences. Comput Biol Chem 2009; 33:445-50. [PMID: 19896904 DOI: 10.1016/j.compbiolchem.2009.10.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 10/09/2009] [Accepted: 10/10/2009] [Indexed: 12/01/2022]
Abstract
Proteins of both hyperthermophilic and mesophilic microorganisms generally constitute from the same 20 amino acids; however, the extent of thermal tolerance of any given protein is an inherent property of its amino acid sequence. The present study is the first to report a rapid method for predicting Tm (melting temperature), the temperature at which 50% of the protein is unfolded, directly from protein sequences (the Tm Index program is available at http://tm.life.nthu.edu.tw/). We examined 75 complete microbial genomes using the Tm Index, and the analysis clearly differentiated hyperthermophilic from mesophilic microorganisms on this global genomic basis. These results are consistent with the previous hypothesis that hyperthermophiles express a greater number of high Tm proteins compared with mesophiles. The Tm Index will be valuable for modifying existing proteins (enzymes, protein drugs and vaccines) or designing novel proteins having a desired melting temperature.
Collapse
Affiliation(s)
- Tienhsiung Ku
- Department of Anesthesiology, Changhua Christian Hospital, Changhua, Taiwan
| | | | | | | | | | | | | |
Collapse
|
44
|
Ahmad S, Rao NM. Thermally denatured state determines refolding in lipase: mutational analysis. Protein Sci 2009; 18:1183-96. [PMID: 19472328 DOI: 10.1002/pro.126] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Irreversibility of thermally denatured proteins due to aggregation limits thermodynamic characterization of proteins and also confounds the identification of thermostable mutants in protein populations. Identification of mutations that prevent the aggregation of unfolded proteins provides insights into folding pathways. In a lipase from Bacillus subtilis, evolved by directed evolution procedures, the irreversibility due to temperature-mediated aggregation was completely prevented by a single mutation, M137P. Though the parent and the mutants unfold completely on heating, mutants having substitutions M137P, along with M134E and S163P, completely or partially prevent the formation of aggregation-prone intermediate(s) at 75 degrees C. The three mutants show only a marginal increase in free energy of unfolding (DeltaG(H(2)O)), however, the profiles of the residual activity with temperature shows remarkable shift to higher temperature compared to parent. The intermediate(s) were characterized by enhanced binding of bis-ANS, a probe to titrate surface hydrophobicity, aggregation profiles and by estimation of soluble protein. Inclusion of salt in the refolding conditions prevents the reversibility of mutant having charge substitution, while the reversibility of mutant with the introduction of proline was unaffected, indicating the role of charge mediated interaction in M134E in preventing aggregation. Partial prevention of thermal aggregation in wild-type lipase with single substitution, M137P, incorporated by site-directed mutagenesis, suggests that the affect of M137P is independent of the intrinsic thermostability of lipase. Various effects of the mutations suggest their role is in prevention of the formation of aggregation prone intermediate(s). These mutations, describe yet another strategy to enhance the thermotolerance of proteins, where their influence is observed only on the denatured ensemble.
Collapse
Affiliation(s)
- Shoeb Ahmad
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad, India
| | | |
Collapse
|
45
|
Ratcliff K, Corn J, Marqusee S. Structure, stability, and folding of ribonuclease H1 from the moderately thermophilic Chlorobium tepidum: comparison with thermophilic and mesophilic homologues. Biochemistry 2009; 48:5890-8. [PMID: 19408959 DOI: 10.1021/bi900305p] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteins from thermophilic organisms are able to function under conditions that render a typical mesophilic protein inactive. Pairwise comparisons of homologous mesophilic and thermophilic proteins can help to identify the energetic features of a protein's energy landscape that lead to such thermostability. Previous studies of bacterial ribonucleases H (RNases H) from the thermophile Thermus thermophilus and the mesophile Escherichia coli revealed that the thermostability arises in part from an unusually low change in heat capacity upon unfolding (DeltaC(p)) for the thermophilic protein [Hollien, J., and Marqusee, S. (1999) Biochemistry 38, 3831-3836]. Here, we have further examined how nearly identical proteins can adapt to different thermal constraints by adding a moderately thermophilic homologue to the previously characterized mesophilic and thermophilic pair. We identified a putative RNase H from Chlorobium. tepidum and demonstrated that it is an active RNase H and adopts the RNase H fold. The moderately thermophilic protein has a melting temperature (T(m)) similar to that of the mesophilic homologue yet also has a surprisingly low DeltaC(p), like the thermophilic homologue. This new RNase H folds through a pathway similar to that of the previously studied RNases H. These results suggest that lowering the DeltaC(p) may be a general strategy for achieving thermophilicity for some protein families and implicate the folding core as the major contributor to this effect. It should now be possible to design RNases H that display the desired thermophilic or mesophilic properties, as defined by their DeltaC(p) values, and therefore fine-tune the energy landscape in a predictable fashion.
Collapse
Affiliation(s)
- Kathleen Ratcliff
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3220, USA
| | | | | |
Collapse
|
46
|
Mukaiyama A, Takano K. Slow unfolding of monomeric proteins from hyperthermophiles with reversible unfolding. Int J Mol Sci 2009; 10:1369-1385. [PMID: 19399254 PMCID: PMC2672035 DOI: 10.3390/ijms10031369] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 03/19/2009] [Accepted: 03/23/2009] [Indexed: 01/22/2023] Open
Abstract
Based on the differences in their optimal growth temperatures microorganisms can be classified into psychrophiles, mesophiles, thermophiles, and hyperthermophiles. Proteins from hyperthermophiles generally exhibit greater stability than those from other organisms. In this review, we collect data about the stability and folding of monomeric proteins from hyperthermophilies with reversible unfolding, from the equilibrium and kinetic aspects. The results indicate that slow unfolding is a general strategy by which proteins from hyperthermophiles adapt to higher temperatures. Hydrophobic interaction is one of the factors in the molecular mechanism of the slow unfolding of proteins from hyperthermophiles.
Collapse
Affiliation(s)
- Atsushi Mukaiyama
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan; E-Mail:
| | - Kazufumi Takano
- Department of Material and Life Science, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- CREST, JST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Author to whom correspondence should be addressed; E-Mail:
; Tel. +81-6-6879-4157; Fax: +81-6-6879-4157
| |
Collapse
|
47
|
Schweiker KL, Makhatadze GI. A computational approach for the rational design of stable proteins and enzymes: optimization of surface charge-charge interactions. Methods Enzymol 2009; 454:175-211. [PMID: 19216927 DOI: 10.1016/s0076-6879(08)03807-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The design of stable proteins and enzymes is not only of particular biotechnological importance, but also addresses some important fundamental questions. While there are a number of different options available for designing or engineering stable proteins, the field of computational design provides fast and universal methods for stabilizing proteins of interest. One of the successful computational design strategies focuses on stabilizing proteins through the optimization of charge-charge interactions on the protein surface. By optimizing surface interactions, it is possible to alleviate some of the challenges that accompany efforts to redesign the protein core. The rational design of surface charge-charge interactions also allows one to optimize only the interactions that are distant from binding sites or active sites, making it possible to increase stability without adversely affecting activity. The optimization of surface charge-charge interactions is discussed in detail along with the experimental evidence to demonstrate that this is a robust and universal approach to designing proteins with enhanced stability.
Collapse
Affiliation(s)
- Katrina L Schweiker
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | | |
Collapse
|
48
|
High tolerance for ionizable residues in the hydrophobic interior of proteins. Proc Natl Acad Sci U S A 2008; 105:17784-8. [PMID: 19004768 DOI: 10.1073/pnas.0805113105] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Internal ionizable groups are quite rare in water-soluble globular proteins. Presumably, this reflects the incompatibility between charges and the hydrophobic environment in the protein interior. Here we show that proteins can have an inherently high tolerance for internal ionizable groups. The 25 internal positions in staphylococcal nuclease were substituted one at a time with Lys, Glu, or Asp without abolishing enzymatic activity and without detectable changes in the conformation of the protein. Similar results with substitutions of 6 randomly chosen internal positions in ribonuclease H with Lys and Glu suggest that the ability of proteins to tolerate internal ionizable groups might be a property common to many proteins. Eighty-six of the 87 substitutions made were destabilizing, but in all but one case the proteins remained in the native state at neutral pH. By comparing the stability of each variant protein at two different pH values it was established that the pK(a) values of most of the internal ionizable groups are shifted; many of the internal ionizable groups are probably neutral at physiological pH values. These studies demonstrate that special structural adaptations are not needed for ionizable groups to exist stably in the hydrophobic interior of proteins. The studies suggest that enzymes and other proteins that use internal ionizable groups for functional purposes could have evolved through the random accumulation of mutations that introduced ionizable groups at internal positions, followed by evolutionary adaptation and optimization to modulate stability, dynamics, and other factors necessary for function.
Collapse
|
49
|
Wallgren M, Adén J, Pylypenko O, Mikaelsson T, Johansson LBA, Rak A, Wolf-Watz M. Extreme temperature tolerance of a hyperthermophilic protein coupled to residual structure in the unfolded state. J Mol Biol 2008; 379:845-58. [PMID: 18471828 DOI: 10.1016/j.jmb.2008.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 04/01/2008] [Accepted: 04/02/2008] [Indexed: 10/22/2022]
Abstract
Understanding the mechanisms that dictate protein stability is of large relevance, for instance, to enable design of temperature-tolerant enzymes with high enzymatic activity over a broad temperature interval. In an effort to identify such mechanisms, we have performed a detailed comparative study of the folding thermodynamics and kinetics of the ribosomal protein S16 isolated from a mesophilic (S16(meso)) and hyperthermophilic (S16(thermo)) bacterium by using a variety of biophysical methods. As basis for the study, the 2.0 A X-ray structure of S16(thermo) was solved using single wavelength anomalous dispersion phasing. Thermal unfolding experiments yielded midpoints of 59 and 111 degrees C with associated changes in heat capacity upon unfolding (DeltaC(p)(0)) of 6.4 and 3.3 kJ mol(-1) K(-1), respectively. A strong linear correlation between DeltaC(p)(0) and melting temperature (T(m)) was observed for the wild-type proteins and mutated variants, suggesting that these variables are intimately connected. Stopped-flow fluorescence spectroscopy shows that S16(meso) folds through an apparent two-state model, whereas S16(thermo) folds through a more complex mechanism with a marked curvature in the refolding limb indicating the presence of a folding intermediate. Time-resolved energy transfer between Trp and N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-yl)methyl iodoacetamide of proteins mutated at selected positions shows that the denatured state ensemble of S16(thermo) is more compact relative to S16(meso). Taken together, our results suggest the presence of residual structure in the denatured state ensemble of S16(thermo) that appears to account for the large difference in quantified DeltaC(p)(0) values and, in turn, parts of the observed extreme thermal stability of S16(thermo). These observations may be of general importance in the design of robust enzymes that are highly active over a wide temperature span.
Collapse
Affiliation(s)
- Marcus Wallgren
- Department of Chemistry, University of Umeå, SE-901 87 Umeå, Sweden
| | | | | | | | | | | | | |
Collapse
|
50
|
Hydrophobic Effect on the Stability and Folding of a Hyperthermophilic Protein. J Mol Biol 2008; 378:264-72. [DOI: 10.1016/j.jmb.2008.02.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 02/09/2008] [Accepted: 02/18/2008] [Indexed: 11/20/2022]
|