1
|
Mendel RR, Schwarz G. The History of Animal and Plant Sulfite Oxidase-A Personal View. Molecules 2023; 28:6998. [PMID: 37836841 PMCID: PMC10574614 DOI: 10.3390/molecules28196998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
Sulfite oxidase is one of five molybdenum-containing enzymes known in eukaryotes where it catalyzes the oxidation of sulfite to sulfate. This review covers the history of sulfite oxidase research starting out with the early years of its discovery as a hepatic mitochondrial enzyme in vertebrates, leading to basic biochemical and structural properties that have inspired research for decades. A personal view on sulfite oxidase in plants, that sulfates are assimilated for their de novo synthesis of cysteine, is presented by Ralf Mendel with numerous unexpected findings and unique properties of this single-cofactor sulfite oxidase localized to peroxisomes. Guenter Schwarz connects his research to sulfite oxidase via its deficiency in humans, demonstrating its unique role amongst all molybdenum enzymes in humans. In essence, in both the plant and animal kingdoms, sulfite oxidase represents an important player in redox regulation, signaling and metabolism, thereby connecting sulfur and nitrogen metabolism in multiple ways.
Collapse
Affiliation(s)
- Ralf R. Mendel
- Institute of Plant Biology, Technical University Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany
| | - Günter Schwarz
- Institute of Biochemistry, Department of Chemistry & Center for Molecular Medicine, University of Cologne, Zülpicher Strasse 47, 50674 Cologne, Germany;
| |
Collapse
|
2
|
Enemark JH. Mechanistic complexities of sulfite oxidase: An enzyme with multiple domains, subunits, and cofactors. J Inorg Biochem 2023; 247:112312. [PMID: 37441922 DOI: 10.1016/j.jinorgbio.2023.112312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/13/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023]
Abstract
Sulfite oxidase (SO) deficiency, an inherited disease that causes severe neonatal neurological problems and early death, arises from defects in the biosynthesis of the molybdenum cofactor (Moco) (general sulfite oxidase deficiency) or from inborn errors in the SUOX gene for SO (isolated sulfite oxidase deficiency, ISOD). The X-ray structure of the highly homologous homonuclear dimeric chicken sulfite oxidase (cSO) provides a template for locating ISOD mutation sites in human sulfite oxidase (hSO). Catalysis occurs within an individual subunit of hSO, but mutations that disrupt the hSO dimer are pathological. The catalytic cycle of SO involves five metal oxidation states (MoVI, MoV, MoIV, FeIII, FeII), two intramolecular electron transfer (IET) steps, and couples a two-electron oxygen atom transfer reaction at the Mo center with two one-electron transfers from the integral b-type heme to exogenous cytochrome c, the physiological oxidant. Several ISOD examples are analyzed using steady-state, stopped-flow, and laser flash photolysis kinetics and physical measurements of recombinant variants of hSO and native cSO. In the structure of cSO, Mo…Fe = 32 Å, much too long for efficient IET through the protein. Interdomain motion that brings the Mo and heme centers closer together to facilitate IET is supported indirectly by decreasing the length of the interdomain tether, by changes in the charges of surface residues of the Mo and heme domains, as well as by preliminary molecular dynamics calculations. However, direct dynamic measurements of interdomain motion are in their infancy.
Collapse
Affiliation(s)
- John H Enemark
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 East University Blvd, Tucson, AZ 85721-0041, United States of America.
| |
Collapse
|
3
|
Fiorilla E, Birolo M, Ala U, Xiccato G, Trocino A, Schiavone A, Mugnai C. Productive Performances of Slow-Growing Chicken Breeds and Their Crosses with a Commercial Strain in Conventional and Free-Range Farming Systems. Animals (Basel) 2023; 13:2540. [PMID: 37570348 PMCID: PMC10417706 DOI: 10.3390/ani13152540] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/17/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
Local chicken breeds play a vital role in promoting sustainability by preserving genetic diversity, enhancing resilience, and supporting local economies. These breeds are adapted to local climates and conditions, requiring fewer external resources and inputs for their maintenance. By conserving and utilizing local chicken breeds, sustainable farming practices can be incentivized, maintaining ecosystem balance and ensuring food security for future generations. The present study aimed at evaluating the growth performance and slaughter traits of two local Italian chicken breeds (Bionda Piemontese and Robusta Maculata) and their crosses with a medium-growth genotype (Sasso chicken®) reared in conventional and free-range farming systems. The conventional system used a high-energy high-protein diet in a closed barn with controlled temperature, humidity, and lighting, and a stocking density of 33 kg/m2. The free-range system used a low-input diet (low-energy low-protein diet composed of local and GMO-free feed ingredients), uncontrolled environmental conditions, and a stocking density of 21 kg/m2 in a barn with free access to an outdoor area. The birds were slaughtered at 84 days of age in both systems. The crossbred chickens showed the best results for growth performance in both farming systems compared to local breeds. Within genotype, the final live weight of chickens was similar in the two farming systems. In conclusion, slow-growth crossbreeds should be used in alternative farming systems, demonstrating better performance than pure local breeds.
Collapse
Affiliation(s)
- Edoardo Fiorilla
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy; (U.A.); (A.S.); (C.M.)
| | - Marco Birolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell’Università, 16, 35020 Padova, Italy; (M.B.); (G.X.); (A.T.)
| | - Ugo Ala
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy; (U.A.); (A.S.); (C.M.)
| | - Gerolamo Xiccato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell’Università, 16, 35020 Padova, Italy; (M.B.); (G.X.); (A.T.)
| | - Angela Trocino
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell’Università, 16, 35020 Padova, Italy; (M.B.); (G.X.); (A.T.)
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università, 16, 35020 Padova, Italy
| | - Achille Schiavone
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy; (U.A.); (A.S.); (C.M.)
| | - Cecilia Mugnai
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy; (U.A.); (A.S.); (C.M.)
| |
Collapse
|
4
|
Maia LB. Bringing Nitric Oxide to the Molybdenum World-A Personal Perspective. Molecules 2023; 28:5819. [PMID: 37570788 PMCID: PMC10420851 DOI: 10.3390/molecules28155819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Molybdenum-containing enzymes of the xanthine oxidase (XO) family are well known to catalyse oxygen atom transfer reactions, with the great majority of the characterised enzymes catalysing the insertion of an oxygen atom into the substrate. Although some family members are known to catalyse the "reverse" reaction, the capability to abstract an oxygen atom from the substrate molecule is not generally recognised for these enzymes. Hence, it was with surprise and scepticism that the "molybdenum community" noticed the reports on the mammalian XO capability to catalyse the oxygen atom abstraction of nitrite to form nitric oxide (NO). The lack of precedent for a molybdenum- (or tungsten) containing nitrite reductase on the nitrogen biogeochemical cycle contributed also to the scepticism. It took several kinetic, spectroscopic and mechanistic studies on enzymes of the XO family and also of sulfite oxidase and DMSO reductase families to finally have wide recognition of the molybdoenzymes' ability to form NO from nitrite. Herein, integrated in a collection of "personal views" edited by Professor Ralf Mendel, is an overview of my personal journey on the XO and aldehyde oxidase-catalysed nitrite reduction to NO. The main research findings and the path followed to establish XO and AO as competent nitrite reductases are reviewed. The evidence suggesting that these enzymes are probable players of the mammalian NO metabolism is also discussed.
Collapse
Affiliation(s)
- Luisa B Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), 2829-516 Caparica, Portugal
| |
Collapse
|
5
|
Kalimuthu P, Harmer JR, Baldauf M, Hassan AH, Kruse T, Bernhardt PV. Catalytic electrochemistry of the bacterial Molybdoenzyme YcbX. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148579. [PMID: 35640667 DOI: 10.1016/j.bbabio.2022.148579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/02/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Molybdenum-dependent enzymes that can reduce N-hydroxylated substrates (e.g. N-hydroxyl-purines, amidoximes) are found in bacteria, plants and vertebrates. They are involved in the conversion of a wide range of N-hydroxylated organic compounds into their corresponding amines, and utilize various redox proteins (cytochrome b5, cyt b5 reductase, flavin reductase) to deliver reducing equivalents to the catalytic centre. Here we present catalytic electrochemistry of the bacterial enzyme YcbX from Escherichia coli utilizing the synthetic electron transfer mediator methyl viologen (MV2+). The electrochemically reduced form (MV+.) acts as an effective electron donor for YcbX. To immobilize YcbX on a glassy carbon electrode, a facile protein crosslinking approach was used with the crosslinker glutaraldehyde (GTA). The YcbX-modified electrode showed a catalytic response for the reduction of a broad range of N-hydroxylated substrates. The catalytic activity of YcbX was examined at different pH values exhibiting an optimum at pH 7.5 and a bell-shaped pH profile with deactivation through deprotonation (pKa1 9.1) or protonation (pKa2 6.1). Electrochemical simulation was employed to obtain new biochemical data for YcbX, in its reaction with methyl viologen and the organic substrates 6-N-hydroxylaminopurine (6-HAP) and benzamidoxime (BA).
Collapse
Affiliation(s)
- Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland, Brisbane 4072, Australia
| | - Milena Baldauf
- Department of Plant Biology, Technische Universitaet, Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Ahmed H Hassan
- Department of Plant Biology, Technische Universitaet, Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Tobias Kruse
- Department of Plant Biology, Technische Universitaet, Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
6
|
Zapiter J, Harmer JR, Struwe M, Scheidig A, Clement B, Bernhardt PV. Enzyme Electrode Biosensors for N-Hydroxylated Prodrugs Incorporating the Mitochondrial Amidoxime Reducing Component. Anal Chem 2022; 94:9208-9215. [PMID: 35700342 DOI: 10.1021/acs.analchem.2c02232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human mitochondrial amidoxime reducing component 1 and 2 (mARC1 and mARC2) were immobilised on glassy carbon electrodes using the crosslinker glutaraldehyde. Voltammetry was performed in the presence of the artificial electron transfer mediator methyl viologen, whose redox potential lies negative of the enzymes' MoVI/V and MoV/IV redox potentials which were determined from optical spectroelectrochemical and EPR measurements. Apparent Michaelis constants obtained from catalytic limiting currents at various substrate concentrations were comparable to those previously reported in the literature from enzymatic assays. Kinetic parameters for benzamidoxime reduction were determined from cyclic voltammograms simulated using Digisim. pH dependence and stability of the enzyme electrode with time were also determined from limiting catalytic currents in saturating concentrations of benzamidoxime. The same electrode remained active after at least 9 days. Fabrication of this versatile and cost-effective biosensor is effective in screening new pharmaceutically important substrates and mARC inhibitors.
Collapse
Affiliation(s)
- Joan Zapiter
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, The University of Queensland, Brisbane 4072, Australia
| | - Michel Struwe
- Pharmazeutisches Institut, Universität Kiel, Gutenbergstraße 76, Kiel 24118, Germany.,Zoologisches Institut/Strukturbiologie, Am Botanischen Garten 11, Kiel 24118, Germany
| | - Axel Scheidig
- Zoologisches Institut/Strukturbiologie, Am Botanischen Garten 11, Kiel 24118, Germany
| | - Bernd Clement
- Pharmazeutisches Institut, Universität Kiel, Gutenbergstraße 76, Kiel 24118, Germany
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
7
|
Kalimuthu P, Harmer JR, Baldauf M, Hassan AH, Kruse T, Bernhardt PV. Electrochemically driven catalysis of the bacterial molybdenum enzyme YiiM. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148523. [PMID: 34921810 DOI: 10.1016/j.bbabio.2021.148523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/18/2021] [Accepted: 12/07/2021] [Indexed: 12/20/2022]
Abstract
The Mo-dependent enzyme YiiM enzyme from Escherichia coli is a member of the sulfite oxidase family and shares many similarities with the well-studied human mitochondrial amidoxime reducing component (mARC). We have investigated YiiM catalysis using electrochemical and spectroscopic methods. EPR monitored redox potentiometry found the active site redox potentials to be MoVI/V -0.02 V and MoV/IV -0.12 V vs NHE at pH 7.2. In the presence of methyl viologen as an electrochemically reduced electron donor, YiiM catalysis was studied with a range of potential substrates. YiiM preferentially reduces N-hydroxylated compounds such as hydroxylamines, amidoximes, N-hydroxypurines and N-hydroxyureas but shows little or no activity against amine-oxides or sulfoxides. The pH optimum for catalysis was 7.1 and a bell-shaped pH profile was found with pKa values of 6.2 and 8.1 either side of this optimum that are associated with protonation/deprotonations that modulate activity. Simulation of the experimental voltammetry elucidated kinetic parameters associated with YiiM catalysis with the substrates 6-hydroxyaminopurine and benzamidoxime.
Collapse
Affiliation(s)
- Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland, Brisbane, 4072, Australia
| | - Milena Baldauf
- Department of Plant Biology, Technische Universitaet Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Ahmed H Hassan
- Department of Plant Biology, Technische Universitaet Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Tobias Kruse
- Department of Plant Biology, Technische Universitaet Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
8
|
Probiotic Potential of a Novel Vitamin B2-Overproducing Lactobacillus plantarum Strain, HY7715, Isolated from Kimchi. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11135765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vitamin B2, also known as riboflavin, is essential for maintaining human health. The purpose of this study was to isolate novel lactic acid bacteria that overproduce vitamin B2 and to validate their potential as probiotics. In this study, Lactobacillus plantarum HY7715 (HY7715) was selected among lactic acid bacteria isolated from Kimchi. HY7715 showed a very high riboflavin-producing ability compared to the control strain due to the high expression of ribA, ribB, ribC, ribH, and ribG genes. HY7715 produced 34.5 ± 2.41 mg/L of riboflavin for 24 h without consuming riboflavin in the medium under optimal growth conditions. It was able to produce riboflavin in an in vitro model of the intestinal environment. In addition, when riboflavin deficiency was induced in mice through nutritional restriction, higher levels of riboflavin were detected in plasma and urine in the HY7715 administration group than in the control group. HY7715 showed high survival rate in simulated gastrointestinal conditions and had antibiotic resistance below the cutoff MIC value suggested by the European Food Safety Authority; moreover, it did not cause hemolysis. In conclusion, HY7715 could be considered a beneficial probiotic strain for human and animal applications, suggesting that it could be a new alternative to address riboflavin deficiency.
Collapse
|
9
|
Du P, Hassan RN, Luo H, Xie J, Zhu Y, Hu Q, Yan J, Jiang W. Identification of a novel SUOX pathogenic variants as the cause of isolated sulfite oxidase deficiency in a Chinese pedigree. Mol Genet Genomic Med 2021; 9:e1590. [PMID: 33405344 PMCID: PMC8077164 DOI: 10.1002/mgg3.1590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 11/07/2020] [Accepted: 12/15/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Isolated sulfite oxidase deficiency (ISOD) is a life-threatening rare autosomal recessive disorder caused by pathogenic variants in SUOX (OMIM 606887) gene. The aim of our study was to establish a comprehensive genetic diagnosis strategy for the pathogenicity analysis of the SUOX gene within a limited time and to lay the foundation for precise genetic counseling, prenatal diagnosis, and preimplantation genetic diagnosis. METHODS Two offspring from one set of parents were studied. Next-generation sequencing (NGS) was used to screen for disease-causing gene variants in a family with ISOD. Then, Sanger sequencing was performed to verify the presence of candidate variants. Sulfite, homocysteine and uric acid levels were detected in the patients. According to the ACMG/AMP guidelines, the pathogenicity level of novel variants was annotated. RESULTS The nonsense pathogenic variant (c.1200C > G (p.Y400*)) and a duplication (c.1549_1574dup (p.I525 Mfs*102)) were found in the SUOX gene in the proband. The nonsense mutation (c.1200C > G (p.Y400*), pathogenic, isolated sulfite oxidase deficiency, autosomal recessive) has been reported as pathogenic and the duplication (c.1549_1574dup (p.I525 Mfs*102), pathogenic, isolated sulfite oxidase deficiency, autosomal recessive) was novel, which was classified as pathogenic according to the ACMG/AMP Standards and Guidelines. CONCLUSION We established the pathogenicity assessment in ISOD patients based on ACMG/AMP Standards and Guidelines and this is the first ISOD patient reported in mainland China. We also discovered that ISOD is caused by SUOX gene duplication mutation, which enriches the spectrum of SUOX pathogenic variants.
Collapse
Affiliation(s)
- Peng Du
- Department of Medical Genetics, ZhongShan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Reem N Hassan
- Department of Medical Genetics, ZhongShan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hualei Luo
- Department of Medical Genetics, ZhongShan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jie Xie
- Department of Medical Genetics, ZhongShan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yue Zhu
- Department of Medical Genetics, ZhongShan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiuyue Hu
- Department of Medical Genetics, ZhongShan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jin Yan
- Department of Medical Genetics, ZhongShan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weiying Jiang
- Department of Medical Genetics, ZhongShan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Mintmier B, McGarry JM, Bain DJ, Basu P. Kinetic consequences of the endogenous ligand to molybdenum in the DMSO reductase family: a case study with periplasmic nitrate reductase. J Biol Inorg Chem 2020; 26:13-28. [PMID: 33131003 DOI: 10.1007/s00775-020-01833-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/20/2020] [Indexed: 11/24/2022]
Abstract
The molybdopterin enzyme family catalyzes a variety of substrates and plays a critical role in the cycling of carbon, nitrogen, arsenic, and selenium. The dimethyl sulfoxide reductase (DMSOR) subfamily is the most diverse family of molybdopterin enzymes and the members of this family catalyze a myriad of reactions that are important in microbial life processes. Enzymes in the DMSOR family can transform multiple substrates; however, quantitative information about the substrate preference is sparse, and, more importantly, the reasons for the substrate selectivity are not clear. Molybdenum coordination has long been proposed to impact the catalytic activity of the enzyme. Specifically, the molybdenum-coordinating residue may tune substrate preference. As such, molybdopterin enzyme periplasmic nitrate reductase (Nap) is utilized as a vehicle to understand the substrate preference and delineate the kinetic underpinning of the differences imposed by exchanging the molybdenum ligands. To this end, NapA from Campylobacter jejuni has been heterologously overexpressed, and a series of variants, where the molybdenum coordinating cysteine has been replaced with another amino acid, has been produced. The kinetic properties of these variants are discussed and compared with those of the native enzyme, providing quantitative information to understand the function of the molybdenum-coordinating residue.
Collapse
Affiliation(s)
- Breeanna Mintmier
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N Blackford St, Indianapolis, IN, 46202, USA
| | - Jennifer M McGarry
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N Blackford St, Indianapolis, IN, 46202, USA
| | - Daniel J Bain
- Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Partha Basu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N Blackford St, Indianapolis, IN, 46202, USA.
| |
Collapse
|
11
|
Bender D, Kaczmarek AT, Kuester S, Burlina AB, Schwarz G. Oxygen and nitrite reduction by heme-deficient sulphite oxidase in a patient with mild sulphite oxidase deficiency. J Inherit Metab Dis 2020; 43:748-757. [PMID: 31950508 DOI: 10.1002/jimd.12216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 11/12/2022]
Abstract
Isolated sulphite oxidase deficiency (iSOD) is an autosomal recessive inborn error in metabolism characterised by accumulation of sulphite, which leads to death in early infancy. Sulphite oxidase (SO) is encoded by the SUOX gene and forms a heme- and molybdenum-cofactor-dependent enzyme localised in the intermembrane space of mitochondria. Within SO, both cofactors are embedded in two separated domains, which are linked via a flexible 11 residue tether. The two-electron oxidation of sulphite to sulphate occurs at the molybdenum active site. From there, electrons are transferred via two intramolecular electron transfer steps (IETs) via the heme cofactor and to the physiologic electron acceptor cytochrome c. Previously, we reported nitrite and oxygen to serve as alternative electron acceptors at the Moco active site, thereby overcoming IET within SO. Here, we present evidence for these reactions to occur in an iSOD patient with an unusual mild disease representation. In the patient, a homozygous c.427C>A mutation within the SUOX gene leads to replacement of the highly conserved His143 to Asn. The affected His143 is one of two heme-iron-coordinating residues within SO. We demonstrate, that the H143N SO variant fails to bind heme in vivo leading to the elimination of SO-dependent cytochrome c reduction in mitochondria. We show, that sulphite oxidation at the Moco domain is unaffected in His143Asn SO variant and demonstrate that nitrite and oxygen are able to serve as electron acceptors for sulphite-derived electrons in cellulo. As result, the patient H143N SO variant retains residual sulphite oxidising activity thus ameliorating iSOD progression.
Collapse
Affiliation(s)
- Daniel Bender
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Alexander T Kaczmarek
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Sabina Kuester
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Alberto B Burlina
- Division of Inherited Metabolic Diseases, Department of Woman's and Child's Health, University Hospital, Padova, Italy
| | - Guenter Schwarz
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
12
|
Schie MMCH, Kaczmarek AT, Tieves F, Gomez de Santos P, Paul CE, Arends IWCE, Alcalde M, Schwarz G, Hollmann F. Selective Oxyfunctionalisation Reactions Driven by Sulfite Oxidase‐Catalysed
In Situ
Generation of H
2
O
2. ChemCatChem 2020. [DOI: 10.1002/cctc.201902297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Morten M. C. H. Schie
- Department of BiotechnologyUniversity of Technology Delft 2629HZ Delft The Netherlands
| | - Alexander T. Kaczmarek
- Institute of BiochemistryDepartment of ChemistryCMMCUniversity of Cologne D-50674 Cologne Germany
| | - Florian Tieves
- Department of BiotechnologyUniversity of Technology Delft 2629HZ Delft The Netherlands
| | | | - Caroline E. Paul
- Department of BiotechnologyUniversity of Technology Delft 2629HZ Delft The Netherlands
| | | | - Miguel Alcalde
- Department of BiocatalysisInstitute of Catalysis, CSIC 28049 Madrid Spain
| | - Günter Schwarz
- Institute of BiochemistryDepartment of ChemistryCMMCUniversity of Cologne D-50674 Cologne Germany
| | - Frank Hollmann
- Department of BiotechnologyUniversity of Technology Delft 2629HZ Delft The Netherlands
| |
Collapse
|
13
|
Mechanism of nitrite-dependent NO synthesis by human sulfite oxidase. Biochem J 2019; 476:1805-1815. [DOI: 10.1042/bcj20190143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/21/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
AbstractIn addition to nitric oxide (NO) synthases, molybdenum-dependent enzymes have been reported to reduce nitrite to produce NO. Here, we report the stoichiometric reduction in nitrite to NO by human sulfite oxidase (SO), a mitochondrial intermembrane space enzyme primarily involved in cysteine catabolism. Kinetic and spectroscopic studies provide evidence for direct nitrite coordination at the molybdenum center followed by an inner shell electron transfer mechanism. In the presence of the physiological electron acceptor cytochrome c, we were able to close the catalytic cycle of sulfite-dependent nitrite reduction thus leading to steady-state NO synthesis, a finding that strongly supports a physiological relevance of SO-dependent NO formation. By engineering SO variants with reduced intramolecular electron transfer rate, we were able to increase NO generation efficacy by one order of magnitude, providing a mechanistic tool to tune NO synthesis by SO.
Collapse
|
14
|
Kalimuthu P, Daumann LJ, Pol A, Op den Camp HJM, Bernhardt PV. Electrocatalysis of a Europium‐Dependent Bacterial Methanol Dehydrogenase with Its Physiological Electron‐Acceptor Cytochrome
c
GJ. Chemistry 2019; 25:8760-8768. [DOI: 10.1002/chem.201900525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/21/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane 4072 Australia
| | - Lena J. Daumann
- Center for Integrated Protein Science Munich (CIPSM) and Department of Chemistry Ludwig-Maximilians-Universität München Butenandtstr. 5–13, Haus D 81377 München Germany
| | - Arjan Pol
- Department of Microbiology Institute of Wetland and Water Research Radboud University Nijmegen The Netherlands
| | - Huub J. M. Op den Camp
- Department of Microbiology Institute of Wetland and Water Research Radboud University Nijmegen The Netherlands
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane 4072 Australia
| |
Collapse
|
15
|
Bender D, Kaczmarek AT, Santamaria-Araujo JA, Stueve B, Waltz S, Bartsch D, Kurian L, Cirak S, Schwarz G. Impaired mitochondrial maturation of sulfite oxidase in a patient with severe sulfite oxidase deficiency. Hum Mol Genet 2019; 28:2885-2899. [DOI: 10.1093/hmg/ddz109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/09/2019] [Accepted: 05/07/2019] [Indexed: 01/24/2023] Open
Abstract
AbstractSulfite oxidase (SO) is encoded by the nuclear SUOX gene and catalyzes the final step in cysteine catabolism thereby oxidizing sulfite to sulfate. Oxidation of sulfite is dependent on two cofactors within SO, a heme and the molybdenum cofactor (Moco), the latter forming the catalytic site of sulfite oxidation. SO localizes to the intermembrane space of mitochondria where both—pre-SO processing and cofactor insertion—are essential steps during SO maturation. Isolated SO deficiency (iSOD) is a rare inborn error of metabolism caused by mutations in the SUOX gene that lead to non-functional SO. ISOD is characterized by rapidly progressive neurodegeneration and death in early infancy. We diagnosed an iSOD patient with homozygous mutation of SUOX at c.1084G>A replacing Gly362 to serine. To understand the mechanism of disease, we expressed patient-derived G362S SO in Escherichia coli and surprisingly found full catalytic activity, while in patient fibroblasts no SO activity was detected, suggesting differences between bacterial and human expression. Moco reconstitution of apo-G362S SO was found to be approximately 90-fold reduced in comparison to apo-WT SO in vitro. In line, levels of SO-bound Moco in cells overexpressing G362S SO were significantly reduced compared to cells expressing WT SO providing evidence for compromised maturation of G362S SO in cellulo. Addition of molybdate to culture medium partially rescued impaired Moco binding of G362S SO and restored SO activity in patient fibroblasts. Thus, this study demonstrates the importance of the orchestrated maturation of SO and provides a first case of Moco-responsive iSOD.
Collapse
Affiliation(s)
- Daniel Bender
- Department of Chemistry, Institute for Biochemistry, University of Cologne, 50674 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne Germany
| | - Alexander Tobias Kaczmarek
- Department of Chemistry, Institute for Biochemistry, University of Cologne, 50674 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne Germany
| | | | - Burkard Stueve
- Abteilung für Kinderneurologie, Epileptologie und Sozialpädiatrie, Kliniken Köln, Kinderkrankenhaus, 51058 Cologne, Germany
| | - Stephan Waltz
- Abteilung für Kinderneurologie, Epileptologie und Sozialpädiatrie, Kliniken Köln, Kinderkrankenhaus, 51058 Cologne, Germany
| | - Deniz Bartsch
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne Germany
| | - Leo Kurian
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne Germany
| | - Sebahattin Cirak
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne Germany
- Klinik für Kinderheilkunde und Jugendmedizin, Uniklinikum Köln, 50937 Cologne, Germany
| | - Guenter Schwarz
- Department of Chemistry, Institute for Biochemistry, University of Cologne, 50674 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne Germany
| |
Collapse
|
16
|
Ma S, Ludwig R. Direct Electron Transfer of Enzymes Facilitated by Cytochromes. ChemElectroChem 2019; 6:958-975. [PMID: 31008015 PMCID: PMC6472588 DOI: 10.1002/celc.201801256] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/12/2018] [Indexed: 01/03/2023]
Abstract
The direct electron transfer (DET) of enzymes has been utilized to develop biosensors and enzymatic biofuel cells on micro- and nanostructured electrodes. Whereas some enzymes exhibit direct electron transfer between their active-site cofactor and an electrode, other oxidoreductases depend on acquired cytochrome domains or cytochrome subunits as built-in redox mediators. The physiological function of these cytochromes is to transfer electrons between the active-site cofactor and a redox partner protein. The exchange of the natural electron acceptor/donor by an electrode has been demonstrated for several cytochrome carrying oxidoreductases. These multi-cofactor enzymes have been applied in third generation biosensors to detect glucose, lactate, and other analytes. This review investigates and classifies oxidoreductases with a cytochrome domain, enzyme complexes with a cytochrome subunit, and covers designed cytochrome fusion enzymes. The structurally and electrochemically best characterized proponents from each enzyme class carrying a cytochrome, that is, flavoenzymes, quinoenzymes, molybdenum-cofactor enzymes, iron-sulfur cluster enzymes, and multi-haem enzymes, are featured, and their biochemical, kinetic, and electrochemical properties are compared. The cytochromes molecular and functional properties as well as their contribution to the interdomain electron transfer (IET, between active-site and cytochrome) and DET (between cytochrome and electrode) with regard to the achieved current density is discussed. Protein design strategies for cytochrome-fused enzymes are reviewed and the limiting factors as well as strategies to overcome them are outlined.
Collapse
Affiliation(s)
- Su Ma
- Biocatalysis and Biosensing Laboratory Department of Food Science and TechnologyBOKU – University of Natural Resources and Life SciencesMuthgasse 181190ViennaAustria
| | - Roland Ludwig
- Biocatalysis and Biosensing Laboratory Department of Food Science and TechnologyBOKU – University of Natural Resources and Life SciencesMuthgasse 181190ViennaAustria
| |
Collapse
|
17
|
Chang AS, Pintauer T, Basu P, Eckenhoff WT. Structural and Electronic Investigation of Tetrachalcogenidomolybdate Dianions. ChemistrySelect 2018. [DOI: 10.1002/slct.201800506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alison S. Chang
- Department of Chemistry Rhodes College 2000 N. Parkway Memphis TN 38112
| | - Tomislav Pintauer
- Department of Chemistry and Biochemistry Duquesne University 600 Forbes Ave., 308 Mellon Hall Pittsburgh PA 15282
| | - Partha Basu
- Department of Chemistry and Chemical Biology Indiana University-Purdue University Indianapolis 420 N. Blackford St. Indianapolis IN 46202
| | | |
Collapse
|
18
|
Watson C, Niks D, Hille R, Vieira M, Schoepp-Cothenet B, Marques AT, Romão MJ, Santos-Silva T, Santini JM. Electron transfer through arsenite oxidase: Insights into Rieske interaction with cytochrome c. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2017; 1858:865-872. [PMID: 28801050 PMCID: PMC5574378 DOI: 10.1016/j.bbabio.2017.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/05/2017] [Accepted: 08/05/2017] [Indexed: 11/25/2022]
Abstract
Arsenic is a widely distributed environmental toxin whose presence in drinking water poses a threat to >140 million people worldwide. The respiratory enzyme arsenite oxidase from various bacteria catalyses the oxidation of arsenite to arsenate and is being developed as a biosensor for arsenite. The arsenite oxidase from Rhizobium sp. str. NT-26 (a member of the Alphaproteobacteria) is a heterotetramer consisting of a large catalytic subunit (AioA), which contains a molybdenum centre and a 3Fe-4S cluster, and a small subunit (AioB) containing a Rieske 2Fe-2S cluster. Stopped-flow spectroscopy and isothermal titration calorimetry (ITC) have been used to better understand electron transfer through the redox-active centres of the enzyme, which is essential for biosensor development. Results show that oxidation of arsenite at the active site is extremely fast with a rate of >4000s-1 and reduction of the electron acceptor is rate-limiting. An AioB-F108A mutation results in increased activity with the artificial electron acceptor DCPIP and decreased activity with cytochrome c, which in the latter as demonstrated by ITC is not due to an effect on the protein-protein interaction but instead to an effect on electron transfer. These results provide further support that the AioB F108 is important in electron transfer between the Rieske subunit and cytochrome c and its absence in the arsenite oxidases from the Betaproteobacteria may explain the inability of these enzymes to use this electron acceptor.
Collapse
Affiliation(s)
- Cameron Watson
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, WC1E 6BT, United Kingdom
| | - Dimitri Niks
- Department of Biochemistry, University of California; Riverside, Riverside, CA 92521, USA
| | - Russ Hille
- Department of Biochemistry, University of California; Riverside, Riverside, CA 92521, USA
| | - Marta Vieira
- UCIBIO-Requimte, Department of Chemistry, Faculty of Sciences and Technology, Universidade Nova de Lisboa, Portugal
| | | | - Alexandra T Marques
- UCIBIO-Requimte, Department of Chemistry, Faculty of Sciences and Technology, Universidade Nova de Lisboa, Portugal
| | - Maria João Romão
- UCIBIO-Requimte, Department of Chemistry, Faculty of Sciences and Technology, Universidade Nova de Lisboa, Portugal
| | - Teresa Santos-Silva
- UCIBIO-Requimte, Department of Chemistry, Faculty of Sciences and Technology, Universidade Nova de Lisboa, Portugal
| | - Joanne M Santini
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, WC1E 6BT, United Kingdom.
| |
Collapse
|
19
|
Kalimuthu P, Belaidi AA, Schwarz G, Bernhardt PV. Chitosan-Promoted Direct Electrochemistry of Human Sulfite Oxidase. J Phys Chem B 2017; 121:9149-9159. [DOI: 10.1021/acs.jpcb.7b06712] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Palraj Kalimuthu
- School
of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Abdel A. Belaidi
- Department
of Chemistry and Center for Molecular Medicine, Institute of Biochemistry, Cologne University, Zülicher Strasse 47, 50674 Köln, Germany
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Guenter Schwarz
- Department
of Chemistry and Center for Molecular Medicine, Institute of Biochemistry, Cologne University, Zülicher Strasse 47, 50674 Köln, Germany
| | - Paul V. Bernhardt
- School
of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
20
|
Kalimuthu P, Hsiao J, Nair RP, Kappler U, Bernhardt PV. Bioelectrocatalysis of Sulfite Dehydrogenase from
Sinorhizobium meliloti
with Its Physiological Cytochrome Electron Partner. ChemElectroChem 2017. [DOI: 10.1002/celc.201700838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane 4072 Australia
| | - Ju‐Chun Hsiao
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane 4072 Australia
| | | | - Ulrike Kappler
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane 4072 Australia
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane 4072 Australia
| |
Collapse
|
21
|
Álvarez-Martos I, Shahdost-fard F, Ferapontova EE. Wiring of heme enzymes by methylene-blue labeled dendrimers. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.07.161] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Brumaru D, Guerin E, Voegeli AC, Eyer D, Maitre M. A compound heterozygote case of isolated sulfite oxidase deficiency. Mol Genet Metab Rep 2017; 12:99-102. [PMID: 28725568 PMCID: PMC5501915 DOI: 10.1016/j.ymgmr.2017.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 11/23/2022] Open
Abstract
We report an isolated sulfite oxidase deficiency in the first child boy of a non-consanguineous Caucasian family. He's a compound heterozygote for the sulfite oxidase gene, presenting low cystine, undetectable homocysteine and normal uric acid blood concentrations and undetectable sulfite oxidase activity in his cultured fibroblasts. Both mutations are not reported yet. The clinical presentation was typical and severe, with generalized status epilepticus and premature death.
Collapse
Affiliation(s)
- Daniel Brumaru
- Hôpitaux Universitaires de Strasbourg, Laboratoire de Biochimie et Biologie Moléculaire, 67000 Strasbourg, France
| | - Eric Guerin
- Hôpitaux Universitaires de Strasbourg, Laboratoire de Biochimie et Biologie Moléculaire, 67000 Strasbourg, France
| | - Anne-Claire Voegeli
- Hôpitaux Universitaires de Strasbourg, Laboratoire de Biochimie et Biologie Moléculaire, 67000 Strasbourg, France
| | - Didier Eyer
- Hôpitaux Universitaires de Strasbourg, Service de Pédiatrie 3, 67000 Strasbourg, France
| | - Michel Maitre
- Hôpitaux Universitaires de Strasbourg, Laboratoire de Biochimie et Biologie Moléculaire, 67000 Strasbourg, France
| |
Collapse
|
23
|
Kalimuthu P, Belaidi AA, Schwarz G, Bernhardt PV. Mediated Catalytic Voltammetry of Holo and Heme‐Free Human Sulfite Oxidases. ChemElectroChem 2017. [DOI: 10.1002/celc.201600685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane 4072 Australia
| | - Abdel A. Belaidi
- The Florey Institute of Neuroscience and Mental Health University of Melbourne Victoria 3052 Australia
- Institute of Biochemistry Department of Chemistry and Center for Molecular Medicine Cologne University Zülicher Str. 47 50674 Köln Germany
| | - Guenter Schwarz
- Institute of Biochemistry Department of Chemistry and Center for Molecular Medicine Cologne University Zülicher Str. 47 50674 Köln Germany
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane 4072 Australia
| |
Collapse
|
24
|
Maia LB, Moura I, Moura JJ. EPR Spectroscopy on Mononuclear Molybdenum-Containing Enzymes. FUTURE DIRECTIONS IN METALLOPROTEIN AND METALLOENZYME RESEARCH 2017. [DOI: 10.1007/978-3-319-59100-1_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Zeng T, Frasca S, Rumschöttel J, Koetz J, Leimkühler S, Wollenberger U. Role of Conductive Nanoparticles in the Direct Unmediated Bioelectrocatalysis of Immobilized Sulfite Oxidase. ELECTROANAL 2016. [DOI: 10.1002/elan.201600246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ting Zeng
- Institut für Biochemie und Biologie; Universität Potsdam; Karl-Liebknecht-Str. 24-25, Haus 25 14476 Golm Germany
| | - Stefano Frasca
- Institut für Biochemie und Biologie; Universität Potsdam; Karl-Liebknecht-Str. 24-25, Haus 25 14476 Golm Germany
| | - Jens Rumschöttel
- Institut für Chemie; Universität Potsdam; Karl-Liebknecht-Str. 24-25, Haus 25 14476 Golm Germany
| | - Joachim Koetz
- Institut für Chemie; Universität Potsdam; Karl-Liebknecht-Str. 24-25, Haus 25 14476 Golm Germany
| | - Silke Leimkühler
- Institut für Biochemie und Biologie; Universität Potsdam; Karl-Liebknecht-Str. 24-25, Haus 25 14476 Golm Germany
| | - Ulla Wollenberger
- Institut für Biochemie und Biologie; Universität Potsdam; Karl-Liebknecht-Str. 24-25, Haus 25 14476 Golm Germany
| |
Collapse
|
26
|
Kalimuthu P, Ringel P, Kruse T, Bernhardt PV. Direct electrochemistry of nitrate reductase from the fungus Neurospora crassa. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1506-1513. [DOI: 10.1016/j.bbabio.2016.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/01/2016] [Indexed: 01/08/2023]
|
27
|
|
28
|
McGrath AP, Laming EL, Casas Garcia GP, Kvansakul M, Guss JM, Trewhella J, Calmes B, Bernhardt PV, Hanson GR, Kappler U, Maher MJ. Structural basis of interprotein electron transfer in bacterial sulfite oxidation. eLife 2015; 4:e09066. [PMID: 26687009 PMCID: PMC4760952 DOI: 10.7554/elife.09066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/12/2015] [Indexed: 11/13/2022] Open
Abstract
Interprotein electron transfer underpins the essential processes of life and relies on the formation of specific, yet transient protein-protein interactions. In biological systems, the detoxification of sulfite is catalyzed by the sulfite-oxidizing enzymes (SOEs), which interact with an electron acceptor for catalytic turnover. Here, we report the structural and functional analyses of the SOE SorT from Sinorhizobium meliloti and its cognate electron acceptor SorU. Kinetic and thermodynamic analyses of the SorT/SorU interaction show the complex is dynamic in solution, and that the proteins interact with Kd = 13.5 ± 0.8 μM. The crystal structures of the oxidized SorT and SorU, both in isolation and in complex, reveal the interface to be remarkably electrostatic, with an unusually large number of direct hydrogen bonding interactions. The assembly of the complex is accompanied by an adjustment in the structure of SorU, and conformational sampling provides a mechanism for dissociation of the SorT/SorU assembly.
Collapse
Affiliation(s)
- Aaron P McGrath
- Structural Biology Program, Centenary Institute, Sydney, Australia
| | - Elise L Laming
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - G Patricia Casas Garcia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - J Mitchell Guss
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Jill Trewhella
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Benoit Calmes
- Centre for Metals in Biology, The University of Queensland, Brisbane, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Paul V Bernhardt
- Centre for Metals in Biology, The University of Queensland, Brisbane, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Graeme R Hanson
- Centre for Metals in Biology, The University of Queensland, Brisbane, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | - Ulrike Kappler
- Centre for Metals in Biology, The University of Queensland, Brisbane, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Megan J Maher
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| |
Collapse
|
29
|
Niks D, Duvvuru J, Escalona M, Hille R. Spectroscopic and Kinetic Properties of the Molybdenum-containing, NAD+-dependent Formate Dehydrogenase from Ralstonia eutropha. J Biol Chem 2015; 291:1162-74. [PMID: 26553877 DOI: 10.1074/jbc.m115.688457] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Indexed: 11/06/2022] Open
Abstract
We have examined the rapid reaction kinetics and spectroscopic properties of the molybdenum-containing, NAD(+)-dependent FdsABG formate dehydrogenase from Ralstonia eutropha. We confirm previous steady-state studies of the enzyme and extend its characterization to a rapid kinetic study of the reductive half-reaction (the reaction of formate with oxidized enzyme). We have also characterized the electron paramagnetic resonance signal of the molybdenum center in its Mo(V) state and demonstrated the direct transfer of the substrate Cα hydrogen to the molybdenum center in the course of the reaction. Varying temperature, microwave power, and level of enzyme reduction, we are able to clearly identify the electron paramagnetic resonance signals for four of the iron/sulfur clusters of the enzyme and find suggestive evidence for two others; we observe a magnetic interaction between the molybdenum center and one of the iron/sulfur centers, permitting assignment of this signal to a specific iron/sulfur cluster in the enzyme. In light of recent advances in our understanding of the structure of the molybdenum center, we propose a reaction mechanism involving direct hydride transfer from formate to a molybdenum-sulfur group of the molybdenum center.
Collapse
Affiliation(s)
- Dimitri Niks
- From the Department of Biochemistry, University of California, Riverside, Riverside, California 92521
| | - Jayant Duvvuru
- From the Department of Biochemistry, University of California, Riverside, Riverside, California 92521
| | - Miguel Escalona
- From the Department of Biochemistry, University of California, Riverside, Riverside, California 92521
| | - Russ Hille
- From the Department of Biochemistry, University of California, Riverside, Riverside, California 92521
| |
Collapse
|
30
|
Pimkov IV, Serli-Mitasev B, Peterson AA, Ratvasky SC, Hammann B, Basu P. Designing the Molybdopterin Core through Regioselective Coupling of Building Blocks. Chemistry 2015; 21:17057-72. [DOI: 10.1002/chem.201502845] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Indexed: 01/08/2023]
|
31
|
Zeng T, Leimkühler S, Koetz J, Wollenberger U. Effective Electrochemistry of Human Sulfite Oxidase Immobilized on Quantum-Dots-Modified Indium Tin Oxide Electrode. ACS APPLIED MATERIALS & INTERFACES 2015; 7:21487-21494. [PMID: 26357959 DOI: 10.1021/acsami.5b06665] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The bioelectrocatalytic sulfite oxidation by human sulfite oxidase (hSO) on indium tin oxide (ITO) is reported, which is facilitated by functionalizing of the electrode surface with polyethylenimine (PEI)-entrapped CdS nanoparticles and enzyme. hSO was assembled onto the electrode with a high surface loading of electroactive enzyme. In the presence of sulfite but without additional mediators, a high bioelectrocatalytic current was generated. Reference experiments with only PEI showed direct electron transfer and catalytic activity of hSO, but these were less pronounced. The application of the polyelectrolyte-entrapped quantum dots (QDs) on ITO electrodes provides a compatible surface for enzyme binding with promotion of electron transfer. Variations of the buffer solution conditions, e.g., ionic strength, pH, viscosity, and the effect of oxygen, were studied in order to understand intramolecular and heterogeneous electron transfer from hSO to the electrode. The results are consistent with a model derived for the enzyme by using flash photolysis in solution and spectroelectrochemistry and molecular dynamic simulations of hSO on monolayer-modified gold electrodes. Moreover, for the first time a photoelectrochemical electrode involving immobilized hSO is demonstrated where photoexcitation of the CdS/hSO-modified electrode lead to an enhanced generation of bioelectrocatalytic currents upon sulfite addition. Oxidation starts already at the redox potential of the electron transfer domain of hSO and is greatly increased by application of a small overpotential to the CdS/hSO-modified ITO.
Collapse
Affiliation(s)
- Ting Zeng
- Institute of Biochemistry and Biology and ‡Institute of Chemistry, University of Potsdam , Karl-Liebknecht-Strasse 24-25, 14476 Potsdam-Golm, Germany
| | - Silke Leimkühler
- Institute of Biochemistry and Biology and ‡Institute of Chemistry, University of Potsdam , Karl-Liebknecht-Strasse 24-25, 14476 Potsdam-Golm, Germany
| | - Joachim Koetz
- Institute of Biochemistry and Biology and ‡Institute of Chemistry, University of Potsdam , Karl-Liebknecht-Strasse 24-25, 14476 Potsdam-Golm, Germany
| | - Ulla Wollenberger
- Institute of Biochemistry and Biology and ‡Institute of Chemistry, University of Potsdam , Karl-Liebknecht-Strasse 24-25, 14476 Potsdam-Golm, Germany
| |
Collapse
|
32
|
Gardner PR, Gardner DP, Gardner AP. Globins Scavenge Sulfur Trioxide Anion Radical. J Biol Chem 2015; 290:27204-27214. [PMID: 26381408 DOI: 10.1074/jbc.m115.679621] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Indexed: 01/16/2023] Open
Abstract
Ferrous myoglobin was oxidized by sulfur trioxide anion radical (STAR) during the free radical chain oxidation of sulfite. Oxidation was inhibited by the STAR scavenger GSH and by the heme ligand CO. Bimolecular rate constants for the reaction of STAR with several ferrous globins and biomolecules were determined by kinetic competition. Reaction rate constants for myoglobin, hemoglobin, neuroglobin, and flavohemoglobin are large at 38, 120, 2,600, and ≥ 7,500 × 10(6) m(-1) s(-1), respectively, and correlate with redox potentials. Measured rate constants for O2, GSH, ascorbate, and NAD(P)H are also large at ∼100, 10, 130, and 30 × 10(6) m(-1) s(-1), respectively, but nevertheless allow for favorable competition by globins and a capacity for STAR scavenging in vivo. Saccharomyces cerevisiae lacking sulfite oxidase and deleted of flavohemoglobin showed an O2-dependent growth impairment with nonfermentable substrates that was exacerbated by sulfide, a precursor to mitochondrial sulfite formation. Higher O2 exposures inactivated the superoxide-sensitive mitochondrial aconitase in cells, and hypoxia elicited both aconitase and NADP(+)-isocitrate dehydrogenase activity losses. Roles for STAR-derived peroxysulfate radical, superoxide radical, and sulfo-NAD(P) in the mechanism of STAR toxicity and flavohemoglobin protection in yeast are suggested.
Collapse
|
33
|
Davis AC, Johnson-Winters K, Arnold AR, Tollin G, Enemark JH. Kinetic results for mutations of conserved residues H304 and R309 of human sulfite oxidase point to mechanistic complexities. Metallomics 2015; 6:1664-70. [PMID: 24968320 DOI: 10.1039/c4mt00099d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several point mutations in the gene of human sulfite oxidase (hSO) result in isolated sulfite oxidase deficiency, an inherited metabolic disorder. Three conserved residues (H304, R309, K322) are hydrogen bonded to the phosphate group of the molybdenum cofactor, and the R309H and K322R mutations are responsible for isolated sulfite oxidase deficiency. The kinetic effects of the K322R mutation have been previously reported (Rajapakshe et al., Chem. Biodiversity, 2012, 9, 1621-1634); here we investigate several mutants of H304 and R309 by steady-state kinetics, laser flash photolysis studies of intramolecular electron transfer (IET), and spectroelectrochemistry. An unexpected result is that all of the mutants show decreased rates of IET but increased steady-state rates of catalysis. However, in all cases the rate of IET is greater than the overall turnover rate, showing that IET is not the rate determining step for any of the mutations.
Collapse
Affiliation(s)
- Amanda C Davis
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0041, USA
| | | | | | | | | |
Collapse
|
34
|
Kalimuthu P, Heider J, Knack D, Bernhardt PV. Electrocatalytic Hydrocarbon Hydroxylation by Ethylbenzene Dehydrogenase from Aromatoleum aromaticum. J Phys Chem B 2015; 119:3456-63. [DOI: 10.1021/jp512562k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Palraj Kalimuthu
- School of Chemistry
and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Johann Heider
- Laboratory for
Microbial Biochemistry and Synmikro Center for Synthetic Microbiology, Philipps University Marburg, 35043 Marburg, Germany
| | - Daniel Knack
- Laboratory for
Microbial Biochemistry and Synmikro Center for Synthetic Microbiology, Philipps University Marburg, 35043 Marburg, Germany
| | - Paul V. Bernhardt
- School of Chemistry
and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
35
|
Nitrite reduction by molybdoenzymes: a new class of nitric oxide-forming nitrite reductases. J Biol Inorg Chem 2015; 20:403-33. [DOI: 10.1007/s00775-014-1234-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/14/2014] [Indexed: 02/07/2023]
|
36
|
Hüttinger K, Förster C, Heinze K. Intramolecular electron transfer between molybdenum and iron mimicking bacterial sulphite dehydrogenase. Chem Commun (Camb) 2014; 50:4285-8. [PMID: 24452096 DOI: 10.1039/c3cc46919k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Diferrocenyl/diferrocenium substituted dioxido molybdenum(VI) complexes [Fe2MoO2] 2(Fc)/[2(FC)]²⁺ mimic the catalytic active site including the redox subunits as well as the catalytic function of bacterial sulphite oxidases.
Collapse
Affiliation(s)
- Kristina Hüttinger
- Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | | | | |
Collapse
|
37
|
Kappler U, Enemark JH. Sulfite-oxidizing enzymes. J Biol Inorg Chem 2014; 20:253-64. [DOI: 10.1007/s00775-014-1197-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/15/2014] [Indexed: 11/24/2022]
|
38
|
Kalimuthu P, Fischer-Schrader K, Schwarz G, Bernhardt PV. A sensitive and stable amperometric nitrate biosensor employing Arabidopsis thaliana nitrate reductase. J Biol Inorg Chem 2014; 20:385-93. [DOI: 10.1007/s00775-014-1171-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/05/2014] [Indexed: 11/28/2022]
|
39
|
Ha Y, Tenderholt AL, Holm RH, Hedman B, Hodgson KO, Solomon EI. Sulfur K-edge X-ray absorption spectroscopy and density functional theory calculations on monooxo Mo(IV) and bisoxo Mo(VI) bis-dithiolenes: insights into the mechanism of oxo transfer in sulfite oxidase and its relation to the mechanism of DMSO reductase. J Am Chem Soc 2014; 136:9094-105. [PMID: 24884723 PMCID: PMC4073832 DOI: 10.1021/ja503316p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Indexed: 12/25/2022]
Abstract
Sulfur K-edge X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations have been used to determine the electronic structures of two complexes [Mo(IV)O(bdt)2](2-) and [Mo(VI)O2(bdt)2](2-) (bdt = benzene-1,2-dithiolate(2-)) that relate to the reduced and oxidized forms of sulfite oxidase (SO). These are compared with those of previously studied dimethyl sulfoxide reductase (DMSOr) models. DFT calculations supported by the data are extended to evaluate the reaction coordinate for oxo transfer to a phosphite ester substrate. Three possible transition states are found with the one at lowest energy, stabilized by a P-S interaction, in good agreement with experimental kinetics data. Comparison of both oxo transfer reactions shows that in DMSOr, where the oxo is transferred from the substrate to the metal ion, the oxo transfer induces electron transfer, while in SO, where the oxo transfer is from the metal site to the substrate, the electron transfer initiates oxo transfer. This difference in reactivity is related to the difference in frontier molecular orbitals (FMO) of the metal-oxo and substrate-oxo bonds. Finally, these experimentally related calculations are extended to oxo transfer by sulfite oxidase. The presence of only one dithiolene at the enzyme active site selectively activates the equatorial oxo for transfer, and allows facile structural reorganization during turnover.
Collapse
Affiliation(s)
- Yang Ha
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Adam L. Tenderholt
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Richard H. Holm
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Britt Hedman
- Stanford
Synchrotron Radiation Lightsource, SLAC, Stanford University, Menlo Park, California 94025, United States
| | - Keith O. Hodgson
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford
Synchrotron Radiation Lightsource, SLAC, Stanford University, Menlo Park, California 94025, United States
| | - Edward I. Solomon
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford
Synchrotron Radiation Lightsource, SLAC, Stanford University, Menlo Park, California 94025, United States
| |
Collapse
|
40
|
The Biosynthesis of the Molybdenum Cofactor in Escherichia coli and Its Connection to FeS Cluster Assembly and the Thiolation of tRNA. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/808569] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The thiolation of biomolecules is a complex process that involves the activation of sulfur. The L-cysteine desulfurase IscS is the main sulfur mobilizing protein in Escherichia coli that provides the sulfur from L-cysteine to several important biomolecules in the cell such as iron sulfur (FeS) clusters, molybdopterin (MPT), thiamine, and thionucleosides of tRNA. Various proteins mediate the transfer of sulfur from IscS to various biomolecules using different interaction partners. A direct connection between the sulfur-containing molecules FeS clusters, thiolated tRNA, and the molybdenum cofactor (Moco) has been identified. The first step of Moco biosynthesis involves the conversion of 5′GTP to cyclic pyranopterin monophosphate (cPMP), a reaction catalyzed by a FeS cluster containing protein. Formed cPMP is further converted to MPT by insertion of two sulfur atoms. The sulfur for this reaction is provided by the L-cysteine desulfurase IscS in addition to the involvement of the TusA protein. TusA is also involved in the sulfur transfer for the thiolation of tRNA. This review will describe the biosynthesis of Moco in E. coli in detail and dissects the sulfur transfer pathways for Moco and tRNA and their connection to FeS cluster biosynthesis.
Collapse
|
41
|
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - James Hall
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
42
|
Reschke S, Niks D, Wilson H, Sigfridsson KGV, Haumann M, Rajagopalan KV, Hille R, Leimkühler S. Effect of Exchange of the Cysteine Molybdenum Ligand with Selenocysteine on the Structure and Function of the Active Site in Human Sulfite Oxidase. Biochemistry 2013; 52:8295-303. [DOI: 10.1021/bi4008512] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stefan Reschke
- Department
of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Dimitri Niks
- Department
of Biochemistry, University of California, Riverside, California 92521, United States
| | - Heather Wilson
- Department
of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, United States
| | | | - Michael Haumann
- Institute
of Experimental Physics, Free University Berlin, 14195 Berlin, Germany
| | - K. V. Rajagopalan
- Department
of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Russ Hille
- Department
of Biochemistry, University of California, Riverside, California 92521, United States
| | - Silke Leimkühler
- Department
of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
43
|
Kalimuthu P, Heath MD, Santini JM, Kappler U, Bernhardt PV. Electrochemically driven catalysis of Rhizobium sp. NT-26 arsenite oxidase with its native electron acceptor cytochrome c552. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:112-20. [PMID: 23891971 DOI: 10.1016/j.bbabio.2013.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/05/2013] [Accepted: 07/19/2013] [Indexed: 10/26/2022]
Abstract
We describe the catalytic voltammograms of the periplasmic arsenite oxidase (Aio) from the chemolithoautotrophic bacterium Rhizobium sp. str. NT-26 that oxidizes arsenite to arsenate. Electrochemistry of the enzyme was accomplished using its native electron transfer partner, cytochrome c552 (cyt c552), as a mediator. The protein cyt c552 adsorbed on a mercaptoundecanoic acid (MUA) modified Au electrode exhibited a stable, reversible one-electron voltammetric response at +275mV vs NHE (pH6). In the presence of arsenite and Aio the voltammetry of cyt c552 is transformed from a transient response to an amplified sigmoidal (steady state) wave consistent with an electro-catalytic system. Digital simulation was performed using a single set of parameters for all catalytic voltammetries obtained at different sweep rates and various substrate concentrations. The obtained kinetic constants from digital simulation provide new insight into the kinetics of the NT-26 Aio catalytic mechanism.
Collapse
Affiliation(s)
- Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | | | | | | | | |
Collapse
|
44
|
Johnson-Winters K, Davis AC, Arnold AR, Berry RE, Tollin G, Enemark JH. Probing the role of a conserved salt bridge in the intramolecular electron transfer kinetics of human sulfite oxidase. J Biol Inorg Chem 2013; 18:645-53. [DOI: 10.1007/s00775-013-1010-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 05/14/2013] [Indexed: 10/26/2022]
|
45
|
Davis AC, Cornelison MJ, Meyers KT, Rajapakshe A, Berry RE, Tollin G, Enemark JH. Effects of mutating aromatic surface residues of the heme domain of human sulfite oxidase on its heme midpoint potential, intramolecular electron transfer, and steady-state kinetics. Dalton Trans 2013; 42:3043-9. [DOI: 10.1039/c2dt31508d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Kalimuthu P, Leimkühler S, Bernhardt PV. Low-Potential Amperometric Enzyme Biosensor for Xanthine and Hypoxanthine. Anal Chem 2012; 84:10359-65. [DOI: 10.1021/ac3025027] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Palraj Kalimuthu
- School of Chemistry and Molecular
Biosciences, University of Queensland,
Brisbane, 4072, Australia
| | - Silke Leimkühler
- Institut für Biochemie
und Biologie, Universität Potsdam, 14476 Potsdam, Germany
| | - Paul V. Bernhardt
- School of Chemistry and Molecular
Biosciences, University of Queensland,
Brisbane, 4072, Australia
| |
Collapse
|
47
|
Rajapakshe A, Tollin G, Enemark JH. Kinetic and thermodynamic effects of mutations of human sulfite oxidase. Chem Biodivers 2012; 9:1621-34. [PMID: 22976958 PMCID: PMC3517162 DOI: 10.1002/cbdv.201200010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Asha Rajapakshe
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721-0041 U.S.A
| | - Gordon Tollin
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721-0041 U.S.A
| | - John H. Enemark
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721-0041 U.S.A
| |
Collapse
|
48
|
Xia Z, Sun K, Wang M, Wu K, Zhang H, Wu J. Overexpression of a maize sulfite oxidase gene in tobacco enhances tolerance to sulfite stress via sulfite oxidation and CAT-mediated H2O2 scavenging. PLoS One 2012; 7:e37383. [PMID: 22693572 PMCID: PMC3365070 DOI: 10.1371/journal.pone.0037383] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/18/2012] [Indexed: 01/24/2023] Open
Abstract
Sulfite oxidase (SO) plays an important role in sulfite metabolism. To date, the molecular mechanisms of sulfite metabolism in plants are largely unknown. Previously, a full-length cDNA of the putative sulfite oxidase gene from maize (ZmSO) was cloned, and its response to SO(2)/sulfite stress at the transcriptional level was characterized. In this study, the recombinant ZmSO protein was purified from E. coli. It exhibited sulfite-dependent activity and had strong affinity for the substrate sulfite. Over-expression (OE) of ZmSO in tobacco plants enhanced their tolerance to sulfite stress. The plants showed much less damage, less sulfite accumulation, but greater amounts of sulfate. This suggests that tolerance of transgenic plants to sulfite was enhanced by increasing SO expression levels. Interestingly, H(2)O(2) accumulation levels by histochemical detection and quantitative determination in the OE plants were much less than those in the wild-type upon sulfite stress. Furthermore, reductions of catalase levels detected in the OE lines were considerably less than in the wild-type plants. This indicates that SO may play an important role in protecting CAT from inhibition by excess sulfite. Collectively, these data demonstrate that transgenic tobacco plants over-expressing ZmSO enhance tolerance to excess sulfite through sulfite oxidation and catalase-mediated hydrogen peroxide scavenging. This is the first SO gene from monocots to be functionally characterized.
Collapse
Affiliation(s)
- Zongliang Xia
- College of Life Science, Henan Agricultural University, Zhengzhou, People’s Republic of China
- Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crops in Henan Province, Zhengzhou, People’s Republic of China
| | - Kaile Sun
- College of Life Science, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Meiping Wang
- College of Life Science, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Ke Wu
- College of Life Science, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Hua Zhang
- College of Life Science, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Jianyu Wu
- College of Life Science, Henan Agricultural University, Zhengzhou, People’s Republic of China
- Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crops in Henan Province, Zhengzhou, People’s Republic of China
| |
Collapse
|
49
|
Xia Z, Su X, Wu J, Wu K, Zhang H. Molecular cloning and functional characterization of a putative sulfite oxidase (SO) ortholog from Nicotiana benthamiana. Mol Biol Rep 2012; 39:2429-37. [PMID: 21667106 DOI: 10.1007/s11033-011-0993-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 05/31/2011] [Indexed: 11/24/2022]
Abstract
Sulfite oxidase (SO) catalyzes the oxidation of sulfite to sulfate and thus has important roles in diverse metabolic processes. However, systematic molecular and functional investigations on the putative SO from tobacco (Nicotiana benthamiana) have hitherto not been reported. In this work, a full-length cDNA encoding putative sulfite oxidase from N. benthamiana (NbSO) was isolated. The deduced NbSO protein shares high homology and typical structural features with other species SOs. Phylogenetic analysis indicates that NbSO cDNA clone encodes a tobacco SO isoform. Southern blot analysis suggests that NbSO is a single-copy gene in the N. benthamiana genome. The NbSO transcript levels were higher in aerial tissues and were up-regulated in N. benthamiana during sulfite stress. Reducing the SO expression levels through virus-induced gene silencing caused a substantial accumulation in sulfite content and less sulfate accumulation in N. benthamiana leaves when exposed to sulfite stress, and thus resulted in decreased tolerance to sulfite stress. Taken together, this study improves our understanding on the molecular and functional properties of plant SO and provides genetic evidence on the involvement of SO in sulfite detoxification in a sulfite-oxidizing manner in N. benthamiana plants.
Collapse
Affiliation(s)
- Zongliang Xia
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, People's Republic of China.
| | | | | | | | | |
Collapse
|
50
|
Qiu JA, Wilson HL, Rajagopalan KV. Structure-based alteration of substrate specificity and catalytic activity of sulfite oxidase from sulfite oxidation to nitrate reduction. Biochemistry 2012; 51:1134-47. [PMID: 22263579 DOI: 10.1021/bi201206v] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Eukaryotic sulfite oxidase is a dimeric protein that contains the molybdenum cofactor and catalyzes the metabolically essential conversion of sulfite to sulfate as the terminal step in the metabolism of cysteine and methionine. Nitrate reductase is an evolutionarily related molybdoprotein in lower organisms that is essential for growth on nitrate. In this study, we describe human and chicken sulfite oxidase variants in which the active site has been modified to alter substrate specificity and activity from sulfite oxidation to nitrate reduction. On the basis of sequence alignments and the known crystal structure of chicken sulfite oxidase, two residues are conserved in nitrate reductases that align with residues in the active site of sulfite oxidase. On the basis of the crystal structure of yeast nitrate reductase, both positions were mutated in human sulfite oxidase and chicken sulfite oxidase. The resulting double-mutant variants demonstrated a marked decrease in sulfite oxidase activity but gained nitrate reductase activity. An additional methionine residue in the active site was proposed to be important in nitrate catalysis, and therefore, the triple variant was also produced. The nitrate reducing ability of the human sulfite oxidase triple mutant was nearly 3-fold greater than that of the double mutant. To obtain detailed structural data for the active site of these variants, we introduced the analogous mutations into chicken sulfite oxidase to perform crystallographic analysis. The crystal structures of the Mo domains of the double and triple mutants were determined to 2.4 and 2.1 Å resolution, respectively.
Collapse
Affiliation(s)
- James A Qiu
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, United States
| | | | | |
Collapse
|