1
|
Malarz K, Ziola P, Zych D, Rurka P, Mrozek-Wilczkiewicz A. Imbalance of redox homeostasis and altered cellular signaling induced by the metal complexes of terpyridine. Sci Rep 2024; 14:26951. [PMID: 39505960 PMCID: PMC11541782 DOI: 10.1038/s41598-024-77575-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
Compounds that can induce oxidative stress in cancer cells while remaining nontoxic to healthy cells are extremely promising for potential anticancer drugs. 2,2':6',2''-terpyridine-metal complexes possess these properties. The high level of activity (IC50 = 0.605 µM) of 2,2':6',2''-terpyridine-metal complexes on lung, breast, pancreatic, and glioblastoma multiforme cancer lines and their selectivity (SI > 41.32) on human normal fibroblasts were confirmed and presented in this paper. The mechanism of action of these compounds is associated with the generation of reactive oxygen species, which affects several cellular pathways and signals. The results demonstrate that 2,2':6',2''-terpyridine-metal complexes affect cell cycle inhibition in the G0/G1 phase as well as the activation of apoptosis and autophagy cell death. These results were confirmed in several independent studies, including experiments measuring the fluorescence levels of reactive oxygen species, flow cytometry, and gene and protein analysis.
Collapse
Affiliation(s)
- Katarzyna Malarz
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 2A, Gliwice, 44-100, Poland
- A. Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1a, Chorzów, 41- 500, Poland
| | - Patryk Ziola
- A. Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1a, Chorzów, 41- 500, Poland
| | - Dawid Zych
- Faculty of Chemistry, University of Opole, Oleska 48, Opole, 45-052, Poland
| | - Patryk Rurka
- A. Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1a, Chorzów, 41- 500, Poland
| | - Anna Mrozek-Wilczkiewicz
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 2A, Gliwice, 44-100, Poland.
- A. Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1a, Chorzów, 41- 500, Poland.
| |
Collapse
|
2
|
Malarz K, Mularski J, Pacholczyk M, Musiol R. Styrylquinazoline derivatives as ABL inhibitors selective for different DFG orientations. J Enzyme Inhib Med Chem 2023; 38:2201410. [PMID: 37070569 PMCID: PMC10120462 DOI: 10.1080/14756366.2023.2201410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/19/2023] Open
Abstract
Among tyrosine kinase inhibitors, quinazoline-based compounds represent a large and well-known group of multi-target agents. Our previous studies have shown interesting kinases inhibition activity for a series of 4-aminostyrylquinazolines based on the CP-31398 scaffold. Here, we synthesised a new series of styrylquinazolines with a thioaryl moiety in the C4 position and evaluated in detail their biological activity. Our results showed high inhibition potential against non-receptor tyrosine kinases for several compounds. Molecular docking studies showed differential binding to the DFG conformational states of ABL kinase for two derivatives. The compounds showed sub-micromolar activity against leukaemia. Finally, in-depth cellular studies revealed the full landscape of the mechanism of action of the most active compounds. We conclude that S4-substituted styrylquinazolines can be considered as a promising scaffold for the development of multi-kinase inhibitors targeting a desired binding mode to kinases as effective anticancer drugs.
Collapse
Affiliation(s)
- Katarzyna Malarz
- Institute of Physics, University of Silesia in Katowice, Chorzów, Poland
| | - Jacek Mularski
- Institute of Chemistry, University of Silesia in Katowice, Chorzów, Poland
| | - Marcin Pacholczyk
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Robert Musiol
- Institute of Chemistry, University of Silesia in Katowice, Chorzów, Poland
| |
Collapse
|
3
|
Zhao J, Xu Y, Wang J, Liu J, Zhang R, Yan X. Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1B Inhibition Promotes Megakaryocyte Polyploidization and Platelet Production. Thromb Haemost 2023; 123:192-206. [PMID: 36126948 DOI: 10.1055/a-1947-7615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Platelets are produced from mature megakaryocytes which undergo polyploidization and proplatelet formation. Cell-cycle regulation plays a crucial role in megakaryocyte terminal differentiation especially in polyploidization. Dual-specificity tyrosine phosphorylation-regulated kinase 1B (DYRK1B) controls cell-cycle progression in cancer cells. The objective of this study was to determine DYRK1B function in megakaryocyte maturation and platelet production. A DYRK1B knock-out mouse was generated with increased peripheral platelet count compared with the wild type mouse without affecting megakaryocyte numbers in bone marrow. Polyploidy and proplatelet formations were significantly enhanced when DYRK1B was depleted in vitro. DYRK1B inhibition promoted megakaryocyte maturation by simultaneously upregulating cyclin D1 and downregulating P27. Furthermore, there was platelet restoration in two mice disease models of transient thrombocytopenia. In summary, DYRK1B plays an important role in megakaryocyte maturation and platelet production by interacting with cyclin D1 and P27. DYRK1B inhibition has potential therapeutic value in transient thrombocytopenia treatment. Graphic Abstract.
Collapse
Affiliation(s)
- Jiaxin Zhao
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yanyan Xu
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jiqiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ruiyan Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaoxiang Yan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Yi YW, You KS, Park JS, Lee SG, Seong YS. Ribosomal Protein S6: A Potential Therapeutic Target against Cancer? Int J Mol Sci 2021; 23:ijms23010048. [PMID: 35008473 PMCID: PMC8744729 DOI: 10.3390/ijms23010048] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Ribosomal protein S6 (RPS6) is a component of the 40S small ribosomal subunit and participates in the control of mRNA translation. Additionally, phospho (p)-RPS6 has been recognized as a surrogate marker for the activated PI3K/AKT/mTORC1 pathway, which occurs in many cancer types. However, downstream mechanisms regulated by RPS6 or p-RPS remains elusive, and the therapeutic implication of RPS6 is underappreciated despite an approximately half a century history of research on this protein. In addition, substantial evidence from RPS6 knockdown experiments suggests the potential role of RPS6 in maintaining cancer cell proliferation. This motivates us to investigate the current knowledge of RPS6 functions in cancer. In this review article, we reviewed the current information about the transcriptional regulation, upstream regulators, and extra-ribosomal roles of RPS6, with a focus on its involvement in cancer. We also discussed the therapeutic potential of RPS6 in cancer.
Collapse
Affiliation(s)
- Yong Weon Yi
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
| | - Seok-Geun Lee
- Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (S.-G.L.); (Y.-S.S.); Tel.: +82-2-961-2355 (S.-G.L.); +82-41-550-3875 (Y.-S.S.); Fax: +82-2-961-9623 (S.-G.L.)
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
- Correspondence: (S.-G.L.); (Y.-S.S.); Tel.: +82-2-961-2355 (S.-G.L.); +82-41-550-3875 (Y.-S.S.); Fax: +82-2-961-9623 (S.-G.L.)
| |
Collapse
|
5
|
Suzuki T. [Research on Analysis of Final Diagnosis and Prognostic Factors, and Development of New Therapeutic Drugs for Malignant Tumors (Especially Malignant Pediatric Tumors)]. YAKUGAKU ZASSHI 2020; 140:229-271. [PMID: 32009046 DOI: 10.1248/yakushi.19-00178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Outcomes of treatment for malignant pediatric tumors including leukemia are improving by conventional multimodal treatment with strong chemotherapy, surgical resection, radiotherapy, and bone marrow transplantation. However, patients with advanced neuroblastoma, metastatic Ewing's sarcoma family of tumor (ESFT), and metastatic osteosarcoma continue to have an extremely poor prognosis. Therefore novel therapeutic strategies are urgently needed to improve their survival. Apoptotic cell death is a key mechanism for normal cellular homeostasis. Intact apoptotic mechanisms are pivotal for embryonic development, tissue remodeling, immune regulation, and tumor regression. Genetic aberrations disrupting programmed cell death often underpin tumorigenesis and drug resistance. Moreover, it has been suggested that apoptosis or cell differentiation proceeds to spontaneous regression in early stage neuroblastoma. Therefore apoptosis or cell differentiation is a critical event in this cancer. We extracted many compounds from natural plants (Angelica keiskei, Alpinia officiarum, Lycaria puchury-major, Brassica rapa) or synthesized cyclophane pyridine, indirubin derivatives, vitamin K3 derivatives, burchellin derivatives, and GANT61, and examined their effects on apoptosis, cell differentiation, and cell cycle in neuroblastoma and ESFT cell lines compared with normal cells. Some compounds were very effective against these tumor cells. These results suggest that they may be applicable as an efficacious and safe drug for the treatment of malignant pediatric tumors.
Collapse
Affiliation(s)
- Takashi Suzuki
- Laboratory of Clinical Medicine, School of Pharmacy, Nihon University
| |
Collapse
|
6
|
Jaiswal S, Sharma P. Role and regulation of p27 in neuronal apoptosis. J Neurochem 2017; 140:576-588. [PMID: 27926980 DOI: 10.1111/jnc.13918] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/28/2016] [Accepted: 11/25/2016] [Indexed: 11/30/2022]
Abstract
It is necessary for the cell-cycle machinery of neurons to be suppressed to promote differentiation and maintenance of their terminally differentiated state. Reactivation of the cell cycle in response to neurotoxic insults leads to neuronal cell death and some cell-cycle-related proteins contribute to the process. p27 kip1 (p27), an inhibitor of cyclin-dependent kinases, prevents unwarranted cyclin-dependent kinase activation. In this study, we have elucidated a novel mechanism via which p27 promotes apoptosis of neurons stimulated by neurotoxic amyloid peptide Aβ42 (Amyloid β1-42 peptide). Co-immunoprecipitation analysis revealed that p27 promotes interaction between Cyclin-dependent kinase 5 (Cdk5) and cyclin D1, which is induced by Aβ42 in cortical neurons. As a result, Cdk5 is sequestered from its neuronal activator p35 resulting in kinase deactivation. The depletion of p27, which was achieved by specific siRNA, restored Cdk5/p35 interaction by preventing association between Cdk5 and cyclin D1 and also abrogated Aβ42 induced apoptosis of cortical neurons. Furthermore, analysis of cell cycle markers suggested that p27 may play a role in Aβ42 induced aberrant cell cycle progression of neurons, which may result in apoptosis. These findings provide novel insights into how p27, which otherwise performs important neuronal functions, may become deleterious to neurons under neurotoxic conditions.
Collapse
Affiliation(s)
- Surbhi Jaiswal
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India
| | - Pushkar Sharma
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
7
|
Geesala R, Gangasani JK, Budde M, Balasubramanian S, Vaidya JR, Das A. 2-Azetidinones: Synthesis and biological evaluation as potential anti-breast cancer agents. Eur J Med Chem 2016; 124:544-558. [DOI: 10.1016/j.ejmech.2016.08.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 10/21/2022]
|
8
|
Kim JA, Tan Y, Wang X, Cao X, Veeraraghavan J, Liang Y, Edwards DP, Huang S, Pan X, Li K, Schiff R, Wang XS. Comprehensive functional analysis of the tousled-like kinase 2 frequently amplified in aggressive luminal breast cancers. Nat Commun 2016; 7:12991. [PMID: 27694828 PMCID: PMC5064015 DOI: 10.1038/ncomms12991] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/24/2016] [Indexed: 12/13/2022] Open
Abstract
More aggressive and therapy-resistant oestrogen receptor (ER)-positive breast cancers remain a great clinical challenge. Here our integrative genomic analysis identifies tousled-like kinase 2 (TLK2) as a candidate kinase target frequently amplified in ∼10.5% of ER-positive breast tumours. The resulting overexpression of TLK2 is more significant in aggressive and advanced tumours, and correlates with worse clinical outcome regardless of endocrine therapy. Ectopic expression of TLK2 leads to enhanced aggressiveness in breast cancer cells, which may involve the EGFR/SRC/FAK signalling. Conversely, TLK2 inhibition selectively inhibits the growth of TLK2-high breast cancer cells, downregulates ERα, BCL2 and SKP2, impairs G1/S cell cycle progression, induces apoptosis and significantly improves progression-free survival in vivo. We identify two potential TLK2 inhibitors that could serve as backbones for future drug development. Together, amplification of the cell cycle kinase TLK2 presents an attractive genomic target for aggressive ER-positive breast cancers. Luminal B oestrogen receptor positive breast cancers are generally aggressive tumors with poor outcomes. Here, the authors show that the kinase TLK2 is amplified and overexpressed in these tumors and correlates with reduced survival, TLK2 inhibition induces apoptosis in vitro and improves survival in mice.
Collapse
Affiliation(s)
- Jin-Ah Kim
- Lester &Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ying Tan
- Lester &Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xian Wang
- Lester &Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.,University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Xixi Cao
- Lester &Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jamunarani Veeraraghavan
- Lester &Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yulong Liang
- Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Dean P Edwards
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Pathology &Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Shixia Huang
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xuewen Pan
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Kaiyi Li
- Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Rachel Schiff
- Lester &Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xiao-Song Wang
- Lester &Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.,University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
9
|
Expression of Spy1 protein in human non-Hodgkin's lymphomas is correlated with phosphorylation of p27 Kip1 on Thr187 and cell proliferation. Med Oncol 2012; 29:3504-14. [PMID: 22492278 DOI: 10.1007/s12032-012-0224-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 03/19/2012] [Indexed: 12/28/2022]
Abstract
Aberrations in cell cycle control are often observed in tumors and might even be necessary in tumor development. Spy1, a novel cell cycle regulatory protein, can control cell progression and survival through the atypical activation of cyclin-dependent kinases (CDKs). In this progression, the phosphorylation of p27(Kip1) at Thr187 by CDK2 was shown to be a chief role. In this study, we studied 183 human specimens including reactive lymphoid and Non-Hodgkin's Lymphomas (NHLs) tissues. Immunohistochemistry (IHC) analysis suggested that Spy1 and pThr187-p27 were overexpressed in NHLs. The expression of Spy1 was positively related to pThr187-p27 and proliferation marker Ki-67 expression. In a multivariate analysis, high Spy1 and pThr187-p27 expressions were showed to be associated with poor prognosis in NHLs. While in vitro, following release of Jurkat cells from serum starvation, the expression of Spy1 was upregulated, as well as pThr187-p27 and CDK2. And an increased interaction between Spy1 and pThr187-p27 was demonstrated at 4 h after serum stimulation. Additionally, transfecting cells with Spy1-siRNA could diminish the expression of pThr187-p27 and arrest cell growth. Our results suggest that Spy1 may be a possible prognostic indicator in NHLs, and it was correlated with phosphorylation of p27(Kip1) on Thr187. These findings provide a rational framework for further development of Spy1 inhibitors as a novel class of anti-tumor agents.
Collapse
|
10
|
Molecular systems biology of Sic1 in yeast cell cycle regulation through multiscale modeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 736:135-67. [PMID: 22161326 DOI: 10.1007/978-1-4419-7210-1_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell cycle control is highly regulated to guarantee the precise timing of events essential for cell growth, i.e., DNA replication onset and cell division. Failure of this control plays a role in cancer and molecules called cyclin-dependent kinase (Cdk) inhibitors (Ckis) exploit a critical function in cell cycle timing. Here we present a multiscale modeling where experimental and computational studies have been employed to investigate structure, function and temporal dynamics of the Cki Sic1 that regulates cell cycle progression in Saccharomyces cerevisiae. Structural analyses reveal molecular details of the interaction between Sic1 and Cdk/cyclin complexes, and biochemical investigation reveals Sic1 function in analogy to its human counterpart p27(Kip1), whose deregulation leads to failure in timing of kinase activation and, therefore, to cancer. Following these findings, a bottom-up systems biology approach has been developed to characterize modular networks addressing Sic1 regulatory function. Through complementary experimentation and modeling, we suggest a mechanism that underlies Sic1 function in controlling temporal waves of cyclins to ensure correct timing of the phase-specific Cdk activities.
Collapse
|
11
|
Gopinath S, Malla RR, Gondi CS, Alapati K, Fassett D, Klopfenstein JD, Dinh DH, Gujrati M, Rao JS. Co-depletion of cathepsin B and uPAR induces G0/G1 arrest in glioma via FOXO3a mediated p27 upregulation. PLoS One 2010; 5:e11668. [PMID: 20661471 PMCID: PMC2908539 DOI: 10.1371/journal.pone.0011668] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 06/24/2010] [Indexed: 12/21/2022] Open
Abstract
Background Cathepsin B and urokinase plasminogen activator receptor (uPAR) are both known to be overexpressed in gliomas. Our previous work and that of others strongly suggest a relationship between the infiltrative phenotype of glioma and the expression of cathepsin B and uPAR. Though their role in migration and adhesion are well studied the effect of these molecules on cell cycle progression has not been thoroughly examined. Methodology/Principal Findings Cathespin B and uPAR single and bicistronic siRNA plasmids were used to downregulate these molecules in SNB19 and U251 glioma cells. FACS analysis and BrdU incorporation assay demonstrated G0/G1 arrest and decreased proliferation with the treatments, respectively. Immunoblot and immunocyto analysis demonstrated increased expression of p27Kip1 and its nuclear localization with the knockdown of cathepsin B and uPAR. These effects could be mediated by αVβ3/PI3K/AKT/FOXO pathway as observed by the decreased αVβ3 expression, PI3K and AKT phosphorylation accompanied by elevated FOXO3a levels. These results were further confirmed with the increased expression of p27Kip1 and FOXO3a when treated with Ly294002 (10 µM) and increased luciferase expression with the siRNA and Ly294002 treatments when the FOXO binding promoter region of p27Kip1 was used. Our treatment also reduced the expression of cyclin D1, cyclin D2, p-Rb and cyclin E while the expression of Cdk2 was unaffected. Of note, the Cdk2-cyclin E complex formation was reduced significantly. Conclusion/Significance Our study indicates that cathepsin B and uPAR knockdown induces G0/G1 arrest by modulating the PI3K/AKT signaling pathway and further increases expression of p27Kip1 accompanied by the binding of FOXO3a to its promoter. Taken together, our findings provide molecular mechanism for the G0/G1 arrest induced by the downregulation of cathepsin B and uPAR in SNB19 and U251 glioma cells.
Collapse
Affiliation(s)
- Sreelatha Gopinath
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois, United States of America
| | - Rama Rao Malla
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois, United States of America
| | - Christopher S. Gondi
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois, United States of America
| | - Kiranmai Alapati
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois, United States of America
| | - Daniel Fassett
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, Illinois, United States of America
| | - Jeffrey D. Klopfenstein
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, Illinois, United States of America
| | - Dzung H. Dinh
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, Illinois, United States of America
| | - Meena Gujrati
- Department of Pathology, University of Illinois College of Medicine at Peoria, Peoria, Illinois, United States of America
| | - Jasti S. Rao
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois, United States of America
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, Illinois, United States of America
- * E-mail:
| |
Collapse
|
12
|
Zhang L, Yu HG, Yu JP, Luo HS. PI3K/Akt/p27kip1 pathway mediates chemoresistance to Etoposide and Doxorubicin in gastric carcinoma cell line BGC-823 and its mechanism. Shijie Huaren Xiaohua Zazhi 2008; 16:575-581. [DOI: 10.11569/wcjd.v16.i6.575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of chemo-resistance to Etoposide and Doxorubicin mediated by the PI3K/Akt/p27 pathway on human gastric carcinoma cell line BGC-823 and its mechanism.
METHODS: Cultured BGC-823 gastric cancer cells were divided into control group, PI3K/Akt/p27 Kip1 channel inhibitor Wort (Wort) group, Etoposide (Eto) group, Doxorubicin (Dox) group, Eto + Wort group and Dox + Wort group. Cell survival was assessed with MTT method. Cell cycle and apoptosis were detected using a flow cytometer (FCM). Expression level of p27 Kip1 and p27 gene mRNA was determined by Western blotting analysis and reverse transcription-polymerase chain reaction, respectively.
RESULTS: The cell survival rate at 24 h was lower in Wort group, Eto +Wort group and Dox +Wort group than in control group (57.8%, 46.5%, 44.3% vs 46.5%, 44.3%, P < 0.01). The cell ratio in G0-G1 phase was higher in Wort group, Eto +Wort group and Dox + Wort group than in control group (85.0 ± 3.54, 91.5 ± 3.63, 92.4 ± 3.64 vs 71.5 ± 3.25, P < 0.01) and the protein expression was increased at 12 h and 24 h. The cell survival rate in Eto and Dox groups was higher than that in control group, but no obvious change was found in G0 - G1 phase. The p27 mRNA expression was similar in different groups.
CONCLUSION: Activation of PI3K/Akt/p27 channel can mediate chemo-resistance to tumor cells.
Collapse
|
13
|
Lee JG, Kay EP. Two Populations of p27 Use Differential Kinetics to Phosphorylate Ser-10 and Thr-187 via Phosphatidylinositol 3-Kinase in Response to Fibroblast Growth Factor-2 Stimulation. J Biol Chem 2007; 282:6444-54. [PMID: 17209046 DOI: 10.1074/jbc.m607808200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The cyclin-dependent kinase inhibitor p27 regulates cell cycle progression. We investigated whether FGF-2 uses PI 3-kinase to facilitate phosphorylation of p27 on serine 10 (Ser-10) and threonine 187 (Thr-187) and whether the two phosphorylation sites were differentially regulated. FGF-2 stimulation dramatically increased p27 phosphorylation at Ser-10 and Thr-187 using differential kinetics, and the FGF-2-induced p27 phosphorylation was completely blocked at both sites by LY294002. We determined the physical and biochemical interaction of p27 with the Cdk2-cyclin E complex in response to FGF-2 stimulation. Maximal p27 binding to Cdk2-cyclin E occurred at 12 h; the maximal level of p27 phosphorylation at Thr-187 in the ternary complex was observed at 16 h; ubiquitination of the Thr-187-phosphorylated p27 (pp27Thr-187) was observed starting at 12 h and continuing up to 24 h. However, maximum p27 phosphorylation at Ser-10 occurred in the nucleus 6 h after FGF-2 stimulation; maximal export of Ser-10-phosphorylated p27 (pp27Ser-10) occurred 8 h after FGF-2 treatment, and pp27Ser-10 was simultaneously ubiquitinated. We further investigated which of the two phosphorylated p27 was involved in G(1)/S progression. LY294002 blocked 64% of the cell proliferation stimulated by FGF-2. Use of leptomycin B to block nuclear export of pp27Ser-10 greatly decreased the FGF-2-stimulated cell proliferation (44%), suggesting that phosphorylation of p27 at Ser-10 is the major mechanism for G(1)/S transition. Our results suggest that differential kinetics are observed in p27 phosphorylation at Ser-10 and Thr-187 and that pp27Thr-187 and pp27Ser-10 may represent two populations of p27 observed in the G(1) phase of the cell cycle.
Collapse
Affiliation(s)
- Jeong Goo Lee
- Doheny Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California 90089, USA
| | | |
Collapse
|
14
|
Barberis M, Klipp E, Vanoni M, Alberghina L. Cell size at S phase initiation: an emergent property of the G1/S network. PLoS Comput Biol 2007; 3:e64. [PMID: 17432928 PMCID: PMC1851985 DOI: 10.1371/journal.pcbi.0030064] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 02/20/2007] [Indexed: 12/22/2022] Open
Abstract
The eukaryotic cell cycle is the repeated sequence of events that enable the division of a cell into two daughter cells. It is divided into four phases: G1, S, G2, and M. Passage through the cell cycle is strictly regulated by a molecular interaction network, which involves the periodic synthesis and destruction of cyclins that bind and activate cyclin-dependent kinases that are present in nonlimiting amounts. Cyclin-dependent kinase inhibitors contribute to cell cycle control. Budding yeast is an established model organism for cell cycle studies, and several mathematical models have been proposed for its cell cycle. An area of major relevance in cell cycle control is the G1 to S transition. In any given growth condition, it is characterized by the requirement of a specific, critical cell size, PS, to enter S phase. The molecular basis of this control is still under discussion. The authors report a mathematical model of the G1 to S network that newly takes into account nucleo/cytoplasmic localization, the role of the cyclin-dependent kinase Sic1 in facilitating nuclear import of its cognate Cdk1-Clb5, Whi5 control, and carbon source regulation of Sic1 and Sic1-containing complexes. The model was implemented by a set of ordinary differential equations that describe the temporal change of the concentration of the involved proteins and protein complexes. The model was tested by simulation in several genetic and nutritional setups and was found to be neatly consistent with experimental data. To estimate PS, the authors developed a hybrid model including a probabilistic component for firing of DNA replication origins. Sensitivity analysis of PS provides a novel relevant conclusion: PS is an emergent property of the G1 to S network that strongly depends on growth rate. A major property of living cells is their ability to maintain mass homeostasis throughout cell divisions. It has been proposed that in order to achieve such homeostasis, some critical event(s) in the cell cycle will take place only when the cell has grown beyond a critical cell size. In the budding yeast Saccharomyces cerevisiae, a widely used model for the study of the eukaryotic cell cycle, a large body of evidence indicates that cells have to reach a critical size before they start to replicate their DNA and to form bud, which will give rise to the daughter cell. This critical cell size is modulated by growth rate, hence by nutritional conditions and the multiplicity of genetic material (i.e., ploidy). The authors present a mathematical model of the regulatory molecular network acting at the G1 to S transition. The major novel features of this model compared with previous models of this process are (1) the accounting for cell growth (i.e., the increase in cell volume); (2) the explicit consideration of the fact that cells have a nucleus and a cytoplasm, and that key cell cycle regulatory molecules must move between these different compartments and can only react or regulate each other if they are in the same compartment; and (3) the requirement of sequential overcoming of two molecular thresholds given by a cyclin-dependent kinase/cyclin and a cyclin-dependent kinase inhibitor. The model was tested by simulating the processes during G1 to S transition for different growth conditions or for different mutants and by comparing the results with experimental data. A parameter sensitivity analysis (i.e., testing the model predictions when parameters are varied), newly indicates that the critical cell size is an emergent property of the G1 to S network. The model leads to a unified interpretation of seemingly disparate experimental observations and makes predictions to be experimentally verified.
Collapse
Affiliation(s)
- Matteo Barberis
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
- Max-Planck Institute for Molecular Genetics, Computational Systems Biology, Berlin, Germany
| | - Edda Klipp
- Max-Planck Institute for Molecular Genetics, Computational Systems Biology, Berlin, Germany
- * To whom correspondence should be addressed. E-mail: (EK); (LA)
| | - Marco Vanoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Lilia Alberghina
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
- * To whom correspondence should be addressed. E-mail: (EK); (LA)
| |
Collapse
|
15
|
He G, Kuang J, Huang Z, Koomen J, Kobayashi R, Khokhar AR, Siddik ZH. Upregulation of p27 and its inhibition of CDK2/cyclin E activity following DNA damage by a novel platinum agent are dependent on the expression of p21. Br J Cancer 2006; 95:1514-24. [PMID: 17088910 PMCID: PMC2360737 DOI: 10.1038/sj.bjc.6603448] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The cisplatin analogue 1R,2R-diaminocyclohexane(trans-diacetato)(dichloro)platinumIV (DAP) is a DNA-damaging agent that will be entering clinical trials for its potent cytotoxic effects against cisplatin-resistant tumour cells. This cytotoxicity may reside in its ability to selectively activate G1-phase checkpoint response by inhibiting CDKs via the p53/p21 pathway. We have now evaluated the role of another CDK inhibitor p27 as a contributor to DAP-mediated inhibition of G1-phase CDK2 activity. Our studies in ovarian A2780 tumour cells demonstrate that p27 levels induced by DAP are comparable to or greater than those seen for p21. The induction of p27 is not through a transcriptional mechanism, but rather is due to a four-fold increase in protein stabilisation through a mechanism dependent on p21. Moreover, DAP-induced p21 promoted the selective increase of p27 in the CDK2 complex, but not in CDK4 complex, and this selective increase contributed to inhibition of the CDK2 kinase activity. The inhibited complex contained either p27 or p21, but not both, with the relative levels of cyclin E associated with p27 and p21 indicating that about 25% of the inhibition of CDK2 activity was due to p27 and 75% due to p21. This study provides the first evidence that p27 upregulation is directly attributable to activation of the p53/p21 pathway by a DNA-damaging agent, and promulgates p53/p21/p27 axis as a significant component of checkpoint response.
Collapse
Affiliation(s)
- G He
- Department of Experimental Therapeutics, Unit 353, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - J Kuang
- Department of Experimental Therapeutics, Unit 353, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Z Huang
- Department of Experimental Therapeutics, Unit 353, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - J Koomen
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - R Kobayashi
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - A R Khokhar
- Department of Experimental Therapeutics, Unit 353, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Z H Siddik
- Department of Experimental Therapeutics, Unit 353, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
- E-mail:
| |
Collapse
|
16
|
Moisan A, Larochelle C, Guillemette B, Gaudreau L. BRCA1 can modulate RNA polymerase II carboxy-terminal domain phosphorylation levels. Mol Cell Biol 2004; 24:6947-56. [PMID: 15282296 PMCID: PMC479726 DOI: 10.1128/mcb.24.16.6947-6956.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A high incidence of breast and ovarian cancers has been linked to mutations in the BRCA1 gene. BRCA1 has been shown to be involved in both positive and negative regulation of gene activity as well as in numerous other processes such as DNA repair and cell cycle regulation. Since modulation of the RNA polymerase II carboxy-terminal domain (CTD) phosphorylation levels could constitute an interface to all these functions, we wanted to directly test the possibility that BRCA1 might regulate the phosphorylation state of the CTD. We have shown that the BRCA1 C-terminal region can negatively modulate phosphorylation levels of the RNA polymerase II CTD by the Cdk-activating kinase (CAK) in vitro. Interestingly, the BRCA1 C-terminal region can directly interact with CAK and inhibit CAK activity by competing with ATP. Finally, we demonstrated that full-length BRCA1 can inhibit CTD phosphorylation when introduced in the BRCA1(-/-) HCC1937 cell line. Our results suggest that BRCA1 could play its ascribed roles, at least in part, by modulating CTD kinase components.
Collapse
Affiliation(s)
- Annie Moisan
- Centre de recherche sur les mécanismes du fonctionnement cellulaire, Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1
| | | | | | | |
Collapse
|
17
|
Letestu R, Ugo V, Valensi F, Radford-Weiss I, Nataf J, Lévy V, Gribben JG, Troussard X, Ajchenbaum-Cymbalista F. Prognostic impact of p27KIP1 expression in cyclin D1 positive lymphoproliferative disorders. Leukemia 2004; 18:953-61. [PMID: 15029207 DOI: 10.1038/sj.leu.2403337] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nodal mantle cell lymphoma (MCL) is a well-defined entity, but non-nodal leukemic cyclin D1 positive lymphoproliferative disorders have been reported and their relationship with MCL remains controversial and their prognosis heterogeneous. We prospectively studied the expression of cyclin D1 in CD5 positive leukemic B lymphoproliferative disorders at diagnosis and identified 65 cases overexpressing cyclin D1. We did not distinguish any clinical or biological criteria allowing one to identify a non-MCL group. Multivariate analysis identified age, anemia and p27kip1 expression as independent prognostic factors of survival. By univariate analysis, p27kip1 high expression proved to be the strongest predictor of prolonged survival. The median survival of p27 low expressors was 30 months, while it was not reached for p27 high expressors. A high level of p27 expression was often found associated with the absence of nodal involvement and the presence of somatic mutations, but neither of them was restricted to the p27 high expression group. In conclusion, we hypothesize that MCL and these cyclin D1 positive leukemic lymphoproliferative disorders represent a continuous spectrum of diseases. Determination of p27 expression level appears as a routine applicable test allowing identification of a subset of patients who could be considered for different therapeutic approaches.
Collapse
Affiliation(s)
- R Letestu
- Hematology, Hôpital Necker-Enfants Malades, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tapia JC, Bolanos-Garcia VM, Sayed M, Allende CC, Allende JE. Cell cycle regulatory protein p27KIP1 is a substrate and interacts with the protein kinase CK2. J Cell Biochem 2004; 91:865-79. [PMID: 15034923 DOI: 10.1002/jcb.20027] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The protein kinase CK2 is constituted by two catalytic (alpha and/or alpha') and two regulatory (beta) subunits. CK2 phosphorylates more than 300 proteins with important functions in the cell cycle. This study has looked at the relation between CK2 and p27(KIP1), which is a regulator of the cell cycle and a known inhibitor of cyclin-dependent kinases (Cdk). We demonstrated that in vitro recombinant Xenopus laevis CK2 can phosphorylate recombinant human p27(KIP1), but this phosphorylation occurs only in the presence of the regulatory beta subunit. The principal site of phosphorylation is serine-83. Analysis using pull down and surface plasmon resonance (SPR) techniques showed that p27(KIP1) interacts with the beta subunit through two domains present in the amino and carboxyl ends, while CD spectra showed that p27(KIP1) phosphorylation by CK2 affects its secondary structure. Altogether, these results suggest that p27(KIP1) phosphorylation by CK2 probably involves a docking event mediated by the CK2beta subunit. The phosphorylation of p27(KIP1) by CK2 may affect its biological activity.
Collapse
Affiliation(s)
- Julio C Tapia
- Laboratorio de Biología Molecular de la Transducción de Señales Celulares, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | | | | | | | | |
Collapse
|
19
|
Coulonval K, Bockstaele L, Paternot S, Roger PP. Phosphorylations of cyclin-dependent kinase 2 revisited using two-dimensional gel electrophoresis. J Biol Chem 2003; 278:52052-60. [PMID: 14551212 DOI: 10.1074/jbc.m307012200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To control the G1/S transition and the progression through the S phase, the activation of the cyclin-dependent kinase (CDK) 2 involves the binding of cyclin E then cyclin A, the activating Thr-160 phosphorylation within the T-loop by CDK-activating kinase (CAK), inhibitory phosphorylations within the ATP binding region at Tyr-15 and Thr-14, dephosphorylation of these sites by cdc25A, and release from Cip/Kip family (p27kip1 and p21cip1) CDK inhibitors. To re-assess the precise relationship between the different phosphorylations of CDK2, and the influence of cyclins and CDK inhibitors upon them, we introduce here the use of the high resolution power of two-dimensional gel electrophoresis, combined to Tyr-15- or Thr-160-phosphospecific antibodies. The relative proportions of the potentially active forms of CDK2 (phosphorylated at Thr-160 but not Tyr-15) and inactive forms (non-phosphorylated, phosphorylated only at Tyr-15, or at both Tyr-15 and Thr-160), and their respective association with cyclin E, cyclin A, p21, and p27, were demonstrated during the mitogenic stimulation of normal human fibroblasts. Novel observations modify the current model of the sequential CDK2 activation process: (i) Tyr-15 phosphorylation induced by serum was not restricted to cyclin-bound CDK2; (ii) Thr-160 phosphorylation engaged the entirety of Tyr-15-phosphorylated CDK2 associated not only with a cyclin but also with p27 and p21, suggesting that Cip/Kip proteins do not prevent CDK2 activity by impairing its phosphorylation by CAK; (iii) the potentially active CDK2 phosphorylated at Thr-160 but not Tyr-15 represented a tiny fraction of total CDK2 and a minor fraction of cyclin A-bound CDK2, underscoring the rate-limiting role of Tyr-15 dephosphorylation by cdc25A.
Collapse
Affiliation(s)
- Katia Coulonval
- Institute of Interdisciplinary Research and Protein Chemistry Department, Faculté de Médecine, Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium.
| | | | | | | |
Collapse
|
20
|
He W, Staples D, Smith C, Fisher C. Direct activation of cyclin-dependent kinase 2 by human papillomavirus E7. J Virol 2003; 77:10566-74. [PMID: 12970441 PMCID: PMC228519 DOI: 10.1128/jvi.77.19.10566-10574.2003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2003] [Accepted: 07/10/2003] [Indexed: 12/16/2022] Open
Abstract
Addition of human papillomavirus (HPV) E7 CDK2/cyclin A or CDK2/cyclin E, purified from either insect cells or bacteria, dramatically upregulates histone H1 kinase activity. Activation is substrate specific, with a smaller effect noted for retinoblastoma protein (Rb). The CDK2 stimulatory activity is equivalent in high-risk (HPV type 16 [HPV16] and HPV31) and low-risk (HPV6b) E7. Mutational analyses of HPV16 E7 indicate that the major activity resides in amino acids 9 to 38, spanning CR1 and CR2, and does not require casein kinase II or Rb-binding domain functions. Synthetic peptides spanning HPV16 amino acid residues 9 to 38 also activate CDK2. Peptides containing this sequence that carry biotin on the carboxy terminus, as well as a photoactivated cross-linking group (benzophenone), also activate the complex and covalently associate with the CDK2/cyclin A complex in a specific manner requiring UV. Cross-linking studies that use protein monomers detect association of the E7 peptides with cyclin A but not CDK2. Together, our results indicate a novel mechanism whereby E7 promotes HPV replication by directly altering CDK2 activity and substrate specificity.
Collapse
Affiliation(s)
- Wanxia He
- Genomics-ID, Kalamazoo, Michigan 49006, USA
| | | | | | | |
Collapse
|
21
|
Wang L, Deng L, Wu K, de la Fuente C, Wang D, Kehn K, Maddukuri A, Baylor S, Santiago F, Agbottah E, Trigon S, Morange M, Mahieux R, Kashanchi F. Inhibition of HTLV-1 transcription by cyclin dependent kinase inhibitors. Mol Cell Biochem 2002; 237:137-53. [PMID: 12236581 DOI: 10.1023/a:1016555821581] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
HTLV-1 is the etiologic agent for adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), where viral replication and transformation are largely dependent upon modification of regulatory and host cell cycle proteins. The mechanism of HTLV-1 transformation appears to be distinct from that of many known chronic or acute leukemia viruses and is related to the viral activator Tax. Here we show that cyclin E, can associate tightly with the coactivator p300 and Pol II complex in HTLV-1 infected cells. The cyclin E associated complex is kinase active and phosphorylates the carboxy terminal domain of RNA Pol II. More importantly, p21/Waf1, a well-known cdk inhibitor at the G1/S border, inhibits transcription of HTLV-1 in both transfections and in in vitro transcription assays. Finally, specific cdk chemical inhibitors, functionally similar to cellular cdkIs, such as p21/Waf1 which inhibits cyclin E/cdk2 activity, also inhibit transcription of the HTLV-1 promoter. In particular, Purvalanol A, with an IC50 of 0.035 microm inhibits activated, but not basal transcription, as well as HTLV-1 infected cells. Collectively, the role of cyclin E/cdk2 in HTLV-1 infected cells and its involvement in RNA Pol II phosphorylation is discussed.
Collapse
Affiliation(s)
- Lai Wang
- George Washington University, School of Medicine, Washington, DC 20037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Moffatt J, Kennedy DO, Kojima A, Hasuma T, Yano Y, Otani S, Murakami A, Koshimizu K, Ohigashi H, Matsui-Yuasa I. Involvement of protein tyrosine phosphorylation and reduction of cellular sulfhydryl groups in cell death induced by 1' -acetoxychavicol acetate in Ehrlich ascites tumor cells. Chem Biol Interact 2002; 139:215-30. [PMID: 11823008 DOI: 10.1016/s0009-2797(01)00301-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Elucidation of the mechanisms underlying potential anticancer drugs continues and unraveling these mechanisms would not only provide a conceptual framework for drug design but also promote use of natural products for chemotherapy. To further evaluate the efficacy of the anticancer activity of 1'-acetoxychavicol acetate (ACA), this study investigates the underlying mechanisms by which ACA induces death of Ehrlich ascites tumor cells. ACA treatment induced loss of cell viability, and Western blotting analysis revealed that the compound stimulated tyrosine phosphorylation of several proteins with 27 and 70 kDa proteins being regulated in both dose- and time-dependent manner prior to loss of viability. Protein tyrosine kinase inhibitor herbimycin A moderately protected cells from ACA-induced toxicity. In addition, cellular glutathione and protein sulfydryl groups were also significantly reduced both dose- and time-dependently during evidence of cell death. Replenishing thiol levels by antioxidant, N-acetylcysteine (NAC), an excellent supplier of glutathione and precursor of glutathione, substantially recovered the viability loss, but the recovery being time-dependent, as late addition of NAC (at least 30 min after ACA addition to cultures) was, however, ineffective. Addition of NAC to ACA treated cultures also abolished tyrosine phosphorylation of the 27 kDa protein. These results, at least partly, identify cellular sulfhydryl groups and protein tyrosine phosphorylation as targets of ACA cytotoxicity in tumor cells.
Collapse
Affiliation(s)
- Jerry Moffatt
- Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Steinman RA, Lu Y, Yaroslavskiy B, Stehle C. Cell cycle-independent upregulation of p27Kip1 by p21Waf1 in K562 cells. Oncogene 2001; 20:6524-30. [PMID: 11641776 DOI: 10.1038/sj.onc.1204800] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2001] [Revised: 06/26/2001] [Accepted: 07/05/2001] [Indexed: 11/08/2022]
Abstract
Cellular differentiation frequently involves sequential peaks in the expression of cyclin-dependent kinase inhibitors (cdki's). For example, an increase in levels of the cdki p27Kip1 follows upregulation of p21Waf1 in several cell types induced to differentiate by diverse stimuli. In this study, we have investigated whether p21Waf1 expression itself, rather than the differentiating agent, could be increasing p27Kip1 protein levels. We used an inducible p21Waf1 expression vector in a K562 leukemic cell model which we had previously shown to initiate differentiation following p21Waf1 upregulation. The current study reports that p21Waf1 upregulated p27Kip1 protein without altering p27Kip1 mRNA levels. This effect did not depend on G1-phase arrest-the increase in p27Kip1 occurred at all phases of the cell cycle. p21Waf1-expressing extracts inhibited phosphorylation of p27Kip1 on threonine-187, leading to decreased ubiquitination and decreased proteasomal destruction of p27Kip1. In K562 cells, upregulation of p27Kip1 by p21Waf1 during differentiation facilitated an ordered transition between these two cdki's, each of which may distinctly influence the differentiation process.
Collapse
Affiliation(s)
- R A Steinman
- Department of Medicine, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|
24
|
Olvera M, Harris S, Amezcua CA, McCourty A, Rezk S, Koo C, Felix JC, Brynes RK. Immunohistochemical expression of cell cycle proteins E2F-1, Cdk-2, Cyclin E, p27(kip1), and Ki-67 in normal placenta and gestational trophoblastic disease. Mod Pathol 2001; 14:1036-42. [PMID: 11598175 DOI: 10.1038/modpathol.3880432] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The role of cell cycle protein expression in gestational trophoblastic disease is poorly understood. In this study we investigated the immunostaining patterns of G(1) restriction point and G(1)-S regulatory proteins E2F-1, Cdk2, cyclin E, p27(kip1), and the proliferation marker Ki-67 on routinely processed sections of 29 hydatidiform moles (10 partial moles and 19 complete moles, including 9 persistent moles), 7 choriocarcinomas, and 7 normal placentas. Ki-67 trophoblast staining decreased with increasing gestational age of the placenta, and showed maximal expression in gestational trophoblastic disease. Cyclin-dependent kinase activity, as reflected by Cdk2 expression patterns, also decreased with placental maturation. E2F-1 was uniquely expressed by trophoblasts of moles and choriocarcinoma. Cyclin E was maximally expressed by complete moles and choriocarcinomas, and showed an inverse relationship with the cyclin-dependent kinase inhibitor p27(kip1). Abnormal trophoblastic proliferations may be mediated through interactions of Cdk-2, E2F-1, cyclin E, and p27(kip1). Overexpression of cyclin E was associated with more aggressive forms of gestational trophoblastic disease. However, we did not find distinguishing features between complete moles that spontaneously resolved after evacuation and persistent moles that required chemotherapy. The different expression patterns of cyclin E and E2F-1 in partial and complete moles may be useful in distinguishing these two entities. Furthermore, loss of p27(kip1) in malignant trophoblast may represent a necessary step in the development of choriocarcinoma.
Collapse
Affiliation(s)
- M Olvera
- Department of Pathology, Los Angeles County and University of Southern California Healthcare Network, Los Angeles, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Jeffery DA, Springer M, King DS, O'Shea EK. Multi-site phosphorylation of Pho4 by the cyclin-CDK Pho80-Pho85 is semi-processive with site preference. J Mol Biol 2001; 306:997-1010. [PMID: 11237614 DOI: 10.1006/jmbi.2000.4417] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As part of a nutrient-responsive signaling pathway, the budding yeast cyclin-CDK complex Pho80-Pho85 phosphorylates the transcription factor Pho4 on five sites and inactivates it. Here, we describe the kinetic reaction between Pho80-Pho85 and Pho4. Through experimentation and computer modeling we have determined that Pho80-Pho85 phosphorylates Pho4 in a semi-processive fashion that results from a balance between kcat and k(off). In addition, we show that Pho80-Pho85 phosphorylates certain sites preferentially. Phosphorylation of the site with the highest preference inhibits the transcriptional activity of Pho4 when it is in the nucleus, while phosphorylation of the lowest-preference sites is required for export of Pho4 from the nucleus. This method of phosphorylation may allow Pho80-Pho85 to quickly inactivate Pho4 in the nucleus and efficiently phosphorylate Pho4 to completion.
Collapse
Affiliation(s)
- D A Jeffery
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
26
|
Jiang Y, Zhao RC, Verfaillie CM. Abnormal integrin-mediated regulation of chronic myelogenous leukemia CD34+ cell proliferation: BCR/ABL up-regulates the cyclin-dependent kinase inhibitor, p27Kip, which is relocated to the cell cytoplasm and incapable of regulating cdk2 activity. Proc Natl Acad Sci U S A 2000; 97:10538-43. [PMID: 10973491 PMCID: PMC27060 DOI: 10.1073/pnas.190104497] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
beta(1)-integrin engagement on normal (NL) CD34(+) cells increases levels of the cyclin-dependent kinase inhibitor (cdki), p27(Kip), decreases cdk2 activity, and inhibits G(1)/S-phase progression. In contrast, beta(1)-integrin engagement on chronic myelogenous leukemia (CML) CD34(+) cells does not inhibit G(1)/S progression. We now show that, in CML, baseline p27(Kip) levels are significantly higher than in NL CD34(+) cells, but adhesion to fibronectin (FN) does not increase p27(Kip) levels. p27(Kip) mRNA levels are similar in CML and NL CD34(+) cells and remain unchanged after adhesion, suggesting posttranscriptional regulation. Despite the elevated p27(Kip) levels, cdk2 kinase activity is similar in CML and NL CD34(+) cells. In NL CD34(+) cells, >90% of p27(Kip) is located in the nucleus, where it binds to cdk2 after integrin engagement. In CML CD34(+) cells, however, >80% of p27(Kip) is located in the cytoplasm even in FN-adherent cells, and significantly less p27(Kip) is bound to cdk2. Thus, presence of BCR/ABL induces elevated levels of p27(Kip) and relocation of p27(Kip) to the cytoplasm, which contributes to the loss of integrin-mediated proliferation inhibition, characteristic of CML.
Collapse
MESH Headings
- Antigens, CD34/immunology
- Base Sequence
- Biological Transport
- CDC2-CDC28 Kinases
- Cell Adhesion
- Cell Cycle Proteins
- Cell Division/immunology
- Cyclin-Dependent Kinase 2
- Cyclin-Dependent Kinase Inhibitor p27
- Cyclin-Dependent Kinases/metabolism
- Cytoplasm/metabolism
- DNA Primers
- Fusion Proteins, bcr-abl/physiology
- Humans
- Integrins/physiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/physiology
- Protein Serine-Threonine Kinases/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Tumor Suppressor Proteins
- Up-Regulation
Collapse
Affiliation(s)
- Y Jiang
- Stem Cell Biology Institute and Department of Medicine and Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
27
|
Clark E, Santiago F, Deng L, Chong S, de La Fuente C, Wang L, Fu P, Stein D, Denny T, Lanka V, Mozafari F, Okamoto T, Kashanchi F. Loss of G(1)/S checkpoint in human immunodeficiency virus type 1-infected cells is associated with a lack of cyclin-dependent kinase inhibitor p21/Waf1. J Virol 2000; 74:5040-52. [PMID: 10799578 PMCID: PMC110856 DOI: 10.1128/jvi.74.11.5040-5052.2000] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/1999] [Accepted: 02/28/2000] [Indexed: 12/21/2022] Open
Abstract
Productive high-titer infection by human immunodeficiency virus type 1 (HIV-1) requires the activation of target cells. Infection of quiescent peripheral CD4 lymphocytes by HIV-1 results in incomplete, labile reverse transcripts and lack of viral progeny formation. An interplay between Tat and p53 has previously been reported, where Tat inhibited the transcription of the p53 gene, which may aid in the development of AIDS-related malignancies, and p53 expression inhibited HIV-1 long terminal repeat transcription. Here, by using a well-defined and -characterized stress signal, gamma irradiation, we find that upon gamma irradiation, HIV-1-infected cells lose their G(1)/S checkpoints, enter the S phase inappropriately, and eventually apoptose. The loss of the G(1)/S checkpoint is associated with a loss of p21/Waf1 protein and increased activity of a major G(1)/S kinase, namely, cyclin E/cdk2. The p21/Waf1 protein, a known cyclin-dependent kinase inhibitor, interacts with the cdk2/cyclin E complex and inhibits progression of cells into S phase. We find that loss of the G(1)/S checkpoint in HIV-1-infected cells may in part be due to Tat's ability to bind p53 (a known activator of the p21/Waf1 promoter) and sequester its transactivation activity, as seen in both in vivo and in vitro transcription assays. The loss of p21/Waf1 in HIV-1-infected cells was specific to p21/Waf1 and did not occur with other KIP family members, such as p27 (KIP1) and p57 (KIP2). Finally, the advantage of a loss of the G(1)/S checkpoint for HIV-1 per se may be that it pushes the host cell into the S phase, which may then allow subsequent virus-associated processes, such as RNA splicing, transport, translation, and packaging of virion-specific genes, to occur.
Collapse
Affiliation(s)
- E Clark
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rank KB, Evans DB, Sharma SK. The N-terminal domains of cyclin-dependent kinase inhibitory proteins block the phosphorylation of cdk2/Cyclin E by the CDK-activating kinase. Biochem Biophys Res Commun 2000; 271:469-73. [PMID: 10799321 DOI: 10.1006/bbrc.2000.2648] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been suggested that binding of p27 and p21 kinase inhibitory proteins (KIPs) to cyclin-dependent kinases (cdks) render them inaccessible to cdk-activating kinase (CAK), presumably by steric hindrance by the C-terminal residues. However, this common mechanism of inhibition is inconsistent with the known structural divergence in the p27 and p21 C-terminal domains. Therefore, we studied the direct binding of N-terminal minimal domain of p27 (amino acids 28-81) to cdk2/cyclin E. An unlabeled p27 minimal domain, mutated in the N-terminal LFG motif, was unable to compete with a labeled minimal domain for binding to cdk2/cyclin E. The p27 and its minimal domain inhibited CAK-mediated phosphorylation of cdk2/cyclin E. This inhibitory effect was significantly diminished with p27 minimal domain mutated in the LFG motif. A synthetic peptide, ACRRLFGPVDSE, from the N-terminal residues 17-28 of p21, was also a potent inhibitor of CAK-mediated cdk2/cyclin E phosphorylation. Taken together, these results show that anchoring of p27 or p21 KIPs to cyclin E via the N-terminal LFG-containing motif can block CAK access to its cdk2/cyclin E substrate.
Collapse
Affiliation(s)
- K B Rank
- Protein Science, Pharmacia and Upjohn, Michigan, 49007, Kalamazoo
| | | | | |
Collapse
|
29
|
Teixeira LT, Kiyokawa H, Peng XD, Christov KT, Frohman LA, Kineman RD. p27Kip1-deficient mice exhibit accelerated growth hormone-releasing hormone (GHRH)-induced somatotrope proliferation and adenoma formation. Oncogene 2000; 19:1875-84. [PMID: 10773877 DOI: 10.1038/sj.onc.1203490] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
p27Kip1 (p27) controls cell cycle progression by binding to and inhibiting the activity of cyclin dependent kinases. Disruption of the p27 gene in mice (p27-/-) results in increased body growth with a disproportionate enlargement of the spleen, thymus, testis, ovary and pituitary. The increase in pituitary size is due to selective hyperplasia of the intermediate lobe (IL) while the anterior lobe (AL) is not overtly affected. p27 heterozygous mice (p27+/-), as well as p27-/- mice, are hypersensitive to radiation- and chemical-induced tumors compared to wildtype (p27+/+) littermates. Therefore, unlike classical tumor suppressors, only a reduction in p27 levels is necessary to predispose tissues to secondary tumor promoters. Consistent with these studies is the fact that the p27 gene sequence and mRNA levels appear normal in human pituitary adenomas while p27 protein levels are decreased. Therefore, a reduction in p27 levels could be sufficient to sensitize pituitary cells to tumorigenic factors. To test this hypothesis, metallothionein promoter-driven, human growth hormone-releasing hormone (MT-hGHRH) transgenic mice, that exhibit somatotrope hyperplasia before 9 months of age and subsequent adenoma formation with 30 - 40% penetrance, were crossbred with p27+/- mice for two successive generations to produce p27+/+, p27+/- and p27-/- mice that expressed the hGHRH transgene. At 10 - 12 weeks of age, p27-/- and p27+/+, hGHRH mice were larger than their p27+/+ littermates and displayed characteristic hyperplasia of the IL and AL, respectively. Expression of the hGHRH transgene in both p27+/- and p27-/- mice selectively expanded the population of somatotropes within the AL, where pituitaries of p27+/-, hGHRH and p27-/-, hGHRH mice were two- and fivefold larger than p27+/+, hGHRH pituitaries, respectively. There was also a synergistic effect of hGHRH transgene expression and p27-deficiency on liver, spleen and ovarian growth. At 6 - 8 months of age, 83% of p27+/-, hGHRH mice displayed macroscopic AL adenomas (>100 mg), while all pituitaries from p27+/+, hGHRH mice remained hyperplastic (<20 mg). In contrast to the dramatic effects of p27-deficiency on hGHRH-induced organ growth, elimination of p53, by crossbreeding MT-hGHRH mice to p53-deficient mice, did not augment the hyperplastic/tumorigenic effects of hGHRH transgene expression. Taken together these results demonstrate that a reduction in p27 expression is sufficient to sensitize somatotropes to the proliferative actions of excess GHRH, resulting in the earlier appearance and increased penetrance of hGHRH-induced pituitary tumors.
Collapse
Affiliation(s)
- L T Teixeira
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | |
Collapse
|