1
|
Li F, Zhao P, Wang S, Luo W, Xia Y, Li D, He L, Zhao J. Babesia duncani Pyruvate Kinase Inhibitor Screening and Identification of Key Active Amino Acid Residues. Microorganisms 2024; 12:1141. [PMID: 38930523 PMCID: PMC11205445 DOI: 10.3390/microorganisms12061141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Babesia duncani (B. duncani), a protozoan parasite prevalent in North America, is a significant threat for human health. Given the regulatory role of pyruvate kinase I (PyK I) in glycolytic metabolism flux and ATP generation, PyK I has been considered the target for drug intervention for a long time. In this study, B. duncani PyK I (BdPyK I) was successfully cloned, expressed, and purified. Polyclonal antibodies were confirmed to recognize the native BdPyK I protein (56 kDa) using Western blotting. AlphaFold software predicted the three-dimensional structure of BdPyK I, and molecular docking with small molecules was conducted to identify potential binding sites of inhibitor on BdPyK I. Moreover, inhibitory effects of six inhibitors (tannic acid, apigenin, shikonin, PKM2 inhibitor, rosiglitazone, and pioglitazone) on BdPyK I were examined under the optimal enzymatic conditions of 3 mM PEP and 3 mM ADP, and significant activity reduction was found. Enzyme kinetics and growth inhibition assays further confirmed the reliability of these inhibitors, with PKM2 inhibitor, tannic acid, and apigenin exhibiting the highest selectivity index as specific inhibitors for B. duncani. Subsequently, key amino acid residues were mutated in both BdPyK I and Homo sapiens pyruvate kinase I (HPyK I), and two differential amino acid residues (isoleucine and phenylalanine) were identified between HPyK I and BdPyK I through PyK activity detection experiments. These findings lay foundation for understanding the role of PyK I in the growth and development of B. duncani, providing insights for babesiosis prevention and drug development.
Collapse
Affiliation(s)
- Fangjie Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (F.L.); (P.Z.); (S.W.); (W.L.); (Y.X.); (D.L.); (L.H.)
| | - Pengfei Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (F.L.); (P.Z.); (S.W.); (W.L.); (Y.X.); (D.L.); (L.H.)
| | - Sen Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (F.L.); (P.Z.); (S.W.); (W.L.); (Y.X.); (D.L.); (L.H.)
| | - Wanxin Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (F.L.); (P.Z.); (S.W.); (W.L.); (Y.X.); (D.L.); (L.H.)
| | - Yingjun Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (F.L.); (P.Z.); (S.W.); (W.L.); (Y.X.); (D.L.); (L.H.)
| | - Dongfang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (F.L.); (P.Z.); (S.W.); (W.L.); (Y.X.); (D.L.); (L.H.)
| | - Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (F.L.); (P.Z.); (S.W.); (W.L.); (Y.X.); (D.L.); (L.H.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (F.L.); (P.Z.); (S.W.); (W.L.); (Y.X.); (D.L.); (L.H.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
| |
Collapse
|
2
|
Wang Y, Shu H, Qu Y, Jin X, Liu J, Peng W, Wang L, Hao M, Xia M, Zhao Z, Dong K, Di Y, Tian M, Hao F, Xia C, Zhang W, Ba X, Feng Y, Wei M. PKM2 functions as a histidine kinase to phosphorylate PGAM1 and increase glycolysis shunts in cancer. EMBO J 2024; 43:2368-2396. [PMID: 38750259 PMCID: PMC11183095 DOI: 10.1038/s44318-024-00110-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 06/19/2024] Open
Abstract
Phosphoglycerate mutase 1 (PGAM1) is a key node enzyme that diverts the metabolic reactions from glycolysis into its shunts to support macromolecule biosynthesis for rapid and sustainable cell proliferation. It is prevalent that PGAM1 activity is upregulated in various tumors; however, the underlying mechanism remains unclear. Here, we unveil that pyruvate kinase M2 (PKM2) moonlights as a histidine kinase in a phosphoenolpyruvate (PEP)-dependent manner to catalyze PGAM1 H11 phosphorylation, that is essential for PGAM1 activity. Moreover, monomeric and dimeric but not tetrameric PKM2 are efficient to phosphorylate and activate PGAM1. In response to epidermal growth factor signaling, Src-catalyzed PGAM1 Y119 phosphorylation is a prerequisite for PKM2 binding and the subsequent PGAM1 H11 phosphorylation, which constitutes a discrepancy between tumor and normal cells. A PGAM1-derived pY119-containing cell-permeable peptide or Y119 mutation disrupts the interaction of PGAM1 with PKM2 and PGAM1 H11 phosphorylation, dampening the glycolysis shunts and tumor growth. Together, these results identify a function of PKM2 as a histidine kinase, and illustrate the importance of enzyme crosstalk as a regulatory mode during metabolic reprogramming and tumorigenesis.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Hengyao Shu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Yanzhao Qu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Xin Jin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Jia Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Wanting Peng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Lihua Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Miao Hao
- Science Research Center, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, 130033, Changchun, Jilin, China
| | - Mingjie Xia
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Zhexuan Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Kejian Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Yao Di
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Miaomiao Tian
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Fengqi Hao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Chaoyi Xia
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Wenxia Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China.
| | - Yunpeng Feng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China.
| | - Min Wei
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China.
| |
Collapse
|
3
|
Silverman SN, Wijker RS, Sessions AL. Biosynthetic and catabolic pathways control amino acid δ 2H values in aerobic heterotrophs. Front Microbiol 2024; 15:1338486. [PMID: 38646628 PMCID: PMC11026604 DOI: 10.3389/fmicb.2024.1338486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/20/2024] [Indexed: 04/23/2024] Open
Abstract
The hydrogen isotope ratios (δ2HAA values) of amino acids in all organisms are substantially fractionated relative to growth water. In addition, they exhibit large variations within microbial biomass, animals, and human tissues, hinting at rich biochemical information encoded in such signals. In lipids, such δ2H variations are thought to primarily reflect NADPH metabolism. Analogous biochemical controls for amino acids remain largely unknown, but must be elucidated to inform the interpretation of these measurements. Here, we measured the δ2H values of amino acids from five aerobic, heterotrophic microbes grown on different carbon substrates, as well as five Escherichia coli mutant organisms with perturbed NADPH metabolisms. We observed similar δ2HAA patterns across all organisms and growth conditions, which-consistent with previous hypotheses-suggests a first-order control by biosynthetic pathways. Moreover, δ2HAA values varied systematically with the catabolic pathways activated for substrate degradation, with variations explainable by the isotopic compositions of important cellular metabolites, including pyruvate and NADPH, during growth on each substrate. As such, amino acid δ2H values may be useful for interrogating organismal physiology and metabolism in the environment, provided we can further elucidate the mechanisms underpinning these signals.
Collapse
Affiliation(s)
- Shaelyn N. Silverman
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| | | | | |
Collapse
|
4
|
Taguchi A, Nakashima R, Nishino K. Functional and structural characterization of Streptococcus pneumoniae pyruvate kinase involved in fosfomycin resistance. J Biol Chem 2023:104892. [PMID: 37286036 PMCID: PMC10338316 DOI: 10.1016/j.jbc.2023.104892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023] Open
Abstract
Glycolysis is the primary metabolic pathway in the strictly fermentative Streptococcus pneumoniae, which is a major human pathogen associated with antibiotic resistance. Pyruvate kinase (PYK) is the last enzyme in this pathway that catalyzes the production of pyruvate from phosphoenolpyruvate (PEP) and plays a crucial role in controlling carbon flux; however, while S. pneumoniae PYK (SpPYK) is indispensable for growth, surprisingly little is known about its functional properties. Here, we report that compromising mutations in SpPYK confer resistance to the antibiotic fosfomycin, which inhibits the peptidoglycan synthesis enzyme MurA, implying a direct link between PYK and cell wall biogenesis. The crystal structures of SpPYK in the apo and ligand-bound states reveal key interactions that contribute to its conformational change as well as residues responsible for the recognition of PEP and the allosteric activator fructose 1,6-bisphosphate (FBP). Strikingly, FBP binding was observed at a location distinct from previously reported PYK effector binding sites. Furthermore, we show that SpPYK could be engineered to become more responsive to glucose 6-phosphate instead of FBP by sequence and structure-guided mutagenesis of the effector binding site. Together, our work sheds light on the regulatory mechanism of SpPYK and lays the groundwork for antibiotic development that targets this essential enzyme.
Collapse
Affiliation(s)
- Atsushi Taguchi
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Ryosuke Nakashima
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Kunihiko Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
5
|
Swint-Kruse L, Dougherty LL, Page B, Wu T, O’Neil PT, Prasannan CB, Timmons C, Tang Q, Parente DJ, Sreenivasan S, Holyoak T, Fenton AW. PYK-SubstitutionOME: an integrated database containing allosteric coupling, ligand affinity and mutational, structural, pathological, bioinformatic and computational information about pyruvate kinase isozymes. Database (Oxford) 2023; 2023:baad030. [PMID: 37171062 PMCID: PMC10176505 DOI: 10.1093/database/baad030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023]
Abstract
Interpreting changes in patient genomes, understanding how viruses evolve and engineering novel protein function all depend on accurately predicting the functional outcomes that arise from amino acid substitutions. To that end, the development of first-generation prediction algorithms was guided by historic experimental datasets. However, these datasets were heavily biased toward substitutions at positions that have not changed much throughout evolution (i.e. conserved). Although newer datasets include substitutions at positions that span a range of evolutionary conservation scores, these data are largely derived from assays that agglomerate multiple aspects of function. To facilitate predictions from the foundational chemical properties of proteins, large substitution databases with biochemical characterizations of function are needed. We report here a database derived from mutational, biochemical, bioinformatic, structural, pathological and computational studies of a highly studied protein family-pyruvate kinase (PYK). A centerpiece of this database is the biochemical characterization-including quantitative evaluation of allosteric regulation-of the changes that accompany substitutions at positions that sample the full conservation range observed in the PYK family. We have used these data to facilitate critical advances in the foundational studies of allosteric regulation and protein evolution and as rigorous benchmarks for testing protein predictions. We trust that the collected dataset will be useful for the broader scientific community in the further development of prediction algorithms. Database URL https://github.com/djparente/PYK-DB.
Collapse
Affiliation(s)
- Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Larissa L Dougherty
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Braelyn Page
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Tiffany Wu
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Pierce T O’Neil
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Charulata B Prasannan
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Cody Timmons
- Chemistry Department, Southwestern Oklahoma State University, 100 Campus Dr., Weatherford, OK 73096, USA
| | - Qingling Tang
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Daniel J Parente
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
- Department of Family Medicine and Community Health, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Shwetha Sreenivasan
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Todd Holyoak
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | - Aron W Fenton
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| |
Collapse
|
6
|
Horemans S, Pitoulias M, Holland A, Pateau E, Lechaplais C, Ekaterina D, Perret A, Soultanas P, Janniere L. Pyruvate kinase, a metabolic sensor powering glycolysis, drives the metabolic control of DNA replication. BMC Biol 2022; 20:87. [PMID: 35418203 PMCID: PMC9009071 DOI: 10.1186/s12915-022-01278-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/11/2022] [Indexed: 12/04/2022] Open
Abstract
Background In all living organisms, DNA replication is exquisitely regulated in a wide range of growth conditions to achieve timely and accurate genome duplication prior to cell division. Failures in this regulation cause DNA damage with potentially disastrous consequences for cell viability and human health, including cancer. To cope with these threats, cells tightly control replication initiation using well-known mechanisms. They also couple DNA synthesis to nutrient richness and growth rate through a poorly understood process thought to involve central carbon metabolism. One such process may involve the cross-species conserved pyruvate kinase (PykA) which catalyzes the last reaction of glycolysis. Here we have investigated the role of PykA in regulating DNA replication in the model system Bacillus subtilis. Results On analysing mutants of the catalytic (Cat) and C-terminal (PEPut) domains of B. subtilis PykA we found replication phenotypes in conditions where PykA is dispensable for growth. These phenotypes are independent from the effect of mutations on PykA catalytic activity and are not associated with significant changes in the metabolome. PEPut operates as a nutrient-dependent inhibitor of initiation while Cat acts as a stimulator of replication fork speed. Disruption of either PEPut or Cat replication function dramatically impacted the cell cycle and replication timing even in cells fully proficient in known replication control functions. In vitro, PykA modulates activities of enzymes essential for replication initiation and elongation via functional interactions. Additional experiments showed that PEPut regulates PykA activity and that Cat and PEPut determinants important for PykA catalytic activity regulation are also important for PykA-driven replication functions. Conclusions We infer from our findings that PykA typifies a new family of cross-species replication control regulators that drive the metabolic control of replication through a mechanism involving regulatory determinants of PykA catalytic activity. As disruption of PykA replication functions causes dramatic replication defects, we suggest that dysfunctions in this new family of universal replication regulators may pave the path to genetic instability and carcinogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01278-3.
Collapse
Affiliation(s)
- Steff Horemans
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Matthaios Pitoulias
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Alexandria Holland
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Emilie Pateau
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Christophe Lechaplais
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Dariy Ekaterina
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Alain Perret
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Laurent Janniere
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France.
| |
Collapse
|
7
|
Nandi S, Razzaghi M, Srivastava D, Dey M. Structural basis for allosteric regulation of pyruvate kinase M2 by phosphorylation and acetylation. J Biol Chem 2021; 295:17425-17440. [PMID: 33453989 DOI: 10.1074/jbc.ra120.015800] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/18/2020] [Indexed: 01/01/2023] Open
Abstract
Pyruvate kinase muscle isoform 2 (PKM2) is a key glycolytic enzyme and transcriptional coactivator and is critical for tumor metabolism. In cancer cells, native tetrameric PKM2 is phosphorylated or acetylated, which initiates a switch to a dimeric/monomeric form that translocates into the nucleus, causing oncogene transcription. However, it is not known how these post-translational modifications (PTMs) disrupt the oligomeric state of PKM2. We explored this question via crystallographic and biophysical analyses of PKM2 mutants containing residues that mimic phosphorylation and acetylation. We find that the PTMs elicit major structural reorganization of the fructose 1,6-bisphosphate (FBP), an allosteric activator, binding site, impacting the interaction with FBP and causing a disruption in oligomerization. To gain insight into how these modifications might cause unique outcomes in cancer cells, we examined the impact of increasing the intracellular pH (pHi) from ∼7.1 (in normal cells) to ∼7.5 (in cancer cells). Biochemical studies of WT PKM2 (wtPKM2) and the two mimetic variants demonstrated that the activity decreases as the pH is increased from 7.0 to 8.0, and wtPKM2 is optimally active and amenable to FBP-mediated allosteric regulation at pHi 7.5. However, the PTM mimetics exist as a mixture of tetramer and dimer, indicating that physiologically dimeric fraction is important and might be necessary for the modified PKM2 to translocate into the nucleus. Thus, our findings provide insight into how PTMs and pH regulate PKM2 and offer a broader understanding of its intricate allosteric regulation mechanism by phosphorylation or acetylation.
Collapse
Affiliation(s)
- Suparno Nandi
- Department of Chemistry, University of Iowa, Iowa City, Iowa, USA
| | | | | | - Mishtu Dey
- Department of Chemistry, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
8
|
Liu VM, Howell AJ, Hosios AM, Li Z, Israelsen WJ, Heiden MGV. Cancer-associated mutations in human pyruvate kinase M2 impair enzyme activity. FEBS Lett 2020; 594:646-664. [PMID: 31642061 PMCID: PMC7042059 DOI: 10.1002/1873-3468.13648] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/28/2019] [Accepted: 10/15/2019] [Indexed: 12/18/2022]
Abstract
Mammalian pyruvate kinase catalyzes the final step of glycolysis, and its M2 isoform (PKM2) is widely expressed in proliferative tissues. Mutations in PKM2 are found in some human cancers; however, the effects of these mutations on enzyme activity and regulation are unknown. Here, we characterized five cancer-associated PKM2 mutations, occurring at various locations on the enzyme, with respect to substrate kinetics and activation by the allosteric activator fructose-1,6-bisphosphate (FBP). The mutants exhibit reduced maximal velocity, reduced substrate affinity, and/or altered activation by FBP. The kinetic parameters of five additional PKM2 mutants that have been used to study enzyme function or regulation also demonstrate the deleterious effects of mutations on PKM2 function. Our findings indicate that PKM2 is sensitive to many amino acid changes and support the hypothesis that decreased PKM2 activity is selected for in rapidly proliferating cells.
Collapse
Affiliation(s)
- Vivian M. Liu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
- Harvard-MIT Health Sciences and Technology Division, Harvard Medical School, Boston, MA 02115, United States
| | - Andrea J. Howell
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Aaron M. Hosios
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Zhaoqi Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - William J. Israelsen
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Matthew G. Vander Heiden
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
- Dana-Farber Cancer Institute, Boston, MA 02115, United States
| |
Collapse
|
9
|
Phenotypic selection with an intrabody library reveals an anti-apoptotic function of PKM2 requiring Mitofusin-1. PLoS Biol 2019; 17:e2004413. [PMID: 31181072 PMCID: PMC6586363 DOI: 10.1371/journal.pbio.2004413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 06/20/2019] [Accepted: 05/21/2019] [Indexed: 12/22/2022] Open
Abstract
Bcl-2 family proteins control a decisive apoptotic event: mitochondrial outer membrane permeabilization (MOMP). To discover MOMP-regulating proteins, we expressed a library of intracellular single-chain variable fragments (scFvs) (“intrabodies”) and selected for those rescuing cells from apoptosis induced by BimS (the short isoform of Bim). One anti-apoptotic intrabody, intrabody 5 (IB5), recognized pyruvate kinase M2 (PKM2), which is expressed in cancer cells. PKM2 deletion ablated this clonogenic rescue; thus, IB5 activated a latent cytoprotective function of PKM2. This resulted not from pyruvate kinase activity per se but rather from the formation of an active tetrameric conformation of PKM2. A stably tetrameric PKM2 mutant, K422R, promoted cell survival even in the absence of IB5, and IB5 further increased survival. Mitochondria isolated from IB5-expressing cells were relatively resistant to MOMP in vitro. In cells, IB5 expression up-regulated Mitofusin-1 (Mfn1) and increased mitochondrial length. Importantly, Mfn1 deficiency abrogated IB5’s cytoprotective effect. PKM2’s anti-apoptotic function could help explain its preferential expression in human cancer. Proteins belonging to the Bcl-2 family regulate a common form of cell death known as apoptosis. Typically, these proteins function in apoptosis by controlling the formation of large pores in the mitochondrial outer membrane (MOM). While many proteins that regulate apoptosis have been identified over the years, some may still be unknown. Here, we used an unbiased approach in which we first expressed in cultured tumor cells a library of intracellular single-chain antibodies termed “intrabodies.” We then selected for intrabodies that allowed cells to evade apoptosis. We identified pyruvate kinase isoform M2 (PKM2), a major glycolytic enzyme that has been linked to cancer development, as the specific target of one such anti-apoptotic intrabody. We showed that the PKM2-specific intrabody promoted cell survival not by neutralizing its target but rather by activating an anti-apoptotic function of PKM2. While this cell survival function of PKM2 was not related to changes in the levels of Bcl-2 family proteins or to effects on the enzymatic activity of PKM2, we found that cell survival requires the increased expression of a MOM protein, Mitofusin-1 (Mfn1), known to regulate mitochondrial fusion. We conclude that this cell survival function of PKM2 could contribute to a role in cancer progression for this protein.
Collapse
|
10
|
Zhang B, Liu JY. Serine phosphorylation of the cotton cytosolic pyruvate kinase GhPK6 decreases its stability and activity. FEBS Open Bio 2017; 7:358-366. [PMID: 28286731 PMCID: PMC5337898 DOI: 10.1002/2211-5463.12179] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/06/2016] [Accepted: 12/08/2016] [Indexed: 12/24/2022] Open
Abstract
Pyruvate kinase (PK, EC 2.7.1.40) is an important glycolytic enzyme involved in multiple physiological and developmental processes. In this study, we demonstrated that cotton cytosolic pyruvate kinase 6 (GhPK6) was phosphorylated at serines 215 and 402. Phosphorylation of GhPK6 at serine 215 inhibited its enzyme activity, whereas phosphorylation at both serine sites could promote its degradation. The phosphorylation-mediated ubiquitination of GhPK6 was gradually attenuated during the cotton fiber elongation process, which sufficiently explained the increase in the protein/mRNA ratios. These results collectively provided experimental evidence that cotton fiber elongation might be regulated at the post-translational level.
Collapse
Affiliation(s)
- Bing Zhang
- Laboratory of Plant Molecular Biology Center for Plant Biology School of Life Sciences Tsinghua University Beijing China; Tsinghua-Peking Center for Life Science Tsinghua University Beijing China
| | - Jin-Yuan Liu
- Laboratory of Plant Molecular Biology Center for Plant Biology School of Life Sciences Tsinghua University Beijing China
| |
Collapse
|
11
|
Israelsen WJ, Vander Heiden MG. Pyruvate kinase: Function, regulation and role in cancer. Semin Cell Dev Biol 2015; 43:43-51. [PMID: 26277545 DOI: 10.1016/j.semcdb.2015.08.004] [Citation(s) in RCA: 351] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/01/2015] [Accepted: 08/09/2015] [Indexed: 12/22/2022]
Abstract
Pyruvate kinase is an enzyme that catalyzes the conversion of phosphoenolpyruvate and ADP to pyruvate and ATP in glycolysis and plays a role in regulating cell metabolism. There are four mammalian pyruvate kinase isoforms with unique tissue expression patterns and regulatory properties. The M2 isoform of pyruvate kinase (PKM2) supports anabolic metabolism and is expressed both in cancer and normal tissue. The enzymatic activity of PKM2 is allosterically regulated by both intracellular signaling pathways and metabolites; PKM2 thus integrates signaling and metabolic inputs to modulate glucose metabolism according to the needs of the cell. Recent advances have increased our understanding of metabolic regulation by pyruvate kinase, raised new questions, and suggested the possibility of non-canonical PKM2 functions to regulate gene expression and cell cycle progression via protein-protein interactions and protein kinase activity. Here we review the structure, function, and regulation of pyruvate kinase and discuss how these properties enable regulation of PKM2 for cell proliferation and tumor growth.
Collapse
Affiliation(s)
- William J Israelsen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation. Microbiol Mol Biol Rev 2014; 78:89-175. [PMID: 24600042 DOI: 10.1128/mmbr.00041-13] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The metabolism of Archaea, the third domain of life, resembles in its complexity those of Bacteria and lower Eukarya. However, this metabolic complexity in Archaea is accompanied by the absence of many "classical" pathways, particularly in central carbohydrate metabolism. Instead, Archaea are characterized by the presence of unique, modified variants of classical pathways such as the Embden-Meyerhof-Parnas (EMP) pathway and the Entner-Doudoroff (ED) pathway. The pentose phosphate pathway is only partly present (if at all), and pentose degradation also significantly differs from that known for bacterial model organisms. These modifications are accompanied by the invention of "new," unusual enzymes which cause fundamental consequences for the underlying regulatory principles, and classical allosteric regulation sites well established in Bacteria and Eukarya are lost. The aim of this review is to present the current understanding of central carbohydrate metabolic pathways and their regulation in Archaea. In order to give an overview of their complexity, pathway modifications are discussed with respect to unusual archaeal biocatalysts, their structural and mechanistic characteristics, and their regulatory properties in comparison to their classic counterparts from Bacteria and Eukarya. Furthermore, an overview focusing on hexose metabolic, i.e., glycolytic as well as gluconeogenic, pathways identified in archaeal model organisms is given. Their energy gain is discussed, and new insights into different levels of regulation that have been observed so far, including the transcript and protein levels (e.g., gene regulation, known transcription regulators, and posttranslational modification via reversible protein phosphorylation), are presented.
Collapse
|
13
|
Shimizu T, Uehara T, Nomura Y. Possible involvement of pyruvate kinase in acquisition of tolerance to hypoxic stress in glial cells. J Neurochem 2004; 91:167-75. [PMID: 15379897 DOI: 10.1111/j.1471-4159.2004.02702.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neurons are highly vulnerable to ischemic/hypoxic stress, while glial cells show tolerance to such stress. However, the mechanisms for tolerance acquisition in glial cells have yet to be established. We attempted to isolate and identify a stress protein that is upregulated in response to hypoxia in human astrocytoma CCF-STTG1 cells. In particular, pyruvate kinase (PK) was upregulated by hypoxia in CCF-STTG1 cells. Hypoxia-inducible factor 1 (HIF-1), the primary transcription factor that is responsible for multiple gene activation under hypoxia, plays a critical role in PK expression during hypoxic challenge. To determine whether newly synthesized PK is involved in tolerance to hypoxic stress, we established the PK-overexpressing neuronal cells. Overexpression of the wild-type, but not the kinase-negative mutant, resulted in attenuation of the loss of cell viability and the typical apoptotic features by hypoxia or oxidative stress in SK-N-MC cells. These findings suggest that upregulation of PK may result in acquisition of tolerance against hypoxic stress, and that the antioxidant effect may be involved in the protective effect of PK.
Collapse
MESH Headings
- Antimutagenic Agents/pharmacology
- Apoptosis/physiology
- Astrocytoma
- Blotting, Western/methods
- Cell Hypoxia/physiology
- Cell Line, Tumor
- Cell Survival/physiology
- Cobalt/pharmacology
- Deferoxamine/pharmacology
- Dose-Response Relationship, Drug
- Drug Interactions
- Electrophoresis, Gel, Two-Dimensional/methods
- Electrophoretic Mobility Shift Assay/methods
- Gene Expression Regulation, Enzymologic/drug effects
- Humans
- Hydrogen Peroxide/pharmacology
- Iron Chelating Agents/pharmacology
- Mutagenesis/drug effects
- Mutagenesis/physiology
- Neuroglia/drug effects
- Neuroglia/metabolism
- Oxidative Stress
- Pyruvate Kinase/physiology
- RNA, Messenger/biosynthesis
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Sequence Analysis, Protein/methods
- Stress, Physiological/metabolism
- Stress, Physiological/pathology
- Time Factors
- Transcriptional Activation
- Transfection/methods
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Takahiro Shimizu
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
14
|
Abstract
The nature of the proton donor to the C-3 of the enolate of pyruvate, the intermediate in the reaction catalyzed by yeast pyruvate kinase, was investigated by site-directed mutagenesis and physical and kinetic analyses. Thr-298 is correctly located to function as the proton donor. T298S and T298A were constructed and purified. Both mutants are catalytically active with a decrease in k(cat) and k(cat)/K(m)(,PEP). Mn(2+)-activated T298S and T298A do not exhibit homotropic kinetic cooperativity with phosphoenolpyruvate (PEP) in the absence of fructose 1,6-bisphosphate, although PEP binding to enzyme-Mn(2+) is cooperative. The pH dependence of k(cat) for T298A indicates the loss of pK(a)(,2) = 6.4-6.9. Thr-298 affects the ionization (pK(a) approximately 6.5) responsible for modulation of k(cat). Fluorescence studies show altered dissociation constants of ligands to each enzyme complex upon Thr-298 mutations. The rates of the phosphoryl transfer and proton transfer steps in the pyruvate kinase-catalyzed reaction are altered; pyruvate enolization is affected to a greater extent. Proton inventory studies demonstrate solvent isotope effects on k(cat) and k(cat)/K(m)(,PEP). Fractionation factors are metal-dependent and significantly <1. The data suggest that a water molecule in a water channel is the direct proton donor to enolpyruvate and that Thr-298 affects a late step in catalysis.
Collapse
Affiliation(s)
- Delia Susan-Resiga
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | |
Collapse
|
15
|
Stefanova ME, Davies C, Nicholas RA, Gutheil WG. pH, inhibitor, and substrate specificity studies on Escherichia coli penicillin-binding protein 5. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1597:292-300. [PMID: 12044907 DOI: 10.1016/s0167-4838(02)00311-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The recent structural determination of Escherichia coli penicillin-binding protein 5 (PBP 5) provides the opportunity for detailed structure-function studies of this enzyme. PBP 5 was investigated in terms of its stability, linear reaction kinetics, acyl-donor substrate specificity, inhibition by a number of active site-directed reagents, and pH profile. PBP 5 demonstrated linear reaction kinetics for up to several hours. Dilution of PBP 5 generally resulted in substantial loss of activity, unless BSA or a BSA derivative was added to the diluting buffer. PBP 5 did not demonstrate a significant preference against a simple set of five alpha- and epsilon-substituted L-Lys-D-Ala-D-Ala derivatives, suggesting that PBP 5 lacks specificity for the cross-linked state of cell wall substrates. Among a number of active site-directed reagents, only some thiol-directed reagents gave substantial inhibition. Notably, serine-directed reagents, organic phosphates, and simple boronic acids were ineffective as inhibitors. PBP 5 was stable over the pH range 4.6-12.3, and the k(cat)/K(m) vs. pH profile for activity against Ac(2)-L-Lys-D-Ala-D-Ala was bell-shaped, with pK(a)s at 8.2 and 11.1. This is the first complete pH profile, including both acidic and basic limbs, for a PBP-catalyzed DD-carboxypeptidase (CPase) reaction. Based on its structure, similarity to Class A beta-lactamases, and results from mutagenesis studies, the acidic and basic limbs of the pH profile of PBP 5 are assigned to Lys-47 and Lys-213, respectively. This assignment supports a role for Lys-47 as the general base for acylation and deacylation reactions.
Collapse
Affiliation(s)
- Miglena E Stefanova
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 5005 Rockhill Road, Kansas City, MO 64110, USA
| | | | | | | |
Collapse
|
16
|
Abstract
Escherichia coli alkaline phosphatase (AP) is the prototypical two metal ion catalyst with two divalent zinc ions bound approximately 4 A apart in the active site. Studies spanning half a century have elucidated many structural and mechanistic features of this enzyme, rendering it an attractive model for investigating the potent catalytic power of bimetallic centers. Unfortunately, fundamental mechanistic features have been obscured by limitations with the standard assays. These assays generate concentrations of inorganic phosphate (P(i)) in excess of its inhibition constant (K(i) approximately 1 muM). This tight binding by P(i) has affected the majority of published kinetic constants. Furthermore, binding limits k(cat)/K(m) for reaction of p-nitrophenyl phosphate, the most commonly employed substrate. We describe a sensitive (32)P-based assay for hydrolysis of alkyl phosphates that avoids the complication of product inhibition. We have revisited basic mechanistic features of AP with these alkyl phosphate substrates. The results suggest that the chemical step for phosphorylation of the enzyme limits k(cat)/K(m). The pH-rate profile and additional results suggest that the serine nucleophile is active in its anionic form and has a pK(a) of < or = 5.5 in the free enzyme. An inactivating pK(a) of 8.0 is observed for binding of both substrates and inhibitors, and we suggest that this corresponds to ionization of a zinc-coordinated water molecule. Counter to previous suggestions, inorganic phosphate dianion appears to bind to the highly charged AP active site at least as strongly as the trianion. The dependence of k(cat)/K(m) on the pK(a) of the leaving group follows a Brønsted correlation with a slope of beta(lg) = -0.85 +/- 0.1, differing substantially from the previously reported value of -0.2 obtained from data with a less sensitive assay. This steep leaving group dependence is consistent with a largely dissociative transition state for AP-catalyzed hydrolysis of phosphate monoesters. The new (32)P-based assay employed herein will facilitate continued dissection of the AP reaction by providing a means to readily follow the chemical step for phosphorylation of the enzyme.
Collapse
Affiliation(s)
- Patrick J O'Brien
- Department of Biochemistry, Stanford University, Stanford, California 94305-5307, USA
| | | |
Collapse
|
17
|
Llanos L, Briones R, Yévenes A, González-Nilo FD, Frey PA, Cardemil E. Mutation Arg336 to Lys in Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase originates an enzyme with increased oxaloacetate decarboxylase activity. FEBS Lett 2001; 493:1-5. [PMID: 11277994 DOI: 10.1016/s0014-5793(01)02158-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Saccharomyces cerevisiae phosphoenolpyruvate (PEP) carboxykinase catalyzes one of the first reactions in the biosynthesis of carbohydrates. Apart from the physiologically important reaction, the enzyme also presents low oxaloacetate decarboxylase and pyruvate kinase-like activities. Data from the crystalline structure of homologous Escherichia coli PEP carboxykinase suggest that Arg(333) may be involved in stabilization of enolpyruvate, a postulated reaction intermediate. In this work, the equivalent Arg(336) from the S. cerevisiae enzyme was changed to Lys or Gln. Kinetic analyses of the varied enzymes showed that a positive charge at position 336 is critical for catalysis of the main reaction, and further suggested different rate limiting steps for the main reaction and the secondary activities. The Arg336Lys altered enzyme showed increased oxaloacetate decarboxylase activity and developed the ability to catalyze pyruvate enolization. These last results support the proposal that enolpyruvate is an intermediate in the PEP carboxykinase reaction and suggest that in the Arg336Lys PEP carboxykinase a proton donor group has appeared.
Collapse
Affiliation(s)
- L Llanos
- Departamento de Ciencias Quimicas, Facultad de Quimica y Biologia, Universidad de Santiago de Chile
| | | | | | | | | | | |
Collapse
|
18
|
Copley RR, Bork P. Homology among (betaalpha)(8) barrels: implications for the evolution of metabolic pathways. J Mol Biol 2000; 303:627-41. [PMID: 11054297 DOI: 10.1006/jmbi.2000.4152] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We provide statistically reliable sequence evidence indicating that at least 12 of 23 SCOP (betaalpha)(8) (TIM) barrel superfamilies share a common origin. This includes all but one of the known and predicted TIM barrels found in central metabolism. The statistical evidence is complemented by an examination of the details of protein structure, with certain structural locations favouring catalytic residues even though the nature of their molecular function may change. The combined analysis of sequence, structure and function also enables us to propose a phylogeny of TIM barrels. Based on these data, we are able to examine differing theories of pathway and enzyme evolution, by mapping known TIM barrel folds to the pathways of central metabolism. The results favour widespread recruitment of enzymes between pathways, rather than a "backwards evolution" model, and support the idea that modern proteins may have arisen from common ancestors that bound key metabolites.
Collapse
Affiliation(s)
- R R Copley
- Biocomputing, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, 69117, Germany.
| | | |
Collapse
|
19
|
Current awareness on yeast. Yeast 2000. [DOI: 10.1002/1097-0061(20000115)16:1<89::aid-yea563>3.0.co;2-h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|