1
|
Stepwise assembly of the active site of [NiFe]-hydrogenase. Nat Chem Biol 2023; 19:498-506. [PMID: 36702959 DOI: 10.1038/s41589-022-01226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/16/2022] [Indexed: 01/27/2023]
Abstract
[NiFe]-hydrogenases are biotechnologically relevant enzymes catalyzing the reversible splitting of H2 into 2e- and 2H+ under ambient conditions. Catalysis takes place at the heterobimetallic NiFe(CN)2(CO) center, whose multistep biosynthesis involves careful handling of two transition metals as well as potentially harmful CO and CN- molecules. Here, we investigated the sequential assembly of the [NiFe] cofactor, previously based on primarily indirect evidence, using four different purified maturation intermediates of the catalytic subunit, HoxG, of the O2-tolerant membrane-bound hydrogenase from Cupriavidus necator. These included the cofactor-free apo-HoxG, a nickel-free version carrying only the Fe(CN)2(CO) fragment, a precursor that contained all cofactor components but remained redox inactive and the fully mature HoxG. Through biochemical analyses combined with comprehensive spectroscopic investigation using infrared, electronic paramagnetic resonance, Mössbauer, X-ray absorption and nuclear resonance vibrational spectroscopies, we obtained detailed insight into the sophisticated maturation process of [NiFe]-hydrogenase.
Collapse
|
2
|
Slater JW, Marguet SC, Monaco HA, Shafaat HS. Going beyond Structure: Nickel-Substituted Rubredoxin as a Mechanistic Model for the [NiFe] Hydrogenases. J Am Chem Soc 2018; 140:10250-10262. [PMID: 30016865 DOI: 10.1021/jacs.8b05194] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jeffrey W. Slater
- The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Sean C. Marguet
- The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Haleigh A. Monaco
- The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Hannah S. Shafaat
- The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
3
|
Greene BL, Wu CH, Vansuch GE, Adams MWW, Dyer RB. Proton Inventory and Dynamics in the Nia-S to Nia-C Transition of a [NiFe] Hydrogenase. Biochemistry 2016; 55:1813-25. [DOI: 10.1021/acs.biochem.5b01348] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brandon L. Greene
- Chemistry
Department, Emory University, Atlanta, Georgia 30322, United States
| | - Chang-Hao Wu
- Department
of Biochemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Gregory E. Vansuch
- Chemistry
Department, Emory University, Atlanta, Georgia 30322, United States
| | - Michael W. W. Adams
- Department
of Biochemistry, University of Georgia, Athens, Georgia 30602, United States
| | - R. Brian Dyer
- Chemistry
Department, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
4
|
Abstract
A simple, functional mimic of [NiFe] hydrogenases based on a nickel-substituted rubredoxin (NiRd) protein is reported. NiRd is capable of light-initiated and solution-phase hydrogen production and demonstrates high electrocatalytic activity using protein film voltammetry. The catalytic voltammograms are modeled using analytical expressions developed for hydrogenase enzymes, revealing maximum turnover frequencies of approximately 20-100 s(-1) at 4 °C with an overpotential of 540 mV. These rates are directly comparable to those observed for [NiFe] hydrogenases under similar conditions. Like the native enzymes, the proton reduction activity of NiRd is strongly inhibited by carbon monoxide. This engineered rubredoxin-based enzyme is chemically and thermally robust, easily accessible, and highly tunable. These results have implications for understanding the enzymatic mechanisms of native hydrogenases, and, using NiRd as a scaffold, it will be possible to optimize this catalyst for application in sustainable fuel generation.
Collapse
Affiliation(s)
- Jeffrey W Slater
- Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University , 100 W 18th Avenue, Columbus, Ohio 43210, United States
| | - Hannah S Shafaat
- Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University , 100 W 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
5
|
Greene BL, Wu CH, McTernan PM, Adams MWW, Dyer RB. Proton-coupled electron transfer dynamics in the catalytic mechanism of a [NiFe]-hydrogenase. J Am Chem Soc 2015; 137:4558-66. [PMID: 25790178 DOI: 10.1021/jacs.5b01791] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The movement of protons and electrons is common to the synthesis of all chemical fuels such as H2. Hydrogenases, which catalyze the reversible reduction of protons, necessitate transport and reactivity between protons and electrons, but a detailed mechanism has thus far been elusive. Here, we use a phototriggered chemical potential jump method to rapidly initiate the proton reduction activity of a [NiFe] hydrogenase. Coupling the photochemical initiation approach to nanosecond transient infrared and visible absorbance spectroscopy afforded direct observation of interfacial electron transfer and active site chemistry. Tuning of intramolecular proton transport by pH and isotopic substitution revealed distinct concerted and stepwise proton-coupled electron transfer mechanisms in catalysis. The observed heterogeneity in the two sequential proton-associated reduction processes suggests a highly engineered protein environment modulating catalysis and implicates three new reaction intermediates; Nia-I, Nia-D, and Nia-SR(-). The results establish an elementary mechanistic understanding of catalysis in a [NiFe] hydrogenase with implications in enzymatic proton-coupled electron transfer and biomimetic catalyst design.
Collapse
Affiliation(s)
- Brandon L Greene
- †Chemistry Department, Emory University, Atlanta, Georgia 30322, United States
| | - Chang-Hao Wu
- ‡Department of Biochemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Patrick M McTernan
- ‡Department of Biochemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Michael W W Adams
- ‡Department of Biochemistry, University of Georgia, Athens, Georgia 30602, United States
| | - R Brian Dyer
- †Chemistry Department, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
6
|
Affiliation(s)
- Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Hideaki Ogata
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Edward Reijerse
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
7
|
[NiFe] hydrogenases: a common active site for hydrogen metabolism under diverse conditions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:986-1002. [PMID: 23399489 DOI: 10.1016/j.bbabio.2013.01.015] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/06/2012] [Accepted: 01/26/2013] [Indexed: 01/05/2023]
Abstract
Hydrogenase proteins catalyze the reversible conversion of molecular hydrogen to protons and electrons. The most abundant hydrogenases contain a [NiFe] active site; these proteins are generally biased towards hydrogen oxidation activity and are reversibly inhibited by oxygen. However, there are [NiFe] hydrogenase that exhibit unique properties, including aerobic hydrogen oxidation and preferential hydrogen production activity; these proteins are highly relevant in the context of biotechnological devices. This review describes four classes of these "nonstandard" [NiFe] hydrogenases and discusses the electrochemical, spectroscopic, and structural studies that have been used to understand the mechanisms behind this exceptional behavior. A revised classification protocol is suggested in the conclusions, particularly with respect to the term "oxygen-tolerance". This article is part of a special issue entitled: metals in bioenergetics and biomimetics systems.
Collapse
|
8
|
Devine E, Holmqvist M, Stensjö K, Lindblad P. Diversity and transcription of proteases involved in the maturation of hydrogenases in Nostoc punctiforme ATCC 29133 and Nostoc sp. strain PCC 7120. BMC Microbiol 2009; 9:53. [PMID: 19284580 PMCID: PMC2670836 DOI: 10.1186/1471-2180-9-53] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 03/11/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The last step in the maturation process of the large subunit of [NiFe]-hydrogenases is a proteolytic cleavage of the C-terminal by a hydrogenase specific protease. Contrary to other accessory proteins these hydrogenase proteases are believed to be specific whereby one type of hydrogenases specific protease only cleaves one type of hydrogenase. In cyanobacteria this is achieved by the gene product of either hupW or hoxW, specific for the uptake or the bidirectional hydrogenase respectively. The filamentous cyanobacteria Nostoc punctiforme ATCC 29133 and Nostoc sp strain PCC 7120 may contain a single uptake hydrogenase or both an uptake and a bidirectional hydrogenase respectively. RESULTS In order to examine these proteases in cyanobacteria, transcriptional analyses were performed of hupW in Nostoc punctiforme ATCC 29133 and hupW and hoxW in Nostoc sp. strain PCC 7120. These studies revealed numerous transcriptional start points together with putative binding sites for NtcA (hupW) and LexA (hoxW). In order to investigate the diversity and specificity among hydrogeanse specific proteases we constructed a phylogenetic tree which revealed several subgroups that showed a striking resemblance to the subgroups previously described for [NiFe]-hydrogenases. Additionally the proteases specificity was also addressed by amino acid sequence analysis and protein-protein docking experiments with 3D-models derived from bioinformatic studies. These studies revealed a so called "HOXBOX"; an amino acid sequence specific for protease of Hox-type which might be involved in docking with the large subunit of the hydrogenase. CONCLUSION Our findings suggest that the hydrogenase specific proteases are under similar regulatory control as the hydrogenases they cleave. The result from the phylogenetic study also indicates that the hydrogenase and the protease have co-evolved since ancient time and suggests that at least one major horizontal gene transfer has occurred. This co-evolution could be the result of a close interaction between the protease and the large subunit of the [NiFe]-hydrogenases, a theory supported by protein-protein docking experiments performed with 3D-models. Finally we present data that may explain the specificity seen among hydrogenase specific proteases, the so called "HOXBOX"; an amino acid sequence specific for proteases of Hox-type. This opens the door for more detailed studies of the specificity found among hydrogenase specific proteases and the structural properties behind it.
Collapse
Affiliation(s)
- Ellenor Devine
- Department of Photochemistry and Molecular Science, The Angström Laboratories, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
9
|
Fontecilla-Camps JC, Volbeda A, Cavazza C, Nicolet Y. Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem Rev 2007; 107:4273-303. [PMID: 17850165 DOI: 10.1021/cr050195z] [Citation(s) in RCA: 1009] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Juan C Fontecilla-Camps
- Laboratoire de Cristallographie et Cristallogenèse des Proteines, Institut de Biologie Structurale J. P. Ebel, CEA, CNRS, Universitè Joseph Fourier, 41 rue J. Horowitz, 38027 Grenoble Cedex 1, France.
| | | | | | | |
Collapse
|
10
|
De Lacey AL, Fernandez VM, Rousset M, Cammack R. Activation and Inactivation of Hydrogenase Function and the Catalytic Cycle: Spectroelectrochemical Studies. Chem Rev 2007; 107:4304-30. [PMID: 17715982 DOI: 10.1021/cr0501947] [Citation(s) in RCA: 364] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Antonio L De Lacey
- Instituto de CatAlisis, CSIC, Marie Curie 2, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
11
|
Abstract
Enzymes possessing the capacity to oxidize molecular hydrogen have developed convergently three class of enzymes leading to: [FeFe]-, [NiFe]-, and [FeS]-cluster-free hydrogenases. They differ in the composition and the structure of the active site metal centre and the sequence of the constituent structural polypeptides but they show one unifying feature, namely the existence of CN and/or CO ligands at the active site Fe. Recent developments in the analysis of the maturation of [FeFe]- and [NiFe]- hydrogenases have revealed a remarkably complex pattern of mostly novel biochemical reactions. Maturation of [FeFe]-hydrogenases requires a minimum of three auxiliary proteins, two of which belong to the class of Radical-SAM enzymes and other to the family of GTPases. They are sufficient to generate active enzyme when their genes are co-expressed with the structural genes in a heterologous host, otherwise deficient in [FeFe]-hydrogenase expression. Maturation of the large subunit of [NiFe]-hydrogenases depends on the activity of at least seven core proteins that catalyse the synthesis of the CN ligand, have a function in the coordination of the active site iron, the insertion of nickel and the proteolytic maturation of the large subunit. Whereas this core maturation machinery is sufficient to generate active hydrogenase in the cytoplasm, like that of hydrogenase 3 from Escherichia coli, additional proteins are involved in the export of the ready-assembled heterodimeric enzyme to the periplasm via the twin-arginine translocation system in the case of membrane-bound hydrogenases. A series of other gene products with intriguing putative functions indicate that the minimal pathway established for E. coli [NiFe]-hydrogenase maturation may possess even higher complexity in other organisms.
Collapse
Affiliation(s)
- August Böck
- Department Biology I, University of Munich, 80638 Munich, Germany
| | | | | | | |
Collapse
|
12
|
Burgdorf T, Lenz O, Buhrke T, van der Linden E, Jones AK, Albracht SPJ, Friedrich B. [NiFe]-Hydrogenases of Ralstonia eutropha H16: Modular Enzymes for Oxygen-Tolerant Biological Hydrogen Oxidation. J Mol Microbiol Biotechnol 2006; 10:181-96. [PMID: 16645314 DOI: 10.1159/000091564] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent research on hydrogenases has been notably motivated by a desire to utilize these remarkable hydrogen oxidation catalysts in biotechnological applications. Progress in the development of such applications is substantially hindered by the oxygen sensitivity of the majority of hydrogenases. This problem tends to inspire the study of organisms such as Ralstonia eutropha H16 that produce oxygen-tolerant [NiFe]-hydrogenases. R. eutropha H16 serves as an excellent model system in that it produces three distinct [NiFe]-hydrogenases that each serve unique physiological roles: a membrane-bound hydrogenase (MBH) coupled to the respiratory chain, a cytoplasmic, soluble hydrogenase (SH) able to generate reducing equivalents by reducing NAD+ at the expense of hydrogen, and a regulatory hydrogenase (RH) which acts in a signal transduction cascade to control hydrogenase gene transcription. This review will present recent results regarding the biosynthesis, regulation, structure, activity, and spectroscopy of these enzymes. This information will be discussed in light of the question how do organisms adapt the prototypical [NiFe]-hydrogenase system to function in the presence of oxygen.
Collapse
Affiliation(s)
- Tanja Burgdorf
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
van der Linden E, Burgdorf T, de Lacey AL, Buhrke T, Scholte M, Fernandez VM, Friedrich B, Albracht SPJ. An improved purification procedure for the soluble [NiFe]-hydrogenase of Ralstonia eutropha: new insights into its (in)stability and spectroscopic properties. J Biol Inorg Chem 2006; 11:247-60. [PMID: 16418856 DOI: 10.1007/s00775-005-0075-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 12/12/2005] [Indexed: 11/28/2022]
Abstract
Infrared (IR) spectra in combination with chemical analyses have recently shown that the active Ni-Fe site of the soluble NAD(+)-reducing [NiFe]-hydrogenase from Ralstonia eutropha contains four cyanide groups and one carbon monoxide as ligands. Experiments presented here confirm this result, but show that a variable percentage of enzyme molecules loses one or two of the cyanide ligands from the active site during routine purification. For this reason the redox conditions during the purification have been optimized yielding hexameric enzyme preparations (HoxFUYHI(2)) with aerobic specific H(2)-NAD(+) activities of 150-185 mumol/min/mg of protein (up to 200% of the highest activity previously reported in the literature). The preparations were highly homogeneous in terms of the active site composition and showed superior IR spectra. IR spectro-electrochemical studies were consistent with the hypothesis that only reoxidation of the reduced enzyme with dioxygen leads to the inactive state, where it is believed that a peroxide group is bound to nickel. Electron paramagnetic resonance experiments showed that the radical signal from the NADH-reduced enzyme derives from the semiquinone form of the flavin (FMN-a) in the hydrogenase module (HoxYH dimer), but not of the flavin (FMN-b) in the NADH-dehydrogenase module (HoxFU dimer). It is further demonstrated that the hexameric enzyme remains active in the presence of NADPH and air, whereas NADH and air lead to rapid destruction of enzyme activity. It is proposed that the presence of NADPH in cells keeps the enzyme in the active state.
Collapse
Affiliation(s)
- Eddy van der Linden
- Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Jeon WB, Singer SW, Ludden PW, Rubio LM. New insights into the mechanism of nickel insertion into carbon monoxide dehydrogenase: analysis of Rhodospirillum rubrum carbon monoxide dehydrogenase variants with substituted ligands to the [Fe3S4] portion of the active-site C-cluster. J Biol Inorg Chem 2005; 10:903-12. [PMID: 16283394 DOI: 10.1007/s00775-005-0043-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 10/03/2005] [Indexed: 10/25/2022]
Abstract
Carbon monoxide dehydrogenase (CODH) from Rhodospirillum rubrum catalyzes the oxidation of CO to CO2. A unique [NiFe4S4] cluster, known as the C-cluster, constitutes the active site of the enzyme. When grown in Ni-deficient medium R. rubrum accumulates a Ni-deficient apo form of CODH that is readily activated by Ni. It has been previously shown that activation of apo-CODH by Ni is a two-step process involving the rapid formation of an inactive apo-CODH*Ni complex prior to conversion to the active holo-CODH. We have generated CODH variants with substitutions in cysteine residues involved in the coordination of the [Fe3S4] portion of the C-cluster. Analysis of the variants suggests that the cysteine residues at positions 338, 451, and 481 are important for CO oxidation activity catalyzed by CODH but not for Ni binding to the C-cluster. C451S CODH is the only new variant that retains residual CO oxidation activity. Comparison of the kinetics and pH dependence of Ni activation of the apo forms of wild-type, C451S, and C531A CODH allowed us to develop a model for Ni insertion into the C-cluster of CODH in which Ni reversibly binds to the C-cluster and subsequently coordinates Cys531 in the rate-determining step.
Collapse
Affiliation(s)
- Won Bae Jeon
- Center for Eukaryotic Structural Genomics, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
15
|
Tikhonova TV, Kurkin SA, Klyachko NL, Popov VO. Use of a reverse micelle system for study of oligomeric structure of NAD+-reducing hydrogenase from Ralstonia eutropha H16. BIOCHEMISTRY (MOSCOW) 2005; 70:645-51. [PMID: 16038606 DOI: 10.1007/s10541-005-0164-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Inclusion of an oligomeric enzyme, NAD+-dependent hydrogenase from the hydrogen-oxidizing bacterium Ralstonia eutropha, into a system of reverse micelles of different sizes resulted in its dissociation into catalytically active heterodimers and subunits, which were characterized in reactions with various substrates. It was found that: 1) the native tetrameric form of this enzyme catalyzes all types of studied reactions; 2) hydrogenase dimer, HoxHY, is a minimal structural unit catalyzing hydrogenase reaction with an artificial electron donor, reduced methyl viologen; 3) all structural fragments containing FMN and NAD+/NADH-binding sites exhibit catalytic activity in diaphorase reactions with one- and two-electron acceptors; 4) small subunits, HoxY and HoxU also exhibit activity in diaphorase reactions with artificial acceptors. These results can be considered as indirect evidence that the second FMN molecule may be associated with one of the small subunits (HoxY or HoxU) of the hydrogenase from R. eutropha.
Collapse
Affiliation(s)
- T V Tikhonova
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, 119071 Moscow, Russia.
| | | | | | | |
Collapse
|
16
|
Winter G, Buhrke T, Lenz O, Jones AK, Forgber M, Friedrich B. A model system for [NiFe] hydrogenase maturation studies: Purification of an active site-containing hydrogenase large subunit without small subunit. FEBS Lett 2005; 579:4292-6. [PMID: 16061234 DOI: 10.1016/j.febslet.2005.06.064] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 06/16/2005] [Accepted: 06/28/2005] [Indexed: 10/25/2022]
Abstract
The large subunit HoxC of the H2-sensing [NiFe] hydrogenase from Ralstonia eutropha was purified without its small subunit. Two forms of HoxC were identified. Both forms contained iron but only substoichiometric amounts of nickel. One form was a homodimer of HoxC whereas the second also contained the Ni-Fe site maturation proteins HypC and HypB. Despite the presence of the Ni-Fe active site in some of the proteins, both forms, which lack the Fe-S clusters normally present in hydrogenases, cannot activate hydrogen. The incomplete insertion of nickel into the Ni-Fe site provides direct evidence that Fe precedes Ni in the course of metal center assembly.
Collapse
Affiliation(s)
- Gordon Winter
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Chausseestr. 117, D-10115 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Theodoratou E, Huber R, Böck A. [NiFe]-Hydrogenase maturation endopeptidase: structure and function. Biochem Soc Trans 2005; 33:108-11. [PMID: 15667279 DOI: 10.1042/bst0330108] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hydrogenase maturation endopeptidases catalyse the terminal step in the maturation of the large subunit of [NiFe]-hydrogenases. They remove a C-terminal extension from the precursor of the subunit, triggering a conformational switch that results in the bridging of the Fe and Ni atoms of the metal centre via the thiolate of a cysteine residue and in closure of the centre. This review summarizes what is known about the structure of the protein, its substrate specificity and its possible reaction mechanism.
Collapse
Affiliation(s)
- E Theodoratou
- Department Biologie I, University of Munich, Maria-Ward-Strasse 1a, D-80638 Munich, Germany
| | | | | |
Collapse
|
18
|
Burgdorf T, van der Linden E, Bernhard M, Yin QY, Back JW, Hartog AF, Muijsers AO, de Koster CG, Albracht SPJ, Friedrich B. The soluble NAD+-Reducing [NiFe]-hydrogenase from Ralstonia eutropha H16 consists of six subunits and can be specifically activated by NADPH. J Bacteriol 2005; 187:3122-32. [PMID: 15838039 PMCID: PMC1082810 DOI: 10.1128/jb.187.9.3122-3132.2005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The soluble [NiFe]-hydrogenase (SH) of the facultative lithoautotrophic proteobacterium Ralstonia eutropha H16 has up to now been described as a heterotetrameric enzyme. The purified protein consists of two functionally distinct heterodimeric moieties. The HoxHY dimer represents the hydrogenase module, and the HoxFU dimer constitutes an NADH-dehydrogenase. In the bimodular form, the SH mediates reduction of NAD(+) at the expense of H(2). We have purified a new high-molecular-weight form of the SH which contains an additional subunit. This extra subunit was identified as the product of hoxI, a member of the SH gene cluster (hoxFUYHWI). Edman degradation, in combination with protein sequencing of the SH high-molecular-weight complex, established a subunit stoichiometry of HoxFUYHI(2). Cross-linking experiments indicated that the two HoxI subunits are the closest neighbors. The stability of the hexameric SH depended on the pH and the ionic strength of the buffer. The tetrameric form of the SH can be instantaneously activated with small amounts of NADH but not with NADPH. The hexameric form, however, was also activated by adding small amounts of NADPH. This suggests that HoxI provides a binding domain for NADPH. A specific reaction site for NADPH adds to the list of similarities between the SH and mitochondrial NADH:ubiquinone oxidoreductase (Complex I).
Collapse
Affiliation(s)
- Tanja Burgdorf
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Chausseestrasse 117, D-10115 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Burgdorf T, Löscher S, Liebisch P, Van der Linden E, Galander M, Lendzian F, Meyer-Klaucke W, Albracht SPJ, Friedrich B, Dau H, Haumann M. Structural and oxidation-state changes at its nonstandard Ni-Fe site during activation of the NAD-reducing hydrogenase from Ralstonia eutropha detected by X-ray absorption, EPR, and FTIR spectroscopy. J Am Chem Soc 2005; 127:576-92. [PMID: 15643882 DOI: 10.1021/ja0461926] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structure and oxidation state of the Ni-Fe cofactor of the NAD-reducing soluble hydrogenase (SH) from Ralstonia eutropha were studied employing X-ray absorption spectroscopy (XAS) at the Ni K-edge, EPR, and FTIR spectroscopy. The SH comprises a nonstandard (CN)Ni-Fe(CN)(3)(CO) site; its hydrogen-cleavage reaction is resistant against inhibition by dioxygen and carbon monoxide. Simulations of the XANES and EXAFS regions of XAS spectra revealed that, in the oxidized SH, the Ni(II) is six-coordinated ((CN)O(3)S(2)); only two of the four conserved cysteines, which bind the Ni in standard Ni-Fe hydrogenases, provide thiol ligands to the Ni. Upon the exceptionally rapid reductive activation of the SH by NADH, an oxygen species is detached from the Ni; hydrogen may subsequently bind to the vacant coordination site. Prolonged reducing conditions cause the two thiols that are remote from the Ni in the native SH to become direct Ni ligands, creating a standardlike Ni(II)(CysS)(4) site, which could be further reduced to form the Ni-C (Ni(III)-H(-)) state. The Ni-C state does not seem to be involved in hydrogen cleavage. Two site-directed mutants (HoxH-I64A, HoxH-L118F) revealed structural changes at their Ni sites and were employed to further dissect the role of the extra CN ligand at the Ni. It is proposed that the predominant coordination by (CN),O ligands stabilizes the Ni(II) oxidation state throughout the catalytic cycle and is a prerequisite for the rapid activation of the SH in the presence of oxygen.
Collapse
Affiliation(s)
- Tanja Burgdorf
- Humboldt-Universität zu Berlin, Mikrobiologie, Chausseestr. 117, D-10115 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Van der Linden E, Burgdorf T, Bernhard M, Bleijlevens B, Friedrich B, Albracht SPJ. The soluble [NiFe]-hydrogenase from Ralstonia eutropha contains four cyanides in its active site, one of which is responsible for the insensitivity towards oxygen. J Biol Inorg Chem 2004; 9:616-26. [PMID: 15164270 DOI: 10.1007/s00775-004-0555-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Accepted: 04/27/2004] [Indexed: 11/30/2022]
Abstract
Infrared spectra of (15)N-enriched preparations of the soluble cytoplasmic NAD(+)-reducing [NiFe]-hydrogenase from Ralstonia eutropha are presented. These spectra, together with chemical analyses, show that the Ni-Fe active site contains four cyanide groups and one carbon monoxide molecule. It is proposed that the active site is a (RS)(2)(CN)Ni(micro-RS)(2)Fe(CN)(3)(CO) centre (R=Cys) and that H(2) activation solely takes place on nickel. One of the two FMN groups (FMN-a) in the enzyme can be reversibly released upon reduction of the enzyme. It is now reported that at longer times also one of the cyanide groups, the one proposed to be bound to the nickel atom, could be removed from the enzyme. This process was irreversible and induced the inhibition of the enzyme activity by oxygen; the enzyme remained insensitive to carbon monoxide. The Ni-Fe active site was EPR undetectable under all conditions tested. It is concluded that the Ni-bound cyanide group is responsible for the oxygen insensitivity of the enzyme.
Collapse
Affiliation(s)
- Eddy Van der Linden
- Swammerdam Institute for Life Sciences, Biochemistry, University of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
21
|
van der Linden E, Faber BW, Bleijlevens B, Burgdorf T, Bernhard M, Friedrich B, Albracht SPJ. Selective release and function of one of the two FMN groups in the cytoplasmic NAD+-reducing [NiFe]-hydrogenase from Ralstonia eutropha. ACTA ACUST UNITED AC 2004; 271:801-8. [PMID: 14764097 DOI: 10.1111/j.1432-1033.2004.03984.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The soluble, cytoplasmic NAD+-reducing [NiFe]-hydrogenase from Ralstonia eutropha is a heterotetrameric enzyme (HoxFUYH) and contains two FMN groups. The purified oxidized enzyme is inactive in the H2-NAD+ reaction, but can be activated by catalytic amounts of NADH. It was discovered that one of the FMN groups (FMN-a) is selectively released upon prolonged reduction of the enzyme with NADH. During this process, the enzyme maintained its tetrameric form, with one FMN group (FMN-b) firmly bound, but it lost its physiological activity--the reduction of NAD+ by H2. This activity could be reconstituted by the addition of excess FMN to the reduced enzyme. The rate of reduction of benzyl viologen by H2 was not dependent on the presence of FMN-a. Enzyme devoid of FMN-a could not be activated by NADH. As NADH-dehydrogenase activity was not dependent on the presence of FMN-a, and because FMN-b did not dissociate from the reduced enzyme, we conclude that FMN-b is functional in the NADH-dehydrogenase activity catalyzed by the HoxFU dimer. The possible function of FMN-a as a hydride acceptor in the hydrogenase reaction catalyzed by the HoxHY dimer is discussed.
Collapse
Affiliation(s)
- Eddy van der Linden
- Swammerdam Institute for Life Sciences, Biochemistry, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
22
|
Volbeda A, Fontecilla-Camps JC. The active site and catalytic mechanism of NiFe hydrogenases. Dalton Trans 2003. [DOI: 10.1039/b304316a] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Burgdorf T, De Lacey AL, Friedrich B. Functional analysis by site-directed mutagenesis of the NAD(+)-reducing hydrogenase from Ralstonia eutropha. J Bacteriol 2002; 184:6280-8. [PMID: 12399498 PMCID: PMC151951 DOI: 10.1128/jb.184.22.6280-6288.2002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tetrameric cytoplasmic [NiFe] hydrogenase (SH) of Ralstonia eutropha couples the oxidation of hydrogen to the reduction of NAD(+) under aerobic conditions. In the catalytic subunit HoxH, all six conserved motifs surrounding the [NiFe] site are present. Five of these motifs were altered by site-directed mutagenesis in order to dissect the molecular mechanism of hydrogen activation. Based on phenotypic characterizations, 27 mutants were grouped into four different classes. Mutants of the major class, class I, failed to grow on hydrogen and were devoid of H(2)-oxidizing activity. In one of these isolates (HoxH I64A), H(2) binding was impaired. Class II mutants revealed a high D(2)/H(+) exchange rate relative to a low H(2)-oxidizing activity. A representative (HoxH H16L) displayed D(2)/H(+) exchange but had lost electron acceptor-reducing activity. Both activities were equally affected in class III mutants. Mutants forming class IV showed a particularly interesting phenotype. They displayed O(2)-sensitive growth on hydrogen due to an O(2)-sensitive SH protein.
Collapse
Affiliation(s)
- Tanja Burgdorf
- Institut für Biologie, Humboldt-Universität zu Berlin, Germany
| | | | | |
Collapse
|
24
|
De Lacey AL, Santamaria E, Hatchikian EC, Fernandez VM. Kinetic characterization of Desulfovibrio gigas hydrogenase upon selective chemical modification of amino acid groups as a tool for structure-function relationships. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1481:371-80. [PMID: 11018729 DOI: 10.1016/s0167-4838(00)00180-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of amino acid residues modification of Desulfovibrio gigas hydrogenase on different activity assays is reported. The first method consisted in the modification of glutamic and aspartic acid residues of the enzyme with ethylenediamine in order to change the polarity of certain regions of the protein surface. The second method consisted in the modification of histidine residues with a Ru complex in order to change the acid-base properties of the histidine residues. The implication of these modifications in the enzyme kinetics has been studied by measuring in parallel the activities of para/ortho hydrogen conversion, deuterium/hydrogen exchange and dyes reduction with hydrogen. Our experimental data support some hypothesis based on the three-dimensional structure of this enzyme: (a) electrostactic interactions between the hydrogenase and the redox partner play an essential role in the kinetics; (b) the histidine ligand and the surrounding acidic residues of the distal [4Fe4S] cluster form the recognition site of the redox partner of the hydrogenase; and (c) histidine residues are involved in the hydron transfer pathway of the hydrogenase.
Collapse
Affiliation(s)
- A L De Lacey
- Instituto de Catálisis, C.S.I.C., Campus Universidad Autónoma-Cantoblanco, Madrid, Spain.
| | | | | | | |
Collapse
|
25
|
Magalon A, Bock A. Analysis of the HypC-hycE complex, a key intermediate in the assembly of the metal center of the Escherichia coli hydrogenase 3. J Biol Chem 2000; 275:21114-20. [PMID: 10783387 DOI: 10.1074/jbc.m000987200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The formation of a complex between the specific chaperone-type protein HypC and the precursor form of the large subunit HycE in the maturation pathway of hydrogenase 3 from Escherichia coli has been studied by targeted replacement of amino acids in both proteins. HypC and its homologs contain the motif MC(L/I/V)(G/A)(L/I/V)P at the amino terminus, from which the methionine residue is post-translationally removed. The exchange of the cysteine residue led to complete loss of the ability to interact with the precursor form of HycE, but replacement of the proline residue had no effect. Site-directed replacement of the conserved cysteine residues in HycE involved in nickel binding was also performed. Exchange of Cys(241) resulted in the inability of the HycE variant to interact with HypC and to incorporate nickel. The variants of HycE in which Cys(244) and Cys(531) were replaced by alanine residues were unable to incorporate nickel, although the mutated proteins could interact with HypC. Intriguingly, the precursor of HycE in which the Cys(534) residue was exchanged could form the complex with HypC, could incorporate nickel, and was C-terminally processed, but it delivered an inactive enzyme. Our findings are in favor of a model in which binding of HypC masks Cys(241); Cys(244) and Cys(531) bind the iron and nickel moieties, respectively; and C534 closes the bridge between the two metals after C-terminal processing has taken place.
Collapse
Affiliation(s)
- A Magalon
- Lehrstuhl für Mikrobiologie der Universität München, Maria-Ward-Strasse 1a, 80638 München, Germany.
| | | |
Collapse
|