1
|
Hong L, Kortemme T. An integrative approach to protein sequence design through multiobjective optimization. PLoS Comput Biol 2024; 20:e1011953. [PMID: 38991035 PMCID: PMC11265717 DOI: 10.1371/journal.pcbi.1011953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/23/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
With recent methodological advances in the field of computational protein design, in particular those based on deep learning, there is an increasing need for frameworks that allow for coherent, direct integration of different models and objective functions into the generative design process. Here we demonstrate how evolutionary multiobjective optimization techniques can be adapted to provide such an approach. With the established Non-dominated Sorting Genetic Algorithm II (NSGA-II) as the optimization framework, we use AlphaFold2 and ProteinMPNN confidence metrics to define the objective space, and a mutation operator composed of ESM-1v and ProteinMPNN to rank and then redesign the least favorable positions. Using the two-state design problem of the foldswitching protein RfaH as an in-depth case study, and PapD and calmodulin as examples of higher-dimensional design problems, we show that the evolutionary multiobjective optimization approach leads to significant reduction in the bias and variance in RfaH native sequence recovery, compared to a direct application of ProteinMPNN. We suggest that this improvement is due to three factors: (i) the use of an informative mutation operator that accelerates the sequence space exploration, (ii) the parallel, iterative design process inherent to the genetic algorithm that improves upon the ProteinMPNN autoregressive sequence decoding scheme, and (iii) the explicit approximation of the Pareto front that leads to optimal design candidates representing diverse tradeoff conditions. We anticipate this approach to be readily adaptable to different models and broadly relevant for protein design tasks with complex specifications.
Collapse
Affiliation(s)
- Lu Hong
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States of America
| | - Tanja Kortemme
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States of America
- Quantitative Biosciences Institute, University of California, San Francisco, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
| |
Collapse
|
2
|
Denesyuk AI, Permyakov SE, Permyakov EA, Johnson MS, Denessiouk K, Uversky VN. Canonical structural-binding modes in the calmodulin-target protein complexes. J Biomol Struct Dyn 2023; 41:7582-7594. [PMID: 36106955 DOI: 10.1080/07391102.2022.2123391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
Abstract
Intracellular calcium sensor protein calmodulin (CaM) belongs to the large EF-hand protein superfamily. CaM shows a unique and not fully understood ability to bind to multiple targets, allows them to participate in a variety of regulatory processes. The protein has two approximately symmetrical globular domains (the N- and C-lobes). Analysis of the CaM-binding sites of target proteins showed that they have two hydrophobic 'anchor' amino acids separated by 10 to 17 residues. Consequently, several CaM-binding motifs: {1-10}, {1-11}, {1-13}, {1-14}, {1-16}, {1-17}, differing by the distance between the two anchor residues along the amino acid sequence, have been identified. Despite extensive structural information on the role of target-protein amino acid residues in the formation of complexes with CaM, much less is known about the role of amino acids from CaM contributing to these interactions. In this work, a quantitative analysis of the contact surfaces of CaM and target proteins has been carried out for 35 representative three-dimensional structures. It has been shown that, in addition to the two hydrophobic terminal residues of the target fragment, the interaction also involves residues that are 4 residues earlier in the sequence (binding mode {1-5}). It has also been found that the N- and C-lobes of CaM bind the {1-5} motif located at the ends of the target in a structurally identical manner. Methionine residues at positions 51 (corresponding to 124 in the C-lobe), 71 (144), and 72 (145) of the CaM amino acid sequence are key hydrophobic residues for this interaction. They are located at the N- and C-boundaries of the even EF-hand motifs. The hydrophobic core of CaM ('Ф-quatrefoil') consists of 10 amino acids in the N-lobe (and in the C-lobe): Phe16 (Phe89), Phe19 (Phe92), Ile27 (Ile100), Thr29 (Ala102), Leu32 (Leu105), Ile52 (Ile125), Val55 (Ala128), Ile63 (Val136), Phe65 (Tyr138), and Phe68 (Phe141) and do not intersect with the target-binding methionine residues. CaM belongs to the 'dynamic' group of EF-hand proteins, in which calcium and protein ligand binding causes only global conformational changes but does not alter the conservative 'black' and 'grey' clusters described in our earlier works (PLoS One. 2014; 9(10):e109287). The membership of CaM in the 'dynamic' group is determined by the triggering and protective methionine layer: Met51 (Met124), Met71 (Met144) and Met72 (Met145). HIGHLIGHTSInterchain interactions in the unique 35 CaM complex structures were analyzed.Methionine amino acids of the N- and C-lobes of CaM form triggering and protective layers.Interactions of the target terminal residues with these methionine layers are structurally identical.CaM belonging to the 'dynamic' group is determined by the triggering and protective methionine layer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alexander I Denesyuk
- Institute for Biological Instrumentation of the, Russian Academy of Sciences, Federal Research Center, "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino Moscow Region, Russia
- Structural Bioinformatics Laboratory, Biochemistry, InFLAMES Research Flagship Center, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Sergei E Permyakov
- Institute for Biological Instrumentation of the, Russian Academy of Sciences, Federal Research Center, "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino Moscow Region, Russia
| | - Eugene A Permyakov
- Institute for Biological Instrumentation of the, Russian Academy of Sciences, Federal Research Center, "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino Moscow Region, Russia
| | - Mark S Johnson
- Structural Bioinformatics Laboratory, Biochemistry, InFLAMES Research Flagship Center, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Konstantin Denessiouk
- Structural Bioinformatics Laboratory, Biochemistry, InFLAMES Research Flagship Center, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Vladimir N Uversky
- Institute for Biological Instrumentation of the, Russian Academy of Sciences, Federal Research Center, "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino Moscow Region, Russia
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
3
|
Karschin N, Becker S, Griesinger C. Interdomain Dynamics via Paramagnetic NMR on the Highly Flexible Complex Calmodulin/Munc13-1. J Am Chem Soc 2022; 144:17041-17053. [PMID: 36082939 PMCID: PMC9501808 DOI: 10.1021/jacs.2c06611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Paramagnetic NMR constraints are very useful to study protein interdomain motion, but their interpretation is not always straightforward. On the example of the particularly flexible complex Calmodulin/Munc13-1, we present a new approach to characterize this motion with pseudocontact shifts and residual dipolar couplings. Using molecular mechanics, we sampled the conformational space of the complex and used a genetic algorithm to find ensembles that are in agreement with the data. We used the Bayesian information criterion to determine the ideal ensemble size. This way, we were able to make an accurate, unambiguous, reproducible model of the interdomain motion of Calmodulin/Munc13-1 without prior knowledge about the domain orientation from crystallography.
Collapse
Affiliation(s)
- Niels Karschin
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Niedersachsen D-37077, Germany
| | - Stefan Becker
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Niedersachsen D-37077, Germany
| | - Christian Griesinger
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Niedersachsen D-37077, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen D-37075, Germany
| |
Collapse
|
4
|
Sosa-Peinado A, León-Cruz E, Velázquez-López I, Matuz-Mares D, Cano-Sánchez P, González-Andrade M. Theoretical-experimental studies of calmodulin-peptide interactions at different calcium equivalents. J Biomol Struct Dyn 2022; 40:2689-2700. [DOI: 10.1080/07391102.2020.1841679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Erika León-Cruz
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Deyamira Matuz-Mares
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Patricia Cano-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | |
Collapse
|
5
|
Structure, Function and Regulation of the Plasma Membrane Calcium Pump in Health and Disease. Int J Mol Sci 2022; 23:ijms23031027. [PMID: 35162948 PMCID: PMC8835232 DOI: 10.3390/ijms23031027] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/28/2022] Open
Abstract
In this review, I summarize the present knowledge of the structural and functional properties of the mammalian plasma membrane calcium pump (PMCA). It is outlined how the cellular expression of the different spliced isoforms of the four genes are regulated under normal and pathological conditions.
Collapse
|
6
|
Milanesi L, Trevitt C, Whitehead B, Hounslow A, Tomas S, Hosszu L, Hunter C, Waltho J. High-affinity tamoxifen analogues retain extensive positional disorder when bound to calmodulin. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:629-642. [PMID: 37905217 PMCID: PMC10539762 DOI: 10.5194/mr-2-629-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/03/2021] [Indexed: 11/02/2023]
Abstract
Using a combination of NMR and fluorescence measurements, we have investigated the structure and dynamics of the complexes formed between calcium-loaded calmodulin (CaM) and the potent breast cancer inhibitor idoxifene, a derivative of tamoxifen. High-affinity binding (K d ∼ 300 nM) saturates with a 2 : 1 idoxifene : CaM complex. The complex is an ensemble where each idoxifene molecule is predominantly in the vicinity of one of the two hydrophobic patches of CaM but, in contrast with the lower-affinity antagonists TFP, J-8, and W-7, does not substantially occupy the hydrophobic pocket. At least four idoxifene orientations per domain of CaM are necessary to satisfy the intermolecular nuclear Overhauser effect (NOE) restraints, and this requires that the idoxifene molecules switch rapidly between positions. The CaM molecule is predominantly in the form where the N and C-terminal domains are in close proximity, allowing for the idoxifene molecules to contact both domains simultaneously. Hence, the 2 : 1 idoxifene : CaM complex illustrates how high-affinity binding occurs without the loss of extensive positional dynamics.
Collapse
Affiliation(s)
- Lilia Milanesi
- Department of Molecular Biology and Biotechnology, University of
Sheffield, Sheffield S10 2TN, UK
- Department of Biological Sciences, School of Science, Birkbeck
University of London, London WC1E 7HX, UK
| | - Clare R. Trevitt
- Department of Molecular Biology and Biotechnology, University of
Sheffield, Sheffield S10 2TN, UK
| | - Brian Whitehead
- Department of Molecular Biology and Biotechnology, University of
Sheffield, Sheffield S10 2TN, UK
| | - Andrea M. Hounslow
- Department of Molecular Biology and Biotechnology, University of
Sheffield, Sheffield S10 2TN, UK
| | - Salvador Tomas
- Department of Biological Sciences, School of Science, Birkbeck
University of London, London WC1E 7HX, UK
- Departament de Química, Universitat de les Illes Balears, Cra. de Valldemossa, km 7.5. 07122 Palma de Mallorca, Spain
| | - Laszlo L. P. Hosszu
- Department of Molecular Biology and Biotechnology, University of
Sheffield, Sheffield S10 2TN, UK
- Medical Research Council Prion Unit, University College of London
Institute of Neurology, Queen Square, London WCN1 3BG, UK
| | - Christopher A. Hunter
- Department of Chemistry, University of Cambridge, Lensfield Road,
Cambridge CB2 1EW, UK
| | - Jonathan P. Waltho
- Department of Molecular Biology and Biotechnology, University of
Sheffield, Sheffield S10 2TN, UK
- Manchester Institute of Biotechnology, University of Manchester, 131
Princess Street, Manchester M1 7DN, UK
| |
Collapse
|
7
|
Andrews C, Xu Y, Kirberger M, Yang JJ. Structural Aspects and Prediction of Calmodulin-Binding Proteins. Int J Mol Sci 2020; 22:ijms22010308. [PMID: 33396740 PMCID: PMC7795363 DOI: 10.3390/ijms22010308] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 11/19/2022] Open
Abstract
Calmodulin (CaM) is an important intracellular protein that binds Ca2+ and functions as a critical second messenger involved in numerous biological activities through extensive interactions with proteins and peptides. CaM’s ability to adapt to binding targets with different structures is related to the flexible central helix separating the N- and C-terminal lobes, which allows for conformational changes between extended and collapsed forms of the protein. CaM-binding targets are most often identified using prediction algorithms that utilize sequence and structural data to predict regions of peptides and proteins that can interact with CaM. In this review, we provide an overview of different CaM-binding proteins, the motifs through which they interact with CaM, and shared properties that make them good binding partners for CaM. Additionally, we discuss the historical and current methods for predicting CaM binding, and the similarities and differences between these methods and their relative success at prediction. As new CaM-binding proteins are identified and classified, we will gain a broader understanding of the biological processes regulated through changes in Ca2+ concentration through interactions with CaM.
Collapse
Affiliation(s)
- Corey Andrews
- Center for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; (C.A.); (Y.X.)
| | - Yiting Xu
- Center for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; (C.A.); (Y.X.)
| | - Michael Kirberger
- Chemistry Division, Georgia Gwinnett College, Lawrenceville, GA 30043, USA;
| | - Jenny J. Yang
- Center for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; (C.A.); (Y.X.)
- Correspondence: ; Tel.: +1-4044135520
| |
Collapse
|
8
|
Zheng L, Chenavas S, Kieken F, Trease A, Brownell S, Anbanandam A, Sorgen PL, Spagnol G. Calmodulin Directly Interacts with the Cx43 Carboxyl-Terminus and Cytoplasmic Loop Containing Three ODDD-Linked Mutants (M147T, R148Q, and T154A) that Retain α-Helical Structure, but Exhibit Loss-of-Function and Cellular Trafficking Defects. Biomolecules 2020; 10:biom10101452. [PMID: 33080786 PMCID: PMC7602980 DOI: 10.3390/biom10101452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
The autosomal-dominant pleiotropic disorder called oculodentodigital dysplasia (ODDD) is caused by mutations in the gap junction protein Cx43. Of the 73 mutations identified to date, over one-third are localized in the cytoplasmic loop (Cx43CL) domain. Here, we determined the mechanism by which three ODDD mutations (M147T, R148Q, and T154A), all of which localize within the predicted 1-5-10 calmodulin-binding motif of the Cx43CL, manifest the disease. Nuclear magnetic resonance (NMR) and circular dichroism revealed that the three ODDD mutations had little-to-no effect on the ability of the Cx43CL to form α-helical structure as well as bind calmodulin. Combination of microscopy and a dye-transfer assay uncovered these mutations increased the intracellular level of Cx43 and those that trafficked to the plasma membrane did not form functional channels. NMR also identify that CaM can directly interact with the Cx43CT domain. The Cx43CT residues involved in the CaM interaction overlap with tyrosines phosphorylated by Pyk2 and Src. In vitro and in cyto data provide evidence that the importance of the CaM interaction with the Cx43CT may lie in restricting Pyk2 and Src phosphorylation, and their subsequent downstream effects.
Collapse
Affiliation(s)
- Li Zheng
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.Z.); (S.C.); (F.K.); (A.T.); (S.B.)
| | - Sylvie Chenavas
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.Z.); (S.C.); (F.K.); (A.T.); (S.B.)
| | - Fabien Kieken
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.Z.); (S.C.); (F.K.); (A.T.); (S.B.)
| | - Andrew Trease
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.Z.); (S.C.); (F.K.); (A.T.); (S.B.)
| | - Sarah Brownell
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.Z.); (S.C.); (F.K.); (A.T.); (S.B.)
| | - Asokan Anbanandam
- Biomolecular NMR Core Facility, University of Kansas, Lawrence, KS 66045, USA;
| | - Paul L. Sorgen
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.Z.); (S.C.); (F.K.); (A.T.); (S.B.)
- Correspondence: (P.L.S.); (G.S.)
| | - Gaelle Spagnol
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.Z.); (S.C.); (F.K.); (A.T.); (S.B.)
- Correspondence: (P.L.S.); (G.S.)
| |
Collapse
|
9
|
Satoh T, Nishio M, Suzuki K, Yagi-Utsumi M, Kamiya Y, Mizushima T, Kato K. Crystallographic snapshots of the EF-hand protein MCFD2 complexed with the intracellular lectin ERGIC-53 involved in glycoprotein transport. Acta Crystallogr F Struct Biol Commun 2020; 76:216-221. [PMID: 32356523 PMCID: PMC7193514 DOI: 10.1107/s2053230x20005452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/19/2020] [Indexed: 11/10/2022] Open
Abstract
The transmembrane intracellular lectin ER-Golgi intermediate compartment protein 53 (ERGIC-53) and the soluble EF-hand multiple coagulation factor deficiency protein 2 (MCFD2) form a complex that functions as a cargo receptor, trafficking various glycoproteins between the endoplasmic reticulum (ER) and the Golgi apparatus. It has been demonstrated that the carbohydrate-recognition domain (CRD) of ERGIC-53 (ERGIC-53CRD) interacts with N-linked glycans on cargo glycoproteins, whereas MCFD2 recognizes polypeptide segments of cargo glycoproteins. Crystal structures of ERGIC-53CRD complexed with MCFD2 and mannosyl oligosaccharides have revealed protein-protein and protein-sugar binding modes. In contrast, the polypeptide-recognition mechanism of MCFD2 remains largely unknown. Here, a 1.60 Å resolution crystal structure of the ERGIC-53CRD-MCFD2 complex is reported, along with three other crystal forms. Comparison of these structures with those previously reported reveal that MCFD2, but not ERGIC-53-CRD, exhibits significant conformational plasticity that may be relevant to its accommodation of various polypeptide ligands.
Collapse
Affiliation(s)
- Tadashi Satoh
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Miho Nishio
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Kousuke Suzuki
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Maho Yagi-Utsumi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Yukiko Kamiya
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Tsunehiro Mizushima
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
10
|
Yagi H, Yagi-Utsumi M, Honda R, Ohta Y, Saito T, Nishio M, Ninagawa S, Suzuki K, Anzai T, Kamiya Y, Aoki K, Nakanishi M, Satoh T, Kato K. Improved secretion of glycoproteins using an N-glycan-restricted passport sequence tag recognized by cargo receptor. Nat Commun 2020; 11:1368. [PMID: 32170195 PMCID: PMC7069976 DOI: 10.1038/s41467-020-15192-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 02/25/2020] [Indexed: 11/09/2022] Open
Abstract
MCFD2 and ERGIC-53, which are the products of causative genes of combined factor V and factor VIII deficiency, form a cargo receptor complex responsible for intracellular transport of these coagulation factors in the early secretory pathway. In this study, using an NMR technique, we successfully identified an MCFD2-binding segment from factor VIII composed of a 10 amino acid sequence that enhances its secretion. This prompted us to examine possible effects of attaching this sequence to recombinant glycoproteins on their secretion. We found that the secretion level of recombinant erythropoietin was significantly increased simply by tagging it with the passport sequence. Our findings not only provide molecular basis for the intracellular trafficking of coagulation factors and their genetic deficiency but also offer a potentially useful tool for increasing the production yields of recombinant glycoproteins of biopharmaceutical interest.
Collapse
Affiliation(s)
- Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Maho Yagi-Utsumi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
- School of Physical Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
| | - Rena Honda
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
- School of Physical Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
| | - Yusaku Ohta
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
| | - Taiki Saito
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Miho Nishio
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Satoshi Ninagawa
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
| | - Kousuke Suzuki
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Takahiro Anzai
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
| | - Yukiko Kamiya
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
| | - Kazuhiro Aoki
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
| | - Mahito Nakanishi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Central 5, Tsukuba, Ibaraki, 305-8565, Japan
| | - Tadashi Satoh
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan.
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan.
- School of Physical Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan.
| |
Collapse
|
11
|
Hegedűs L, Zámbó B, Pászty K, Padányi R, Varga K, Penniston JT, Enyedi Á. Molecular Diversity of Plasma Membrane Ca2+ Transporting ATPases: Their Function Under Normal and Pathological Conditions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:93-129. [DOI: 10.1007/978-3-030-12457-1_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Søndergaard MT, Liu Y, Brohus M, Guo W, Nani A, Carvajal C, Fill M, Overgaard MT, Chen SRW. Diminished inhibition and facilitated activation of RyR2-mediated Ca 2+ release is a common defect of arrhythmogenic calmodulin mutations. FEBS J 2019; 286:4554-4578. [PMID: 31230402 DOI: 10.1111/febs.14969] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/23/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
A number of calmodulin (CaM) mutations cause severe cardiac arrhythmias, but their arrhythmogenic mechanisms are unclear. While some of the arrhythmogenic CaM mutations have been shown to impair CaM-dependent inhibition of intracellular Ca2+ release through the ryanodine receptor type 2 (RyR2), the impact of a majority of these mutations on RyR2 function is unknown. Here, we investigated the effect of 14 arrhythmogenic CaM mutations on the CaM-dependent RyR2 inhibition. We found that all the arrhythmogenic CaM mutations tested diminished CaM-dependent inhibition of RyR2-mediated Ca2+ release and increased store-overload induced Ca2+ release (SOICR) in HEK293 cells. Moreover, all the arrhythmogenic CaM mutations tested either failed to inhibit or even promoted RyR2-mediated Ca2+ release in permeabilized HEK293 cells with elevated cytosolic Ca2+ , which was markedly different from the inhibitory action of CaM wild-type. The CaM mutations also altered the Ca2+ -dependency of CaM binding to the RyR2 CaM-binding domain. These results demonstrate that diminished inhibition, and even facilitated activation, of RyR2-mediated Ca2+ release is a common defect of arrhythmogenic CaM mutations.
Collapse
Affiliation(s)
- Mads T Søndergaard
- Department of Chemistry and Bioscience, Aalborg University, Denmark.,Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada
| | - Yingjie Liu
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada
| | - Malene Brohus
- Department of Chemistry and Bioscience, Aalborg University, Denmark
| | - Wenting Guo
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada
| | - Alma Nani
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL, USA
| | - Catherine Carvajal
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL, USA
| | - Michael Fill
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL, USA
| | | | - S R Wayne Chen
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada.,Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
13
|
Machado MR, Barrera EE, Klein F, Sóñora M, Silva S, Pantano S. The SIRAH 2.0 Force Field: Altius, Fortius, Citius. J Chem Theory Comput 2019; 15:2719-2733. [PMID: 30810317 DOI: 10.1021/acs.jctc.9b00006] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A new version of the coarse-grained (CG) SIRAH force field for proteins has been developed. Modifications to bonded and non-bonded interactions on the existing molecular topologies significantly ameliorate the structural description and flexibility of a non-redundant set of proteins. The SIRAH 2.0 force field has also been ported to the popular simulation package AMBER, which along with the former implementation in GROMACS expands significantly the potential range of users and performance of this CG force field on CPU/GPU codes. As a non-trivial example of its application, we undertook the structural and dynamical analysis of the most abundant and conserved calcium-binding protein, calmodulin (CaM). CaM is composed of two calcium-binding motifs called EF-hands, which in the presence of calcium specifically recognize a cognate peptide by embracing it. CG simulations of CaM bound to four calcium ions in the presence or absence of a binding peptide (holo and apo forms, respectively) resulted in good and stable ion coordination. The simulation of the holo form starting from an experimental structure sampled near-native conformations, retrieving quasi-atomistic precision. Removing the binding peptide enabled the EF-hands to perform large reciprocal movements, comparable to those observed in NMR structures. On the other hand, the isolated peptide starting from the helical conformation experienced spontaneous unfolding, in agreement with previous experimental data. However, repositioning the peptide in the neighborhood of one EF-hand not only prevented the peptide from unfolding but also drove CaM to a fully bound conformation, with both EF-hands embracing the cognate peptide, resembling the experimental holo structure. Therefore, SIRAH 2.0 shows the capacity to handle a number of structurally and dynamically challenging situations, including metal ion coordination, unbiased conformational sampling, and specific protein-peptide recognition.
Collapse
Affiliation(s)
- Matías R Machado
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020 , CP 11400 Montevideo , Uruguay
| | - Exequiel E Barrera
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020 , CP 11400 Montevideo , Uruguay
| | - Florencia Klein
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020 , CP 11400 Montevideo , Uruguay
| | - Martín Sóñora
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020 , CP 11400 Montevideo , Uruguay
| | - Steffano Silva
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020 , CP 11400 Montevideo , Uruguay
| | - Sergio Pantano
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020 , CP 11400 Montevideo , Uruguay
| |
Collapse
|
14
|
Lizatović R, Assent M, Barendregt A, Dahlin J, Bille A, Satzinger K, Tupina D, Heck AJR, Wennmalm S, André I. A Protein-Based Encapsulation System with Calcium-Controlled Cargo Loading and Detachment. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Robert Lizatović
- Biochemistry and Structural Biology; Lund University; PO BOX 124 Lund Sweden
| | - Marvin Assent
- Biochemistry and Structural Biology; Lund University; PO BOX 124 Lund Sweden
| | - Arjan Barendregt
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Padualaan 8 3584 CH Utrecht The Netherlands
| | - Jonathan Dahlin
- Biochemistry and Structural Biology; Lund University; PO BOX 124 Lund Sweden
| | - Anna Bille
- Biochemistry and Structural Biology; Lund University; PO BOX 124 Lund Sweden
| | - Katharina Satzinger
- Biochemistry and Structural Biology; Lund University; PO BOX 124 Lund Sweden
| | - Dagnija Tupina
- Biochemistry and Structural Biology; Lund University; PO BOX 124 Lund Sweden
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Padualaan 8 3584 CH Utrecht The Netherlands
| | - Stefan Wennmalm
- SciLifeLab; Department of Applied Physics; Experimental Biomolecular Physics group, Royal Institute of Technology-KTH; Tomtebodavägen 23A 171 65 Stockholm Sweden
| | - Ingemar André
- Biochemistry and Structural Biology; Lund University; PO BOX 124 Lund Sweden
| |
Collapse
|
15
|
Lizatović R, Assent M, Barendregt A, Dahlin J, Bille A, Satzinger K, Tupina D, Heck AJR, Wennmalm S, André I. A Protein-Based Encapsulation System with Calcium-Controlled Cargo Loading and Detachment. Angew Chem Int Ed Engl 2018; 57:11334-11338. [DOI: 10.1002/anie.201806466] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Robert Lizatović
- Biochemistry and Structural Biology; Lund University; PO BOX 124 Lund Sweden
| | - Marvin Assent
- Biochemistry and Structural Biology; Lund University; PO BOX 124 Lund Sweden
| | - Arjan Barendregt
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Padualaan 8 3584 CH Utrecht The Netherlands
| | - Jonathan Dahlin
- Biochemistry and Structural Biology; Lund University; PO BOX 124 Lund Sweden
| | - Anna Bille
- Biochemistry and Structural Biology; Lund University; PO BOX 124 Lund Sweden
| | - Katharina Satzinger
- Biochemistry and Structural Biology; Lund University; PO BOX 124 Lund Sweden
| | - Dagnija Tupina
- Biochemistry and Structural Biology; Lund University; PO BOX 124 Lund Sweden
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Padualaan 8 3584 CH Utrecht The Netherlands
| | - Stefan Wennmalm
- SciLifeLab; Department of Applied Physics; Experimental Biomolecular Physics group, Royal Institute of Technology-KTH; Tomtebodavägen 23A 171 65 Stockholm Sweden
| | - Ingemar André
- Biochemistry and Structural Biology; Lund University; PO BOX 124 Lund Sweden
| |
Collapse
|
16
|
Dalton SR, Vienneau AR, Burstein SR, Xu RJ, Linse S, Londergan CH. Cyanylated Cysteine Reports Site-Specific Changes at Protein-Protein-Binding Interfaces Without Perturbation. Biochemistry 2018; 57:3702-3712. [PMID: 29787228 PMCID: PMC6034165 DOI: 10.1021/acs.biochem.8b00283] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
To investigate the
cyanylated cysteine vibrational probe group’s
ability to report on binding-induced changes along a protein–protein
interface, the probe group was incorporated at several sites in a
peptide of the calmodulin (CaM)-binding domain of skeletal muscle
myosin light chain kinase. Isothermal titration calorimetry was used
to determine the binding thermodynamics between calmodulin and each
peptide. For all probe positions, the binding affinity was nearly
identical to that of the unlabeled peptide. The CN stretching infrared
band was collected for each peptide free in solution and bound to
calmodulin. Binding-induced shifts in the IR spectral frequencies
were correlated with estimated solvent accessibility based on molecular
dynamics simulations. This work generally suggests (1) that site-specific
incorporation of this vibrational probe group does not cause major
perturbations to its local structural environment and (2) that this
small probe group might be used quite broadly to map dynamic protein-binding
interfaces. However, site-specific perturbations due to artificial
labeling groups can be somewhat unpredictable and should be evaluated
on a site-by-site basis through complementary measurements. A fully
quantitative, simulation-based interpretation of the rich probe IR
spectra is still needed but appears to be possible given recent advances
in simulation techniques.
Collapse
Affiliation(s)
- Shannon R Dalton
- Department of Chemistry , Haverford College , 370 Lancaster Ave , Haverford , Pennsylvania 19041-1392 , United States
| | - Alice R Vienneau
- Department of Chemistry , Haverford College , 370 Lancaster Ave , Haverford , Pennsylvania 19041-1392 , United States
| | - Shana R Burstein
- Department of Chemistry , Haverford College , 370 Lancaster Ave , Haverford , Pennsylvania 19041-1392 , United States
| | - Rosalind J Xu
- Department of Chemistry , Haverford College , 370 Lancaster Ave , Haverford , Pennsylvania 19041-1392 , United States
| | - Sara Linse
- Department of Chemistry and Biochemistry , Lund University , Kemicentrum, Box 118 , 221 00 Lund , Sweden
| | - Casey H Londergan
- Department of Chemistry , Haverford College , 370 Lancaster Ave , Haverford , Pennsylvania 19041-1392 , United States
| |
Collapse
|
17
|
Identification and characterization of a calmodulin binding domain in the plasma membrane Ca 2+-ATPase from Trypanosoma equiperdum. Mol Biochem Parasitol 2018; 222:51-60. [PMID: 29752964 DOI: 10.1016/j.molbiopara.2018.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 02/01/2023]
Abstract
The plasma membrane Ca2+-ATPase (PMCA) from trypanosomatids lacks a classical calmodulin (CaM) binding domain, although CaM stimulated activities have been detected by biochemical assays. Recently we proposed that the Trypanosoma equiperdum CaM-sensitive PMCA (TePMCA) contains a potential 1-18 CaM-binding motif at the C-terminal region of the pump. In the present study, we evaluated the potential CaM-binding motifs using CaM from Trypanosoma cruzi and either the recombinant full length TePMCA C-terminal sequence (P14) or synthetic peptides comprising different regions of the C-terminal domain. We demonstrated that P14 and a synthetic peptide corresponding to residues 1037-1062 (which contains the predicted 1-18 binding motif) competed efficiently for binding to TcCaM, exhibiting similar IC50s of 200 nM. A stable complex of this peptide and TcCaM was formed in the presence of Ca2+, as determined by native-polyacrylamide gel electrophoresis. A predicted structure obtained by molecular docking showed an interaction of the 1-18 binding motif with the Ca2+/CaM complex. Moreover, when the peptide was incubated with CaM and Ca2+, a blue shift in the tryptophan fluorescence spectrum (from 350 to 329 nm) was observed. Substitutions at W1039 and F1056, strongly decreased both CaM-peptide interaction and the complex assembly. Our results demonstrated the presence of a functional 1-18 motif at the TePMCA C-terminal domain. Furthermore, on the basis of spectrofluorometric assays and the resulting structure modeled by docking we propose that the L1042 and W1060 residues might also participate as anchors to form a 1-4-18-22 motif.
Collapse
|
18
|
Kellmann SJ, Dübel S, Thie H. A strategy to identify linker-based modules for the allosteric regulation of antibody-antigen binding affinities of different scFvs. MAbs 2017; 9:404-418. [PMID: 28055297 PMCID: PMC5384732 DOI: 10.1080/19420862.2016.1277302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Antibody single-chain variable fragments (scFvs) are used in a variety of applications, such as for research, diagnosis and therapy. Essential for these applications is the extraordinary specificity, selectivity and affinity of antibody paratopes, which can also be used for efficient protein purification. However, this use is hampered by the high affinity for the protein to be purified because harsh elution conditions, which may impair folding, integrity or viability of the eluted biomaterials, are typically required. In this study, we developed a strategy to obtain structural elements that provide allosteric modulation of the affinities of different antibody scFvs for their antigen. To identify suitable allosteric modules, a complete set of cyclic permutations of calmodulin variants was generated and tested for modulation of the affinity when substituting the linker between VH and VL. Modulation of affinity induced by addition of different calmodulin-binding peptides at physiologic conditions was demonstrated for 5 of 6 tested scFvs of different specificities and antigens ranging from cell surface proteins to haptens. In addition, a variety of different modulator peptides were tested. Different structural solutions were found in respect of the optimal calmodulin permutation, the optimal peptide and the allosteric effect for scFvs binding to different antigen structures. Significantly, effective linker modules were identified for scFvs with both VH-VL and VL-VH architecture. The results suggest that this approach may offer a rapid, paratope-independent strategy to provide allosteric regulation of affinity for many other antibody scFvs.
Collapse
Affiliation(s)
- Sarah-Jane Kellmann
- a Miltenyi Biotec GmbH, Friedrich-Ebert-Straße , Bergisch Gladbach , Germany
| | - Stefan Dübel
- b Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics , Braunschweig , Germany
| | - Holger Thie
- a Miltenyi Biotec GmbH, Friedrich-Ebert-Straße , Bergisch Gladbach , Germany
| |
Collapse
|
19
|
Chyan CL, Irene D, Lin SM. The Recognition of Calmodulin to the Target Sequence of Calcineurin-A Novel Binding Mode. Molecules 2017; 22:E1584. [PMID: 28934144 PMCID: PMC6151454 DOI: 10.3390/molecules22101584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 11/22/2022] Open
Abstract
Calcineurin (CaN) is a Ca2+/calmodulin-dependent Ser/Thr protein phosphatase, which plays essential roles in many cellular and developmental processes. CaN comprises two subunits, a catalytic subunit (CaN-A, 60 kDa) and a regulatory subunit (CaN-B, 19 kDa). CaN-A tightly binds to CaN-B in the presence of minimal levels of Ca2+, but the enzyme is inactive until activated by CaM. Upon binding to CaM, CaN then undergoes a conformational rearrangement, the auto inhibitory domain is displaced and thus allows for full activity. In order to elucidate the regulatory role of CaM in the activation processes of CaN, we used NMR spectroscopy to determine the structure of the complex of CaM and the target peptide of CaN (CaNp). The CaM/CaNp complex shows a compact ellipsoidal shape with 8 α-helices of CaM wrapping around the CaNp helix. The RMSD of backbone and heavy atoms of twenty lowest energy structures of CaM/CaNp complex are 0.66 and 1.14 Å, respectively. The structure of CaM/CaNp complex can be classified as a novel binding mode family 1-18 with major anchor residues Ile396 and Leu413 to allocate the largest space between two domains of CaM. The relative orientation of CaNp to CaM is similar to the CaMKK peptide in the 1-16 binding mode with N- and C-terminal hydrophobic anchors of target sequence engulfed in the hydrophobic pockets of the N- and C-domain of CaM, respectively. In the light of the structural model of CaM/CaNp complex reported here, we provide new insight in the activation processes of CaN by CaM. We propose that the hydrophobic interactions between the Ca2+-saturated C-domain and C-terminal half of the target sequence provide driving forces for the initial recognition. Subsequent folding in the target sequence and structural readjustments in CaM enhance the formation of the complex and affinity to calcium. The electrostatic repulsion between CaM/CaNp complex and AID may result in the displacement of AID from active site for full activity.
Collapse
Affiliation(s)
- Chia-Lin Chyan
- Department of Chemistry, National Dong Hwa University, Hualien 974, Taiwan.
| | - Deli Irene
- Department of Chemistry, National Dong Hwa University, Hualien 974, Taiwan.
| | - Sin-Mao Lin
- Department of Chemistry, National Dong Hwa University, Hualien 974, Taiwan.
| |
Collapse
|
20
|
Molecular mechanism of multispecific recognition of Calmodulin through conformational changes. Proc Natl Acad Sci U S A 2017; 114:E3927-E3934. [PMID: 28461506 DOI: 10.1073/pnas.1615949114] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Calmodulin (CaM) is found to have the capability to bind multiple targets. Investigations on the association mechanism of CaM to its targets are crucial for understanding protein-protein binding and recognition. Here, we developed a structure-based model to explore the binding process between CaM and skMLCK binding peptide. We found the cooperation between nonnative electrostatic interaction and nonnative hydrophobic interaction plays an important role in nonspecific recognition between CaM and its target. We also found that the conserved hydrophobic anchors of skMLCK and binding patches of CaM are crucial for the transition from high affinity to high specificity. Furthermore, this association process involves simultaneously both local conformational change of CaM and global conformational changes of the skMLCK binding peptide. We found a landscape with a mixture of the atypical "induced fit," the atypical "conformational selection," and "simultaneously binding-folding," depending on the synchronization of folding and binding. Finally, we extend our discussions on multispecific binding between CaM and its targets. These association characteristics proposed for CaM and skMLCK can provide insights into multispecific binding of CaM.
Collapse
|
21
|
Lipstein N, Göth M, Piotrowski C, Pagel K, Sinz A, Jahn O. Presynaptic Calmodulin targets: lessons from structural proteomics. Expert Rev Proteomics 2017; 14:223-242. [DOI: 10.1080/14789450.2017.1275966] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Noa Lipstein
- Department of Molecular Neurobiology, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Melanie Göth
- Institute of Chemistry and Biochemistry, Free University Berlin, Berlin & Fritz Haber Institute of the Max-Planck-Society, Berlin, Germany
| | - Christine Piotrowski
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kevin Pagel
- Institute of Chemistry and Biochemistry, Free University Berlin, Berlin & Fritz Haber Institute of the Max-Planck-Society, Berlin, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Olaf Jahn
- Proteomics Group, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
22
|
The Plasma Membrane Calcium Pump (PMCA): Regulation of Cytosolic Ca2+, Genetic Diversities and Its Role in Sub-plasma Membrane Microdomains. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 981:3-21. [DOI: 10.1007/978-3-319-55858-5_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
23
|
Berrocal M, Corbacho I, Sepulveda MR, Gutierrez-Merino C, Mata AM. Phospholipids and calmodulin modulate the inhibition of PMCA activity by tau. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:1028-1035. [PMID: 27818274 DOI: 10.1016/j.bbamcr.2016.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 12/18/2022]
Abstract
The disruption of Ca2+ signaling in neurons, together with a failure to keep optimal intracellular Ca2+ concentrations, have been proposed as significant factors for neuronal dysfunction in the Ca2+ hypothesis of Alzheimer's disease (AD). Tau is a protein that plays an essential role in axonal transport and can form abnormal structures such as neurofibrillary tangles that constitute one of the hallmarks of AD. We have recently shown that plasma membrane Ca2+-ATPase (PMCA), a key enzyme in the maintenance of optimal cytosolic Ca2+ levels in cells, is inhibited by tau in membrane vesicles. In the present study we show that tau inhibits synaptosomal PMCA purified from pig cerebrum, and reconstituted in phosphatidylserine-containing lipid bilayers, with a Ki value of 1.5±0.2nM tau. Noteworthy, the inhibitory effect of tau is dependent on the charge of the phospholipid used for PMCA reconstitution. In addition, nanomolar concentrations of calmodulin, the major endogenous activator of PMCA, protects against inhibition of the Ca2+-ATPase activity by tau. Our results in a cellular model such as SH-SY5Y human neuroblastoma cells yielded an inhibition of PMCA by nanomolar tau concentrations and protection by calmodulin against this inhibition similar to those obtained with purified synaptosomal PMCA. Functional studies were also performed with native and truncated versions of human cerebral PMCA4b, an isoform that has been showed to be functionally regulated by amyloid peptides, whose aggregates constitutes another hallmark of AD. Kinetic assays point out that tau binds to the C-terminal tail of PMCA, at a site distinct but close to the calmodulin binding domain. In conclusion, PMCA can be seen as a molecular target for tau-induced cytosolic calcium dysregulation in synaptic terminals. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- María Berrocal
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Isaac Corbacho
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - M Rosario Sepulveda
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Carlos Gutierrez-Merino
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Ana M Mata
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain.
| |
Collapse
|
24
|
Multifaceted plasma membrane Ca(2+) pumps: From structure to intracellular Ca(2+) handling and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1351-63. [PMID: 26707182 DOI: 10.1016/j.bbamcr.2015.12.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/25/2015] [Accepted: 12/12/2015] [Indexed: 11/20/2022]
Abstract
Plasma membrane Ca(2+) ATPases (PMCAs) are intimately involved in the control of intracellular Ca(2+) concentration. They reduce Ca(2+) in the cytosol not only by direct ejection, but also by controlling the formation of inositol-1,4,5-trisphosphate and decreasing Ca(2+) release from the endoplasmic reticulum Ca(2+) pool. In mammals four genes (PMCA1-4) are expressed, and alternative RNA splicing generates more than twenty variants. The variants differ in their regulatory characteristics. They localize into highly specialized membrane compartments and respond to the incoming Ca(2+) with distinct temporal resolution. The expression pattern of variants depends on cell type; a change in this pattern can result in perturbed Ca(2+) homeostasis and thus altered cell function. Indeed, PMCAs undergo remarkable changes in their expression pattern during tumorigenesis that might significantly contribute to the unbalanced Ca(2+) homeostasis of cancer cells. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.
Collapse
|
25
|
Marshall CB, Nishikawa T, Osawa M, Stathopulos PB, Ikura M. Calmodulin and STIM proteins: Two major calcium sensors in the cytoplasm and endoplasmic reticulum. Biochem Biophys Res Commun 2015; 460:5-21. [PMID: 25998729 DOI: 10.1016/j.bbrc.2015.01.106] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 01/22/2015] [Indexed: 01/22/2023]
Abstract
The calcium (Ca(2+)) ion is a universal signalling messenger which plays vital physiological roles in all eukaryotes. To decode highly regulated intracellular Ca(2+) signals, cells have evolved a number of sensor proteins that are ideally adapted to respond to a specific range of Ca(2+) levels. Among many such proteins, calmodulin (CaM) is a multi-functional cytoplasmic Ca(2+) sensor with a remarkable ability to interact with and regulate a plethora of structurally diverse target proteins. CaM achieves this 'multi-talented' functionality through two EF-hand domains, each with an independent capacity to bind targets, and an adaptable flexible linker. By contrast, stromal interaction molecule-1 and -2 (STIMs) have evolved for a specific role in endoplasmic reticulum (ER) Ca(2+) sensing using EF-hand machinery analogous to CaM; however, whereas CaM structurally adjusts to dissimilar binding partners, STIMs use the EF-hand machinery to self-regulate the stability of the Ca(2+) sensing domain. The molecular mechanisms underlying the Ca(2+)-dependent signal transduction by CaM and STIMs have revealed a remarkable repertoire of actions and underscore the flexibility of nature in molecular evolution and adaption to discrete Ca(2+) levels. Recent genomic sequencing efforts have uncovered a number of disease-associated mutations in both CaM and STIM1. This article aims to highlight the most recent key structural and functional findings in the CaM and STIM fields, and discusses how these two Ca(2+) sensor proteins execute their biological functions.
Collapse
Affiliation(s)
- Christopher B Marshall
- Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Tadateru Nishikawa
- Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Masanori Osawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada.
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, M5G 1L7, Canada.
| |
Collapse
|
26
|
Ca(2+) homeostasis and endoplasmic reticulum (ER) stress: An integrated view of calcium signaling. Biochem Biophys Res Commun 2015; 460:114-21. [PMID: 25998740 DOI: 10.1016/j.bbrc.2015.02.004] [Citation(s) in RCA: 383] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 02/02/2015] [Indexed: 12/21/2022]
Abstract
Cellular Ca(2+) homeostasis is maintained through the integrated and coordinated function of Ca(2+) transport molecules, Ca(2+) buffers and sensors. These molecules are associated with the plasma membrane and different cellular compartments, such as the cytoplasm, nucleus, mitochondria, and cellular reticular network, including the endoplasmic reticulum (ER) to control free and bound Ca(2+) levels in all parts of the cell. Loss of nutrients/energy leads to the loss of cellular homeostasis and disruption of Ca(2+) signaling in both the reticular network and cytoplasmic compartments. As an integral part of cellular physiology and pathology, this leads to activation of ER stress coping responses, such as the unfolded protein response (UPR), and mobilization of pathways to regain ER homeostasis.
Collapse
|
27
|
Calabrese AN, Bowie JH, Pukala TL. Structural analysis of calmodulin binding by nNOS inhibitory amphibian peptides. Biochemistry 2014; 54:567-76. [PMID: 25436860 DOI: 10.1021/bi5004124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Calmodulin (CaM) is a ubiquitous protein in nature and plays a regulatory role in numerous biological processes, including the upregulation of nitric oxide (NO) synthesis in vivo. Several peptides that prevent NO production by interacting with CaM have been isolated in the cutaneous secretions of Australian amphibians, and are thought to serve as a defense mechanism against predators. In this work, we probe the mechanism by which three of these peptides, namely, caerin 1.8, dahlein 5.6, and a synthetic modification of citropin 1.1, interact with CaM to inhibit NO signaling. Isothermal titration calorimetry was used to determine thermodynamic parameters of the binding interactions and revealed that all the peptides bind to CaM in a similar fashion, with the peptide encapsulated between the two lobes of CaM. Ion mobility-mass spectrometry was used to investigate the changes in collision cross section that occur as a result of complexation, providing additional evidence for this binding mode. Finally, nuclear magnetic resonance spectroscopy was used to track chemical shift changes upon binding. The results obtained confirm that these complexes adopt canonical collapsed structures and demonstrate the strength of the interaction between the peptides and CaM. An understanding of these molecular recognition events provides insights into the underlying mechanism of the amphibian host-defense system.
Collapse
Affiliation(s)
- Antonio N Calabrese
- School of Chemistry and Physics, The University of Adelaide , Adelaide, SA Australia 5005
| | | | | |
Collapse
|
28
|
McFadden MJ, Hryciw T, Brown A, Junop MS, Brennan JD. Evaluation of the calmodulin-SOX9 interaction by "magnetic fishing" coupled to mass spectrometry. Chembiochem 2014; 15:2411-9. [PMID: 25233956 DOI: 10.1002/cbic.201402414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Indexed: 11/09/2022]
Abstract
Disruption of calmodulin (CaM)-based protein interactions has been touted as a potential means for modulating several disease pathways. Among these is SOX9, which is a DNA binding protein that is involved in chrondrocyte differentiation and regulation of the hormones that control sexual development. In this work, we employed a "magnetic fishing"/mass spectrometry assay in conjunction with intrinsic fluorescence to examine the interaction of CaM with the CaM-binding domain of SOX9 (SOX-CAL), and to assess the modulation of this interaction by known anti-CaM compounds. Our data show that there is a high affinity interaction between CaM and SOX-CAL (27±9 nM), and that SOX-CAL bound to the same location as the well-known CaM antagonist melittin; unexpectedly, we also found that addition of CaM-binding small molecules initially produced increased SOX-CAL binding, indicative of binding to both the well-known high-affinity CaM binding site and a second, lower-affinity binding site.
Collapse
Affiliation(s)
- Meghan J McFadden
- Biointerfaces Institute and Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1 (Canada)
| | | | | | | | | |
Collapse
|
29
|
Wafer LN, Tzul FO, Pandharipande PP, McCallum SA, Makhatadze GI. Structural and thermodynamic characterization of the recognition of the S100-binding peptides TRTK12 and p53 by calmodulin. Protein Sci 2014; 23:1247-61. [PMID: 24947426 DOI: 10.1002/pro.2506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/14/2014] [Accepted: 06/17/2014] [Indexed: 11/07/2022]
Abstract
Calmodulin (CaM) is a multifunctional messenger protein that activates a wide variety of signaling pathways in eukaryotic cells in a calcium-dependent manner. CaM has been proposed to be functionally distinct from the S100 proteins, a related family of eukaryotic calcium-binding proteins. Previously, it was demonstrated that peptides derived from the actin-capping protein, TRTK12, and the tumor-suppressor protein, p53, interact with multiple members of the S100 proteins. To test the specificity of these peptides, they were screened using isothermal titration calorimetry against 16 members of the human S100 protein family, as well as CaM, which served as a negative control. Interestingly, both the TRTK12 and p53 peptides were found to interact with CaM. These interactions were further confirmed by both fluorescence and nuclear magnetic resonance spectroscopies. These peptides have distinct sequences from the known CaM target sequences. The TRTK12 peptide was found to independently interact with both CaM domains and bind with a stoichiometry of 2:1 and dissociations constants Kd,C-term = 2 ± 1 µM and Kd,N-term = 14 ± 1 µM. In contrast, the p53 peptide was found to interact only with the C-terminal domain of CaM, Kd,C-term = 2 ± 1 µM, 25°C. Using NMR spectroscopy, the locations of the peptide binding sites were mapped onto the structure of CaM. The binding sites for both peptides were found to overlap with the binding interface for previously identified targets on both domains of CaM. This study demonstrates the plasticity of CaM in target binding and may suggest a possible overlap in target specificity between CaM and the S100 proteins.
Collapse
Affiliation(s)
- Lucas N Wafer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, 12180; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180
| | | | | | | | | |
Collapse
|
30
|
The Ever Changing Moods of Calmodulin: How Structural Plasticity Entails Transductional Adaptability. J Mol Biol 2014; 426:2717-35. [DOI: 10.1016/j.jmb.2014.05.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 11/20/2022]
|
31
|
Irene D, Sung FH, Huang JW, Lin TH, Chen YC, Chyan CL. Resonance assignments and secondary structure of calmodulin in complex with its target sequence in rat olfactory cyclic nucleotide-gated ion channel. BIOMOLECULAR NMR ASSIGNMENTS 2014; 8:97-102. [PMID: 23315338 DOI: 10.1007/s12104-013-9461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/04/2013] [Indexed: 06/01/2023]
Abstract
Calmodulin (CaM), the primary receptor for intracellular Ca(2+), regulates a large number of key enzymes and controls a wide spectrum of important biological responses. Olfactory cyclic nucleotide-gated ion channels (OLF channels) mediate olfactory transduction in olfactory receptor neurons. The opening of OLF leads to a rise in cytosolic concentration of Ca(2+), upon binding to Ca(2+), CaM disrupts the open conformation by binding to the CaM-binding domain in the N-terminal region and triggers the close mechanism. In order to unravel the regulatory role of CaM from structural point of view, NMR techniques were used to characterize the structure of CaM in association with the CaM binding domain of rat OLF channel (OLFp, 28 residues). Our data indicated that two distinct CaM/OLFp complexes existed simultaneously with stable structures that were not inter-exchangeable within the NMR time scale. Here, we report the full backbone and side chain resonance assignments of these two complexes of CaM/OLFp.
Collapse
Affiliation(s)
- Deli Irene
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien, 974, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
32
|
Vlach J, Samal AB, Saad JS. Solution structure of calmodulin bound to the binding domain of the HIV-1 matrix protein. J Biol Chem 2014; 289:8697-705. [PMID: 24500712 DOI: 10.1074/jbc.m113.543694] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Subcellular distribution of calmodulin (CaM) in human immunodeficiency virus type-1 (HIV-1)-infected cells is distinct from that observed in uninfected cells. CaM co-localizes and interacts with the HIV-1 Gag protein in the cytosol of infected cells. Although it has been shown that binding of Gag to CaM is mediated by the matrix (MA) domain, the structural details of this interaction are not known. We have recently shown that binding of CaM to MA induces a conformational change that triggers myristate exposure, and that the CaM-binding domain of MA is confined to a region spanning residues 8-43 (MA-(8-43)). Here, we present the NMR structure of CaM bound to MA-(8-43). Our data revealed that MA-(8-43), which contains a novel CaM-binding motif, binds to CaM in an antiparallel mode with the N-terminal helix (α1) anchored to the CaM C-terminal lobe, and the C-terminal helix (α2) of MA-(8-43) bound to the N-terminal lobe of CaM. The CaM protein preserves a semiextended conformation. Binding of MA-(8-43) to CaM is mediated by numerous hydrophobic interactions and stabilized by favorable electrostatic contacts. Our structural data are consistent with the findings that CaM induces unfolding of the MA protein to have access to helices α1 and α2. It is noteworthy that several MA residues involved in CaM binding have been previously implicated in membrane binding, envelope incorporation, and particle production. The present findings may ultimately help in identification of the functional role of CaM in HIV-1 replication.
Collapse
Affiliation(s)
- Jiri Vlach
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | | | | |
Collapse
|
33
|
Abstract
Ca(2+)-ATPases (pumps) are key to the regulation of Ca(2+) in eukaryotic cells: nine are known today, belonging to three multigene families. The three endo(sarco)plasmic reticulum (SERCA) and the four plasma membrane (PMCA) pumps have been known for decades, the two Secretory Pathway Ca(2+) ATPase (SPCA) pumps have only become known recently. The number of pump isoforms is further increased by alternative splicing processes. The three pump types share the basic features of the catalytic mechanism, but differ in a number of properties related to tissue distribution, regulation, and role in the cellular homeostasis of Ca(2+). The molecular understanding of the function of all pumps has received great impetus from the solution of the three-dimensional (3D) structure of one of them, the SERCA pump. This landmark structural advance has been accompanied by the emergence and rapid expansion of the area of pump malfunction. Most of the pump defects described so far are genetic and produce subtler, often tissue and isoform specific, disturbances that affect individual components of the Ca(2+)-controlling and/or processing machinery, compellingly indicating a specialized role for each Ca(2+) pump type and/or isoform.
Collapse
Affiliation(s)
- Marisa Brini
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro Padova, Italy.
| | | | | | | |
Collapse
|
34
|
Nishi R, Sakai W, Tone D, Hanaoka F, Sugasawa K. Structure-function analysis of the EF-hand protein centrin-2 for its intracellular localization and nucleotide excision repair. Nucleic Acids Res 2013; 41:6917-29. [PMID: 23716636 PMCID: PMC3737541 DOI: 10.1093/nar/gkt434] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Centrin-2 is an evolutionarily conserved, calmodulin-related protein, which is involved in multiple cellular functions including centrosome regulation and nucleotide excision repair (NER) of DNA. Particularly to exert the latter function, complex formation with the XPC protein, the pivotal NER damage recognition factor, is crucial. Here, we show that the C-terminal half of centrin-2, containing two calcium-binding EF-hand motifs, is necessary and sufficient for both its localization to the centrosome and interaction with XPC. In XPC-deficient cells, nuclear localization of overexpressed centrin-2 largely depends on co-overexpression of XPC, and mutational analyses of the C-terminal domain suggest that XPC and the major binding partner in the centrosome share a common binding surface on the centrin-2 molecule. On the other hand, the N-terminal domain of centrin-2 also contains two EF-hand motifs but shows only low-binding affinity for calcium ions. Although the N-terminal domain is dispensable for enhancement of the DNA damage recognition activity of XPC, it contributes to augmenting rather weak physical interaction between XPC and XPA, another key factor involved in NER. These results suggest that centrin-2 may have evolved to bridge two protein factors, one with high affinity and the other with low affinity, thereby allowing delicate regulation of various biological processes.
Collapse
Affiliation(s)
- Ryotaro Nishi
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe, Hyogo 657-8501, Japan
| | | | | | | | | |
Collapse
|
35
|
Tidow H, Nissen P. Structural diversity of calmodulin binding to its target sites. FEBS J 2013; 280:5551-65. [PMID: 23601118 DOI: 10.1111/febs.12296] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/11/2013] [Accepted: 04/16/2013] [Indexed: 11/28/2022]
Abstract
Calmodulin (CaM) is a ubiquitous, highly conserved, eukaryotic protein that binds to and regulates a number of diverse target proteins involved in different functions such as metabolism, muscle contraction, apoptosis, memory, inflammation and the immune response. In this minireview, we analyze the large number of CaM-complex structures deposited in the Protein Data Bank (i.e. crystal and nuclear magnetic resonance structures) to gain insight into the structural diversity of CaM-binding sites and mechanisms, such as those for CaM-activated protein kinases and phosphatases, voltage-gated Ca(2+)-channels and the plasma membrane Ca(2+)-ATPase.
Collapse
Affiliation(s)
- Henning Tidow
- Centre for Membrane Pumps in Cells and Disease - PUMPkin, Aarhus University, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | | |
Collapse
|
36
|
Deng W, Putkey JA, Li R. Calmodulin adopts an extended conformation when interacting with L-selectin in membranes. PLoS One 2013; 8:e62861. [PMID: 23658780 PMCID: PMC3642142 DOI: 10.1371/journal.pone.0062861] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 03/26/2013] [Indexed: 01/19/2023] Open
Abstract
Calmodulin, an intracellular calcium-binding protein, is thought to regulate ectodomain shedding of many membrane proteins, but the underlying molecular mechanism has remained unclear. Basing on a solution structure of calcium-loaded calmodulin in complex with a L-selectin fragment that contains a portion of its transmembrane domain, Gifford et al. (University of Calgary) recently suggested that calmodulin regulates L-selectin shedding by binding directly to a portion of the L-selectin transmembrane domain in a compact conformation. Using fluorescently labeled calmodulin, we show however that calmodulin adopts a distinctly different and much more extended conformation when it binds to the CLS peptide (i.e. the entire transmembrane and cytoplasmic domains of L-selectin) reconstituted in the phosphatidylcholine liposome with micromolar dissociation constant and in a calcium-independent manner. Calmodulin adopts a similarly extended conformation in a ternary complex with the N-terminal FERM domain of moesin and CLS reconstituted in the phospholipid liposome that mimics the native membrane environment. These results indicate that calmodulin does not bind directly to the transmembrane domain of L-selectin. Understanding the association of calmodulin with L-selectin helps to shed light on the mechanisms underlying regulation of ectodomain shedding.
Collapse
Affiliation(s)
- Wei Deng
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - John A. Putkey
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
37
|
Slavov N, Carey J, Linse S. Calmodulin transduces Ca2+ oscillations into differential regulation of its target proteins. ACS Chem Neurosci 2013; 4:601-12. [PMID: 23384199 DOI: 10.1021/cn300218d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Diverse physiological processes are regulated differentially by Ca(2+) oscillations through the common regulatory hub calmodulin. The capacity of calmodulin to combine specificity with promiscuity remains to be resolved. Here we propose a mechanism based on the molecular properties of calmodulin, its two domains with separate Ca(2+) binding affinities, and target exchange rates that depend on both target identity and Ca(2+) occupancy. The binding dynamics among Ca(2+), Mg(2+), calmodulin, and its targets were modeled with mass-action differential equations based on experimentally determined protein concentrations and rate constants. The model predicts that the activation of calcineurin and nitric oxide synthase depends nonmonotonically on Ca(2+)-oscillation frequency. Preferential activation reaches a maximum at a target-specific frequency. Differential activation arises from the accumulation of inactive calmodulin-target intermediate complexes between Ca(2+) transients. Their accumulation provides the system with hysteresis and favors activation of some targets at the expense of others. The generality of this result was tested by simulating 60 000 networks with two, four, or eight targets with concentrations and rate constants from experimentally determined ranges. Most networks exhibit differential activation that increases in magnitude with the number of targets. Moreover, differential activation increases with decreasing calmodulin concentration due to competition among targets. The results rationalize calmodulin signaling in terms of the network topology and the molecular properties of calmodulin.
Collapse
Affiliation(s)
| | | | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| |
Collapse
|
38
|
Brini M, Calì T, Ottolini D, Carafoli E. The plasma membrane calcium pump in health and disease. FEBS J 2013; 280:5385-97. [PMID: 23413890 DOI: 10.1111/febs.12193] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/04/2013] [Accepted: 02/13/2013] [Indexed: 12/12/2022]
Abstract
The Ca(2+) ATPases of the plasma membrane (PMCA pumps) export Ca(2+) from all eukaryotic cells. In mammals they are the products of four separate genes. PMCA types 1 and 4 are distributed ubiquitously; PMCA types 2 and 3 are restricted to some tissues, the most important being the nervous system. Alternative splicing at two sites greatly increases the number of pump isoforms. The two ubiquitous isoforms are no longer considered as only housekeeping pumps as they also perform tissue-specific functions. The PMCAs are classical P-type pumps, their reaction cycle repeating that of all other pumps of the family. Their 3D structure has not been solved, but molecular modeling on SERCA pump templates shows the essential structural pattern of the latter. PMCAs are regulated by calmodulin, which interacts with high affinity with their cytosolic C-terminal tail. A second calmodulin-binding domain with lower affinity is present in some splicing variants of the pump. The PMCAs are essential to the regulation of cellular Ca(2+), but the all-important Ca(2+) signal is ambivalent: defects in its control generate various pathologies, the most thoroughly studied being those of genetic origin. Genetic defects of PMCA function produce disease phenotypes: the best characterized is a form of deafness in mice and in humans linked to PMCA2 mutations. A cerebellar X-linked human ataxia has recently been found to be caused by a mutation in the calmodulin-binding domain of PMCA3.
Collapse
Affiliation(s)
- Marisa Brini
- Department of Comparative Biomedicine and Food Science, University of Padova, Italy
| | | | | | | |
Collapse
|
39
|
Liu C, Weng H, Chen L, Yang S, Wang H, Debnath G, Guo X, Wu L, Mohandas N, An X. Impaired intestinal calcium absorption in protein 4.1R-deficient mice due to altered expression of plasma membrane calcium ATPase 1b (PMCA1b). J Biol Chem 2013; 288:11407-15. [PMID: 23460639 DOI: 10.1074/jbc.m112.436659] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Protein 4.1R was first identified in the erythrocyte membrane skeleton. It is now known that the protein is expressed in a variety of epithelial cell lines and in the epithelia of many tissues, including the small intestine. However, the physiological function of 4.1R in the epithelial cells of the small intestine has not so far been explored. Here, we show that 4.1R knock-out mice exhibited a significantly impaired small intestinal calcium absorption that resulted in secondary hyperparathyroidism as evidenced by increased serum 1,25-(OH)2-vitamin D3 and parathyroid hormone levels, decreased serum calcium levels, hyperplasia of the parathyroid, and demineralization of the bones. 4.1R is located on the basolateral membrane of enterocytes, where it co-localizes with PMCA1b (plasma membrane calcium ATPase 1b). Expression of PMCA1b in enterocytes was decreased in 4.1(-/-) mice. 4.1R directly associated with PMCA1b, and the association involved the membrane-binding domain of 4.1R and the second intracellular loop and C terminus of PMCA1b. Our findings have enabled us to define a functional role for 4.1R in small intestinal calcium absorption through regulation of membrane expression of PMCA1b.
Collapse
Affiliation(s)
- Congrong Liu
- Red Cell Physiology Laboratory, New York Blood Center, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kumar V, Chichili VPR, Tang X, Sivaraman J. A novel trans conformation of ligand-free calmodulin. PLoS One 2013; 8:e54834. [PMID: 23382982 PMCID: PMC3558517 DOI: 10.1371/journal.pone.0054834] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 12/19/2012] [Indexed: 11/24/2022] Open
Abstract
Calmodulin (CaM) is a highly conserved eukaryotic protein that binds specifically to more than 100 target proteins in response to calcium (Ca2+) signal. CaM adopts a considerable degree of structural plasticity to accomplish this physiological role; however, the nature and extent of this plasticity remain to be fully understood. Here, we report the crystal structure of a novel trans conformation of ligand-free CaM where the relative disposition of two lobes of CaM is different, a conformation to-date not reported. While no major structural changes were observed in the independent N- and C-lobes as compared with previously reported structures of Ca2+/CaM, the central helix was tilted by ∼90° at Arg75. This is the first crystal structure of CaM to show a drastic conformational change in the central helix, and reveals one of several possible conformations of CaM to engage with its binding partner.
Collapse
Affiliation(s)
- Veerendra Kumar
- Department of Biological Sciences, National University of Singapore, Republic of Singapore, Republic of Singapore
| | | | - Xuhua Tang
- Department of Biological Sciences, National University of Singapore, Republic of Singapore, Republic of Singapore
| | - J. Sivaraman
- Department of Biological Sciences, National University of Singapore, Republic of Singapore, Republic of Singapore
- * E-mail:
| |
Collapse
|
41
|
Nunomura W, Jinbo Y, Isozumi N, Ohki S, Izumi Y, Matsushima N, Takakuwa Y. Novel Mechanism of Regulation of Protein 4.1G Binding Properties Through Ca2+/Calmodulin-Mediated Structural Changes. Cell Biochem Biophys 2013; 66:545-58. [DOI: 10.1007/s12013-012-9502-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Structural characterization of the interaction of human lactoferrin with calmodulin. PLoS One 2012; 7:e51026. [PMID: 23236421 PMCID: PMC3516504 DOI: 10.1371/journal.pone.0051026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 10/29/2012] [Indexed: 12/21/2022] Open
Abstract
Lactoferrin (Lf) is an 80 kDa, iron (Fe3+)-binding immunoregulatory glycoprotein secreted into most exocrine fluids, found in high concentrations in colostrum and milk, and released from neutrophil secondary granules at sites of infection and inflammation. In a number of cell types, Lf is internalized through receptor-mediated endocytosis and targeted to the nucleus where it has been demonstrated to act as a transcriptional trans-activator. Here we characterize human Lf’s interaction with calmodulin (CaM), a ubiquitous, 17 kDa regulatory calcium (Ca2+)-binding protein localized in the cytoplasm and nucleus of activated cells. Due to the size of this intermolecular complex (∼100 kDa), TROSY-based NMR techniques were employed to structurally characterize Ca2+-CaM when bound to intact apo-Lf. Both CaM’s backbone amides and the ε-methyl group of key methionine residues were used as probes in chemical shift perturbation and cross-saturation experiments to define the binding interface of apo-Lf on Ca2+-CaM. Unlike the collapsed conformation through which Ca2+-CaM binds the CaM-binding domains of its classical targets, Ca2+-CaM assumes an extended structure when bound to apo-Lf. Apo-Lf appears to interact predominantly with the C-terminal lobe of Ca2+-CaM, enabling the N-terminal lobe to potentially bind another target. Our use of intact apo-Lf has made possible the identification of a secondary interaction interface, removed from CaM’s primary binding domain. Secondary interfaces play a key role in the target’s response to CaM binding, highlighting the importance of studying intact complexes. This solution-based approach can be applied to study other regulatory calcium-binding EF-hand proteins in intact intermolecular complexes.
Collapse
|
43
|
Liu Y, Zheng X, Mueller GA, Sobhany M, DeRose EF, Zhang Y, London RE, Birnbaumer L. Crystal structure of calmodulin binding domain of orai1 in complex with Ca2+ calmodulin displays a unique binding mode. J Biol Chem 2012; 287:43030-41. [PMID: 23109337 DOI: 10.1074/jbc.m112.380964] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Orai1 is a plasma membrane protein that in its tetrameric form is responsible for calcium influx from the extracellular environment into the cytosol in response to interaction with the Ca(2+)-depletion sensor STIM1. This is followed by a fast Ca(2+)·calmodulin (CaM)-dependent inhibition, resulting from CaM binding to an Orai1 region called the calmodulin binding domain (CMBD). The interaction between Orai1 and CaM at the atomic level remains unknown. Here, we report the crystal structure of a CaM·Orai1-CMBD complex showing one CMBD bound to the C-terminal lobe of CaM, differing from other CaM-target protein complexes, in which both N- and C-terminal lobes of CaM (CaM-N and CaM-C) are involved in target binding. Orai1-CMBD binds CaM-C mainly through hydrophobic interactions, primarily involving residue Trp(76) of Orai1-CMBD, which interacts with the hydrophobic pocket of CaM-C. However, NMR data, isothermal titration calorimetry data, and pulldown assays indicated that CaM-N and CaM-C both can bind Orai1-CMBD, with CaM-N having ∼4 times weaker affinity than CaM-C. Pulldown assays of a Orai1-CMBD(W76E) mutant, gel filtration chromatography data, and NOE signals indicated that CaM-N and CaM-C can each bind one Orai1-CMBD. Thus our studies support an unusual, extended 1:2 binding mode of CaM to Orai1-CMBDs, and quantify the affinity of Orai1 for CaM. We propose a two-step mechanism for CaM-dependent Orai1 inactivation initiated by binding of the C-lobe of CaM to the CMBD of one Orai1 followed by the binding of the N-lobe of CaM to the CMBD of a neighboring Orai1.
Collapse
Affiliation(s)
- Yanshun Liu
- Laboratory of Neurobiology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Irene D, Huang JW, Chung TY, Li FY, Tzen JTC, Lin TH, Chyan CL. Binding orientation and specificity of calmodulin to rat olfactory cyclic nucleotide-gated ion channel. J Biomol Struct Dyn 2012; 31:414-25. [PMID: 22877078 DOI: 10.1080/07391102.2012.703069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Calmodulin (CaM), the primary intracellular Ca(2+) receptor, regulates a large number of key enzymes and controls a wide spectrum of important biological responses. Recognition between CaM and its target sequence in rat olfactory cyclic nucleotide-gated ion channel (OLFp) was investigated by circular dichroism (CD), fluorescence, and NMR spectroscopy. Fluorescence data showed the OLFp tightly bound to CaM with a dissociation constant of 12 nM in a 1:1 stoichiometry. Far-UV CD data showed that approximately 60% of OLFp residues formed α-helical structures when associated with CaM. NMR data showed that most of the (15)N-(1)H HSQC cross-peaks of the (15)N-labeled CaM not only shifted but also split into two sets of peaks upon association with the OLFp. Our data indicated that the two distinct CaM/OLFp complexes existed simultaneously with stable structures that were not interexchangeable within the NMR time scale. In light of the palindromic sequence of OLFp (FQRIVRLVGVIRDW) for CaM targeting, we proposed that the helical OLFp with C2 symmetry may bind to CaM in two orientations. This hypothesis is supported by the observation that only one set of (15)N-(1)H HSQC cross-peaks of the (15)N-labeled CaM was detected upon association with OLFp-M13 chimeric peptide (OLFMp), a mutated OLFp lacking the palindromic feature. The binding specificity of OLFMp to CaM was restored when the palindromic feature was destroyed. Binding modes of CaM/OLFp and CaM/OLFMp simulated by molecular docking were in accord with their distinct patterns observed in HSQC spectra. Our studies suggest that the palindromic residues in OLFp are crucial for the orientation-specific recognition by CaM.
Collapse
Affiliation(s)
- Deli Irene
- Department of Chemistry, National Dong Hwa University, Hualien 974, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
45
|
Nagulapalli M, Parigi G, Yuan J, Gsponer J, Deraos G, Bamm VV, Harauz G, Matsoukas J, de Planque MRR, Gerothanassis IP, Babu MM, Luchinat C, Tzakos AG. Recognition pliability is coupled to structural heterogeneity: a calmodulin intrinsically disordered binding region complex. Structure 2012; 20:522-33. [PMID: 22405011 DOI: 10.1016/j.str.2012.01.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 12/01/2011] [Accepted: 01/03/2012] [Indexed: 11/18/2022]
Abstract
Protein interactions within regulatory networks should adapt in a spatiotemporal-dependent dynamic environment, in order to process and respond to diverse and versatile cellular signals. However, the principles governing recognition pliability in protein complexes are not well understood. We have investigated a region of the intrinsically disordered protein myelin basic protein (MBP(145-165)) that interacts with calmodulin, but that also promiscuously binds other biomolecules (membranes, modifying enzymes). To characterize this interaction, we implemented an NMR spectroscopic approach that calculates, for each conformation of the complex, the maximum occurrence based on recorded pseudocontact shifts and residual dipolar couplings. We found that the MBP(145-165)-calmodulin interaction is characterized by structural heterogeneity. Quantitative comparative analysis indicated that distinct conformational landscapes of structural heterogeneity are sampled for different calmodulin-target complexes. Such structural heterogeneity in protein complexes could potentially explain the way that transient and promiscuous protein interactions are optimized and tuned in complex regulatory networks.
Collapse
Affiliation(s)
- Malini Nagulapalli
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Berrocal M, Sepulveda MR, Vazquez-Hernandez M, Mata AM. Calmodulin antagonizes amyloid-β peptides-mediated inhibition of brain plasma membrane Ca(2+)-ATPase. Biochim Biophys Acta Mol Basis Dis 2012; 1822:961-9. [PMID: 22525477 DOI: 10.1016/j.bbadis.2012.02.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/09/2012] [Accepted: 02/14/2012] [Indexed: 10/28/2022]
Abstract
The synaptosomal plasma membrane Ca(2+)-ATPase (PMCA) plays an essential role in regulating intracellular Ca(2+) concentration in brain. We have recently found that PMCA is the only Ca(2+) pump in brain which is inhibited by amyloid-β peptide (Aβ), a neurotoxic peptide implicated in the pathology of Alzheimer's disease (AD) [1], but the mechanism of inhibition is lacking. In the present study we have characterized the inhibition of PMCA by Aβ. Results from kinetic assays indicate that Aβ aggregates are more potent inhibitors of PMCA activity than monomers. The inhibitory effect of Aβ could be blocked by pretreating the purified protein with Ca(2+)-calmodulin, the main endogenous activator of PMCA, and the activity of truncated PMCA lacking the calmodulin binding domain was not affected by Aβ. Dot-overlay experiments indicated a physical association of Aβ with PMCA and also with calmodulin. Thus, calmodulin could protect PMCA from inhibition by Aβ by burying exposed sites on PMCA, making them inaccessible to Aβ, and also by direct binding to the peptide. These results suggest a protective role of calmodulin against neuronal Ca(2+) dysregulation by PMCA inhibition induced by Aβ.
Collapse
Affiliation(s)
- Maria Berrocal
- Departmento de Bioquímica y Biogía Molecular y Genética, FAculta de Ciencias, Unviersidad de Extremadura, Avda de Elvas s/n, 06006 Badjaz, Sapin
| | | | | | | |
Collapse
|
47
|
Zhang Y, Li Z, Sacks DB, Ames JB. Structural basis for Ca2+-induced activation and dimerization of estrogen receptor α by calmodulin. J Biol Chem 2012; 287:9336-44. [PMID: 22275375 DOI: 10.1074/jbc.m111.334797] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The estrogen receptor α (ER-α) regulates expression of target genes implicated in development, metabolism, and breast cancer. Calcium-dependent regulation of ER-α is critical for activating gene expression and is controlled by calmodulin (CaM). Here, we present the NMR structures for the two lobes of CaM each bound to a localized region of ER-α (residues 287-305). A model of the complete CaM·ER-α complex was constructed by combining these two structures with additional data. The two lobes of CaM both compete for binding at the same site on ER-α (residues 292, 296, 299, 302, and 303), which explains why full-length CaM binds two molecules of ER-α in a 1:2 complex and stabilizes ER-α dimerization. Exposed glutamate residues in CaM (Glu(11), Glu(14), Glu(84), and Glu(87)) form salt bridges with key lysine residues in ER-α (Lys(299), Lys(302), and Lys(303)), which are likely to prevent ubiquitination at these sites and inhibit degradation of ER-α. Mutants of ER-α at the CaM-binding site (W292A and K299A) weaken binding to CaM, and I298E/K299D disrupts estrogen-induced transcription. CaM facilitates dimerization of ER-α in the absence of estrogen, and stimulation of ER-α by either Ca(2+) and/or estrogen may serve to regulate transcription in a combinatorial fashion.
Collapse
Affiliation(s)
- Yonghong Zhang
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
48
|
Calabrese AN, Speechley LA, Pukala TL. Characterisation of Calmodulin Structural Transitions by Ion Mobility Mass Spectrometry. Aust J Chem 2012. [DOI: 10.1071/ch12047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This study demonstrates the ability of travelling wave ion mobility-mass spectrometry to measure collision cross-sections of ions in the negative mode, using a calibration based approach. Here, negative mode ion mobility-mass spectrometry was utilised to understand structural transitions of calmodulin upon Ca2+ binding and complexation with model peptides melittin and the plasma membrane Ca2+ pump C20W peptide. Coexisting calmodulin conformers were distinguished on the basis of their mass and cross-section, and identified as relatively folded and unfolded populations, with good agreement in collision cross-section to known calmodulin geometries. Titration of calcium tartrate to physiologically relevant Ca2+ levels provided evidence for intermediately metalated species during the transition from apo- to holo-calmodulin, with collision cross-section measurements indicating that higher Ca2+ occupancy is correlated with more compact structures. The binding of two representative peptides which exemplify canonical compact (melittin) and extended (C20W) peptide-calmodulin binding models has also been interrogated by ion mobility mass spectrometry. Peptide binding to calmodulin involves intermediates with metalation states from 1–4 Ca2+, which demonstrate relatively collapsed structures, suggesting neither the existence of holo-calmodulin or a pre-folded calmodulin conformation is a prerequisite for binding target peptides or proteins. The biological importance of the different metal unsaturated calmodulin complexes, if any, is yet to be understood.
Collapse
|
49
|
Isvoran A, Badel A, Craescu CT, Miron S, Miteva MA. Exploring NMR ensembles of calcium binding proteins: perspectives to design inhibitors of protein-protein interactions. BMC STRUCTURAL BIOLOGY 2011; 11:24. [PMID: 21569443 PMCID: PMC3116463 DOI: 10.1186/1472-6807-11-24] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 05/12/2011] [Indexed: 02/04/2023]
Abstract
Background Disrupting protein-protein interactions by small organic molecules is nowadays a promising strategy employed to block protein targets involved in different pathologies. However, structural changes occurring at the binding interfaces make difficult drug discovery processes using structure-based drug design/virtual screening approaches. Here we focused on two homologous calcium binding proteins, calmodulin and human centrin 2, involved in different cellular functions via protein-protein interactions, and known to undergo important conformational changes upon ligand binding. Results In order to find suitable protein conformations of calmodulin and centrin for further structure-based drug design/virtual screening, we performed in silico structural/energetic analysis and molecular docking of terphenyl (a mimicking alpha-helical molecule known to inhibit protein-protein interactions of calmodulin) into X-ray and NMR ensembles of calmodulin and centrin. We employed several scoring methods in order to find the best protein conformations. Our results show that docking on NMR structures of calmodulin and centrin can be very helpful to take into account conformational changes occurring at protein-protein interfaces. Conclusions NMR structures of protein-protein complexes nowadays available could efficiently be exploited for further structure-based drug design/virtual screening processes employed to design small molecule inhibitors of protein-protein interactions.
Collapse
Affiliation(s)
- Adriana Isvoran
- MTi, Inserm U973 - University Paris Diderot, 35 rue Helene Brion, Bat, Lamarck, 75013 Paris, France
| | | | | | | | | |
Collapse
|
50
|
Ca2+-signaling, alternative splicing and endoplasmic reticulum stress responses. Neurochem Res 2011; 36:1198-211. [PMID: 21365449 DOI: 10.1007/s11064-011-0431-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2011] [Indexed: 01/01/2023]
Abstract
Ca(2+)-signaling, alternative splicing, and stress responses by the endoplasmic reticulum are three important cellular activities which can be strongly interconnected to alter the expression of protein isoforms in a tissue dependent manner or during development depending on the environmental conditions. This integrated network of signaling pathways permits a high degree of versatility and adaptation to metabolic, developmental and stress processes. Defects in its regulation may lead to cellular malfunction.
Collapse
|