1
|
Oliveira R, Pinho E, Sousa AL, DeStefano JJ, Azevedo NF, Almeida C. Improving aptamer performance with nucleic acid mimics: de novo and post-SELEX approaches. Trends Biotechnol 2021; 40:549-563. [PMID: 34756455 DOI: 10.1016/j.tibtech.2021.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022]
Abstract
Aptamers are structural single-stranded oligonucleotides generated in vitro to bind to a specific target molecule. Aptamers' versatility can be enhanced with nucleic acid mimics (NAMs) during or after a selection process, also known as systematic evolution of ligands by exponential enrichment (SELEX). We address advantages and limitations of the technologies used to generate NAM aptamers, especially the applicability of existing engineered polymerases to replicate NAMs and methodologies to improve aptamers after SELEX. We also discuss the limitations of existing methods for sequencing NAM sequences and bioinformatic tools to predict NAM aptamer structures. As a conclusion, we suggest that NAM aptamers might successfully compete with molecular tools based on proteins such as antibodies for future application.
Collapse
Affiliation(s)
- Ricardo Oliveira
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vairão, Vila do Conde, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Eva Pinho
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vairão, Vila do Conde, Portugal
| | - Ana Luísa Sousa
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vairão, Vila do Conde, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Jeffrey J DeStefano
- Cell Biology and Molecular Genetics, Bioscience Research Building, University of Maryland, College Park, MD 20742, USA
| | - Nuno Filipe Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Carina Almeida
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vairão, Vila do Conde, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
2
|
Warminski M, Kowalska J, Nowak E, Kubacka D, Tibble R, Kasprzyk R, Sikorski PJ, Gross JD, Nowotny M, Jemielity J. Structural Insights into the Interaction of Clinically Relevant Phosphorothioate mRNA Cap Analogs with Translation Initiation Factor 4E Reveal Stabilization via Electrostatic Thio-Effect. ACS Chem Biol 2021; 16:334-343. [PMID: 33439620 PMCID: PMC7901015 DOI: 10.1021/acschembio.0c00864] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
mRNA-based
therapies and vaccines constitute a disruptive technology
with the potential to revolutionize modern medicine. Chemically modified
5′ cap structures have provided access to mRNAs with superior
translational properties that could benefit the currently flourishing
mRNA field. Prime examples of compounds that enhance mRNA properties
are antireverse cap analog diastereomers that contain an O-to-S substitution
within the β-phosphate (β-S-ARCA D1 and D2), where D1
is used in clinically investigated mRNA vaccines. The compounds were
previously found to have high affinity for eukaryotic translation
initiation factor 4E (eIF4E) and augment translation in vitro and in vivo. However, the molecular basis for the
beneficial “thio-effect” remains unclear. Here, we employed
multiple biophysical techniques and captured 11 cap analog-eIF4E crystallographic
structures to investigate the consequences of the β-O-to-S or
-Se substitution on the interaction with eIF4E. We determined the SP/RP configurations
of β-S-ARCA and related compounds and obtained structural insights
into the binding. Unexpectedly, in both stereoisomers, the β-S/Se
atom occupies the same binding cavity between Lys162 and Arg157, indicating
that the key driving force for complex stabilization is the interaction
of negatively charged S/Se with positively charged amino acids. This
was observed for all structural variants of the cap and required significantly
different conformations of the triphosphate for each diastereomer.
This finding explains why both β-S-ARCA diastereomers have higher
affinity for eIF4E than unmodified caps. Binding affinities determined
for di-, tri-, and oligonucleotide cap analogs suggested that the
“thio-effect” was preserved in longer RNAs. Our observations
broaden the understanding of thiophosphate biochemistry and enable
the rational design of translationally active mRNAs and eIF4E-targeting
drugs.
Collapse
Affiliation(s)
- Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Elzbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Ksiecia Trojdena 4, 02-109 Warsaw, Poland
| | - Dorota Kubacka
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Ryan Tibble
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
| | - Renata Kasprzyk
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Pawel J. Sikorski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - John D. Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Ksiecia Trojdena 4, 02-109 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
3
|
Hara RI, Yoshino R, Nukaga Y, Maeda Y, Sato K, Wada T. Synthesis and properties of DNA oligomers containing stereopure phosphorothioate linkages and C-5 modified deoxyuridine derivatives. RSC Adv 2020; 10:34006-34013. [PMID: 35519073 PMCID: PMC9056737 DOI: 10.1039/d0ra06970a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/03/2020] [Indexed: 12/25/2022] Open
Abstract
Phosphorothioate (PS) modification, where a non-bridging oxygen atom in a phosphodiester linkage is replaced by a sulfur atom, is widely used to improve the properties of nucleic acid drugs. Each PS linkage can be found in two stereoisomers, Rp and Sp. Since one non-bridging oxygen or sulfur atom in Sp-PS or Rp-PS, respectively, is located close to the C-5 substituent of uracil in a DNA/RNA hybrid duplex, the combination of the stereochemistry of the PS linkages and the type of the C-5 modification of uracil bases is expected to affect the properties of the hybrid duplexes. Herein, DNA oligomers containing both stereopure phosphorohioate linkages and C-5 modified deoxyuridine derivatives were synthesized. The thermodynamic stability of the DNA/RNA and DNA/DNA duplexes and RNase H activity of the DNA/RNA duplexes were evaluated. The combination of 5-propynyluracil and (Rp)-PS linkages in a DNA strand could significantly increase the thermal stability of a DNA/RNA hybrid duplex without reducing its RNase H activity. The combination of 5-propynyluracil and (Rp)-PS linkages in a DNA strand could significantly increase the thermal stability of a DNA/RNA hybrid duplex.![]()
Collapse
Affiliation(s)
- Rintaro Iwata Hara
- Faculty of Pharmaceutical Sciences
- Tokyo University of Science
- Noda
- Japan
- Department of Neurology and Neurological Science
| | - Reijiro Yoshino
- Faculty of Pharmaceutical Sciences
- Tokyo University of Science
- Noda
- Japan
| | - Yohei Nukaga
- Faculty of Pharmaceutical Sciences
- Tokyo University of Science
- Noda
- Japan
| | - Yusuke Maeda
- Faculty of Pharmaceutical Sciences
- Tokyo University of Science
- Noda
- Japan
| | - Kazuki Sato
- Faculty of Pharmaceutical Sciences
- Tokyo University of Science
- Noda
- Japan
| | - Takeshi Wada
- Faculty of Pharmaceutical Sciences
- Tokyo University of Science
- Noda
- Japan
| |
Collapse
|
4
|
Seth PP, Tanowitz M, Bennett CF. Selective tissue targeting of synthetic nucleic acid drugs. J Clin Invest 2019; 129:915-925. [PMID: 30688661 DOI: 10.1172/jci125228] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Antisense oligonucleotides (ASOs) are chemically synthesized nucleic acid analogs designed to bind to RNA by Watson-Crick base pairing. Following binding to the targeted RNA, the ASO perturbs RNA function by promoting selective degradation of the targeted RNA, altering RNA intermediary metabolism, or disrupting function of the RNA. Most antisense drugs are chemically modified to enhance their pharmacological properties and for passive targeting of the tissues of therapeutic interest. Recent advances in selective tissue targeting have resulted in a newer generation of ASO drugs that are more potent and better tolerated than previous generations, spawning renewed interest in identifying selective ligands that enhance targeted delivery of ASOs to tissues.
Collapse
|
5
|
Gendaszewska-Darmach E, Węgłowska E, Walczak-Drzewiecka A, Karaś K. Nucleoside 5'-O-monophosphorothioates as modulators of the P2Y14 receptor and mast cell degranulation. Oncotarget 2018; 7:69358-69370. [PMID: 27732965 PMCID: PMC5342483 DOI: 10.18632/oncotarget.12541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/24/2016] [Indexed: 12/14/2022] Open
Abstract
Mast cells (MCs) are long-lived resident cells known for their substantial role in antigen-induced anaphylaxis and other immunoglobulin E-mediated allergic reactions as well as tumor promotion. MCs' activation results in the release of pro-inflammatory factors such as histamine, tryptase, tumor necrosis factor or carboxypeptidase A stored in secretory granules. IgE-dependent hypersensitivity has been thought to be the major pathway mediating degranulation of mast cells, but the P2Y14 nucleotide receptor activated by UDP-glucose (UDPG) may also enhance this process. In this study we identified thymidine 5'-O-monophosphorothioate (TMPS) as a molecule inhibiting UDPG-induced degranulation in a rat mast cell line (RBL-2H3). Additionally, TMPS diminished UDPG-evoked intracellular calcium mobilization in a stable HEK293T cell line overexpressing the P2Y14 receptor. Therefore, we demonstrate that the use of thymidine 5'-O-monophosphorothioate might be a novel anti-inflammatory approach based on preventingmast cell activation.
Collapse
Affiliation(s)
- Edyta Gendaszewska-Darmach
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego, Lodz, Poland
| | - Edyta Węgłowska
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego, Lodz, Poland
| | - Aurelia Walczak-Drzewiecka
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodowa, Lodz, Poland
| | - Kaja Karaś
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego, Lodz, Poland
| |
Collapse
|
6
|
Yang X, Dinuka Abeydeera N, Liu FW, Egli M. Origins of the enhanced affinity of RNA-protein interactions triggered by RNA phosphorodithioate backbone modification. Chem Commun (Camb) 2017; 53:10508-10511. [PMID: 28868553 PMCID: PMC5608642 DOI: 10.1039/c7cc05722a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The well-characterized interaction between the MS2 coat protein and its cognate RNA hairpin was used to evaluate changes in affinity as a result of phosphorodithioate (PS2) replacing phosphate by biolayer interferometry (BLI). A structure-based analysis of the data provides insights into the origins of the enhanced affinity of RNA-protein interactions triggered by the PS2 moiety.
Collapse
Affiliation(s)
- Xianbin Yang
- AM Biotechnologies, LLC, 12521 Gulf Freeway, Houston, TX 77034, USA.
| | | | | | | |
Collapse
|
7
|
Abeydeera ND, Egli M, Cox N, Mercier K, Conde JN, Pallan PS, Mizurini DM, Sierant M, Hibti FE, Hassell T, Wang T, Liu FW, Liu HM, Martinez C, Sood AK, Lybrand TP, Frydman C, Monteiro RQ, Gomer RH, Nawrot B, Yang X. Evoking picomolar binding in RNA by a single phosphorodithioate linkage. Nucleic Acids Res 2016; 44:8052-64. [PMID: 27566147 PMCID: PMC5041495 DOI: 10.1093/nar/gkw725] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/02/2016] [Accepted: 08/06/2016] [Indexed: 11/12/2022] Open
Abstract
RNA aptamers are synthetic oligonucleotide-based affinity molecules that utilize unique three-dimensional structures for their affinity and specificity to a target such as a protein. They hold the promise of numerous advantages over biologically produced antibodies; however, the binding affinity and specificity of RNA aptamers are often insufficient for successful implementation in diagnostic assays or as therapeutic agents. Strong binding affinity is important to improve the downstream applications. We report here the use of the phosphorodithioate (PS2) substitution on a single nucleotide of RNA aptamers to dramatically improve target binding affinity by ∼1000-fold (from nanomolar to picomolar). An X-ray co-crystal structure of the α-thrombin:PS2-aptamer complex reveals a localized induced-fit rearrangement of the PS2-containing nucleotide which leads to enhanced target interaction. High-level quantum mechanical calculations for model systems that mimic the PS2 moiety and phenylalanine demonstrate that an edge-on interaction between sulfur and the aromatic ring is quite favorable, and also confirm that the sulfur analogs are much more polarizable than the corresponding phosphates. This favorable interaction involving the sulfur atom is likely even more significant in the full aptamer-protein complexes than in the model systems.
Collapse
Affiliation(s)
| | - Martin Egli
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA
| | - Nehemiah Cox
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Karen Mercier
- Biointeractions Division, Horiba Scientific, Avenue de la Vauve - Passage JobinYvon CS 45002 Palaiseau, France
| | - Jonas Nascimento Conde
- Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941, Brazil
| | - Pradeep S Pallan
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA
| | - Daniella M Mizurini
- Instituto de Bioquimica Médica Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941, Brazil
| | - Malgorzata Sierant
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Lodz, Sienkiewicza 112, Poland
| | - Fatima-Ezzahra Hibti
- Biointeractions Division, Horiba Scientific, Avenue de la Vauve - Passage JobinYvon CS 45002 Palaiseau, France
| | - Tom Hassell
- MilliporeSigma, 9186 Six Pines, The Woodlands, TX 77380, USA
| | - Tianzhi Wang
- The Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Feng-Wu Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Science Avenue 100, Zhengzhou 450001, Henan, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Science Avenue 100, Zhengzhou 450001, Henan, China
| | - Carlos Martinez
- MilliporeSigma, 9186 Six Pines, The Woodlands, TX 77380, USA
| | - Anil K Sood
- Departments of Gynecologic Oncology and Cancer Biology, and Center for RNAi and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Terry P Lybrand
- Departments of Chemistry and Pharmacology, and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Chiraz Frydman
- Biointeractions Division, Horiba Scientific, Avenue de la Vauve - Passage JobinYvon CS 45002 Palaiseau, France
| | - Robson Q Monteiro
- Instituto de Bioquimica Médica Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941, Brazil
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Barbara Nawrot
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Lodz, Sienkiewicza 112, Poland
| | - Xianbin Yang
- AM Biotechnologies, LLC, 12521 Gulf Freeway, Houston, TX 77034, USA
| |
Collapse
|
8
|
The α-thio and/or β-γ-hypophosphate analogs of ATP as cofactors of T4 DNA ligase. Bioorg Chem 2016; 67:110-5. [PMID: 27337226 DOI: 10.1016/j.bioorg.2016.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/01/2016] [Accepted: 06/12/2016] [Indexed: 11/22/2022]
Abstract
T4 DNA ligase is one of the most commonly used enzymes for in vitro molecular research and a useful model for testing the ligation mechanism of ATP-dependent DNA ligation. To better understand the influence of phosphate group modifications in the ligation process, a series of ATP analogs were tested as cofactors. P-diastereomers of newly developed β,γ-hypo-ATPαS (thio) and β,γ-hypo-ATP (oxo) were synthesized and their activity was compared to ATPαS and their natural precursors. The evaluation of presented ATP analogs revealed the importance of the α-phosphate stereogenic center in ATPαS for the T4 DNA ligase activity and sheds new light on the interaction between ATP-dependent DNA ligases and cofactors.
Collapse
|
9
|
Karwowski BT. The Influence of the Terminal Phosphorothioate Diester Bond on the DNA Oxidation Process. An Experimental and Theoretical Approach. Molecules 2015; 20:12400-11. [PMID: 26184129 PMCID: PMC6331877 DOI: 10.3390/molecules200712400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/12/2015] [Accepted: 06/24/2015] [Indexed: 01/11/2023] Open
Abstract
In this study, the influence of the terminal phosphorothioate (PT) internucleotide bond in ds-DNA on the oxidation process was taken into consideration. The interaction of UV with the targeted oligonucleotide leads to an electron ejection and radical cation “hole” migration through the ds-DNA until it is trapped irreversibly in a suitable place. Phosphorothiate internucleotide bonds were detected in the bacterial genome; however, their role is still unclear. In this study a PAGE analysis of irradiated ds-DNA showed that the degradation rea ction was slowed down by the presence PT next to the anthraquinone moiety. Further, theoretical study shows that [RP] AQ-PS-dG can adopt a slightly lower ionisation potential energy and triplet excited state with a subsequent slightly higher adiabatic electron affinity value in comparison with [SP] AQ-PS-dG and AQ-PO-dG. Moreover, the energy gap between HOMO and LUMO, indicated the radical stabilisation properties of [RP] AQ-PS-dG, which can hinder the charge transfer through ds-DNA.
Collapse
Affiliation(s)
- Boleslaw T Karwowski
- Food Science Department, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland.
| |
Collapse
|
10
|
Guga P, Koziołkiewicz M. Phosphorothioate nucleotides and oligonucleotides - recent progress in synthesis and application. Chem Biodivers 2012; 8:1642-81. [PMID: 21922655 DOI: 10.1002/cbdv.201100130] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Piotr Guga
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Bioorganic Chemistry, Sienkiewicza 112, PL-90-363 Łódź.
| | | |
Collapse
|
11
|
Dominguez C, Schubert M, Duss O, Ravindranathan S, Allain FHT. Structure determination and dynamics of protein-RNA complexes by NMR spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2011; 58:1-61. [PMID: 21241883 DOI: 10.1016/j.pnmrs.2010.10.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 04/24/2010] [Indexed: 05/30/2023]
Affiliation(s)
- Cyril Dominguez
- Institute for Molecular Biology and Biophysics, ETH Zürich, CH-8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
12
|
Frederiksen JK, Piccirilli JA. Separation of RNA phosphorothioate oligonucleotides by HPLC. Methods Enzymol 2009; 468:289-309. [PMID: 20946775 DOI: 10.1016/s0076-6879(09)68014-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Phosphorothioate oligonucleotides are indispensable tools for probing nucleic acid structure and function and for the design of antisense therapeutics. Many applications involving phosphorothioates require site- and stereospecific substitution of individual pro-R(P) or pro-S(P) nonbridging oxygens. However, the traditional approach to phosphorothioate synthesis produces a mixture of R(P) and S(P) diastereomers that must be separated prior to use. High-performance liquid chromatography (HPLC) has proven to be a versatile method for effecting this separation, with both reversed phase (RP) and strong anion exchange (SAX) protocols yielding favorable results. In this chapter, we present several examples of successful separations of RNA phosphorothioate diastereomers by HPLC. We also report the use of complementary DNA oligonucleotides for the separation of poorly resolved phosphorothioate RNAs.
Collapse
Affiliation(s)
- John K Frederiksen
- The Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
13
|
An S, Barany G, Musier-Forsyth K. Evolution of acceptor stem tRNA recognition by class II prolyl-tRNA synthetase. Nucleic Acids Res 2008; 36:2514-21. [PMID: 18310681 PMCID: PMC2377447 DOI: 10.1093/nar/gkn063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Aminoacyl-tRNA synthetases (AARS) are an essential family of enzymes that catalyze the attachment of amino acids to specific tRNAs during translation. Previously, we showed that base-specific recognition of the tRNA(Pro) acceptor stem is critical for recognition by Escherichia coli prolyl-tRNA synthetase (ProRS), but not for human ProRS. To further delineate species-specific differences in acceptor stem recognition, atomic group mutagenesis was used to probe the role of sugar-phosphate backbone interactions in recognition of human tRNA(Pro). Incorporation of site-specific 2'-deoxynucleotides, as well as phosphorothioate and methylphosphonate modifications within the tRNA acceptor stem revealed an extensive network of interactions with specific functional groups proximal to the first base pair and the discriminator base. Backbone functional groups located at the base of the acceptor stem, especially the 2'-hydroxyl of A66, are also critical for aminoacylation catalytic efficiency by human ProRS. Therefore, in contrast to the bacterial system, backbone-specific interactions contribute significantly more to tRNA recognition by the human enzyme than base-specific interactions. Taken together with previous studies, these data show that ProRS-tRNA acceptor stem interactions have co-adapted through evolution from a mechanism involving 'direct readout' of nucleotide bases to one relying primarily on backbone-specific 'indirect readout'.
Collapse
Affiliation(s)
- Songon An
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
14
|
Ozlem Tastan Bishop A, Stelzl U, Pech M, Nierhaus KH. Characterization of RNA-protein interactions by phosphorothioate footprinting and its applications to the ribosome. Methods Mol Biol 2008; 488:129-151. [PMID: 18982288 DOI: 10.1007/978-1-60327-475-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Analogs of naturally occurring substances obtained by chemical modifications are powerful tools to study intra- and intermolecular interactions. We have used the phosphorothioate technique to analyze RNA-protein interactions, here the interactions of transfer RNAs (tRNAs) with the three ribosomal binding sites. We describe preparation and purification of thioated tRNAs, formation of functional complexes of programmed ribosomes with tRNAs, and the evaluation of the observed phosphorothioate footprints on the tRNAs.
Collapse
|
15
|
Stivers JT, Nagarajan R. Probing enzyme phosphoester interactions by combining mutagenesis and chemical modification of phosphate ester oxygens. Chem Rev 2007; 106:3443-67. [PMID: 16895336 PMCID: PMC2729714 DOI: 10.1021/cr050317n] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- James T Stivers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
16
|
Guga P, Boczkowska M, Janicka M, Maciaszek A, Kuberski S, Stec WJ. Unusual thermal stability of RNA/[RP-PS]-DNA/RNA triplexes containing a homopurine DNA strand. Biophys J 2007; 92:2507-15. [PMID: 17218459 PMCID: PMC1864848 DOI: 10.1529/biophysj.106.099283] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 12/21/2006] [Indexed: 11/18/2022] Open
Abstract
Homopurine deoxyribonucleoside phosphorothioates, as short as hexanucleotides and possessing all internucleotide linkages of RP configuration, form a triple helix with two RNA or 2'-OMe-RNA strands, with Watson-Crick and Hoogsteen complementarity. Melting temperature and fluorescence quenching experiments strongly suggest that the Hoogsteen RNA strand is parallel to the homopurine [RP-PS]-oligomer. Remarkably, these triplexes are thermally more stable than complexes formed by unmodified homopurine DNA molecules of the same sequence. The triplexes formed by phosphorothioate DNA dodecamers containing 4-6 dG residues are thermally stable at pH 7.4, although their stability increases significantly at pH 5.3. FTIR measurements suggest participation of the C2-carbonyl group of the pyrimidines in the stabilization of the triplex structure. Formation of triple-helix complexes with exogenously delivered PS-oligos may become useful for the reduction of RNA accessibility in vivo and, hence, selective suppression/inhibition of the translation process.
Collapse
Affiliation(s)
- Piotr Guga
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Łódź, Poland
| | | | | | | | | | | |
Collapse
|
17
|
Hobson D, Uhlenbeck OC. Alanine scanning of MS2 coat protein reveals protein-phosphate contacts involved in thermodynamic hot spots. J Mol Biol 2005; 356:613-24. [PMID: 16380130 DOI: 10.1016/j.jmb.2005.11.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 11/10/2005] [Accepted: 11/14/2005] [Indexed: 10/25/2022]
Abstract
The co-crystal structure of the MS2 coat protein dimer with its RNA operator reveals eight amino acid side-chains contacting seven of the RNA phosphates. These eight amino acids and five nearby control positions were individually changed to an alanine residue and the binding affinities of the mutant proteins to the RNA were determined. In general, the data agreed well with the crystal structure and previous RNA modification data. Interestingly, amino acid residues that are energetically most important for complex formation cluster in the middle of the RNA binding interface, forming thermodynamic hot spots, and are surrounded by energetically less relevant amino acids. In order to evaluate whether or not a given alanine mutation causes a global change in the RNA-protein interface, the affinities of the mutant proteins to RNAs containing one of 14 backbone modifications spanning the entire interface were determined. In three of six protein mutations tested, thermodynamic coupling between the site of the mutation and RNA groups that can be even more than 16 A away was detected. This suggests that, in some cases, the mutation may subtly alter the entire protein-RNA interface.
Collapse
Affiliation(s)
- Dagmar Hobson
- Department of Biochemistry, Molecular Biology, Cell Biology, Northwestern University 2205 Tech Drive, Hogan 2-100, Evanston, IL 60208, USA
| | | |
Collapse
|
18
|
Nawrot B, Rębowska B, Cieślińska K, Stec WJ. New approach to the synthesis of oligodeoxyribonucleotides modified with phosphorothioates of predetermined sense of P-chirality. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2005.07.158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Phelps SS, Joseph S. Non-bridging phosphate oxygen atoms within the tRNA anticodon stem-loop are essential for ribosomal A site binding and translocation. J Mol Biol 2005; 349:288-301. [PMID: 15890196 DOI: 10.1016/j.jmb.2005.03.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 03/16/2005] [Accepted: 03/22/2005] [Indexed: 10/25/2022]
Abstract
The conformation of the anticodon stem-loop of tRNAs required for correct decoding by the ribosome depends on intramolecular and intermolecular interactions that are independent of the tRNA nucleotide sequence. Non-bridging phosphate oxygen atoms have been shown to be critical for the structure and function of several RNAs. However, little is known about the role they play in ribosomal A site binding and translocation of tRNA to the P site. Here, we show that non-bridging phosphate oxygen atoms within the tRNA anticodon stem-loop at positions 33, 35, and 37 are important for A site binding. Those at positions 34 and 36 are not necessary for binding, but are essential for translocation. Our results correlate with structural data, indicating that position 34 interacts with the highly conserved 16S rRNA base G966 and position 36 interacts with the universally conserved tRNA base U33 during translocation to the P site.
Collapse
Affiliation(s)
- Steven S Phelps
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0314, USA
| | | |
Collapse
|
20
|
Horn WT, Convery MA, Stonehouse NJ, Adams CJ, Liljas L, Phillips SEV, Stockley PG. The crystal structure of a high affinity RNA stem-loop complexed with the bacteriophage MS2 capsid: further challenges in the modeling of ligand-RNA interactions. RNA (NEW YORK, N.Y.) 2004; 10:1776-1782. [PMID: 15496523 PMCID: PMC1370665 DOI: 10.1261/rna.7710304] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Accepted: 08/16/2004] [Indexed: 05/24/2023]
Abstract
We have determined the structure to 2.8 A of an RNA aptamer (F5), containing 2'-deoxy-2-aminopurine (2AP) at the -10 position, complexed with MS2 coat protein by soaking the RNA into precrystallised MS2 capsids. The -10 position of the RNA is an important determinant of binding affinity for coat protein. Adenine at this position in other RNA stem-loops makes three hydrogen bonds to protein functional groups. Substituting 2AP for the -10 adenine in the F5 aptamer yields an RNA with the highest yet reported affinity for coat protein. The refined X-ray structure shows that the 2AP base makes an additional hydrogen bond to the protein compared to adenine that is presumably the principal origin of the increased affinity. There are also slight changes in phosphate backbone positions compared to unmodified F5 that probably also contribute to affinity. Such phosphate movements are common in structures of RNAs bound to the MS2 T = 3 protein shell and highlight problems for de novo design of RNA binding ligands.
Collapse
Affiliation(s)
- Wilf T Horn
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
21
|
May JP, Ting R, Lermer L, Thomas JM, Roupioz Y, Perrin DM. Covalent Schiff base catalysis and turnover by a DNAzyme: a M2+ -independent AP-endonuclease mimic. J Am Chem Soc 2004; 126:4145-56. [PMID: 15053604 DOI: 10.1021/ja037625s] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A DNAzyme, synthetically modified with both primary amines and imidazoles, is found to act as a M2+ -independent AP lyase-endonuclease. In the course of the cleavage reaction, this DNAzyme forms a covalent Schiff base intermediate with an abasic site on a complementary oligodeoxyribonucleotide. This intermediate, which is inferred from NaCNBH3 trapping as well as cyanide inhibition, does not evidently accumulate because the second step, dehydrophosphorylative elimination, is fast compared to Schiff base formation. The 5'-product that remains linked to the catalyst hydrolyzes slowly to regenerate free catalyst. The use of duly modified DNAzymes to perform Schiff base catalysis demonstrates the value of modified nucleotides for enhancing the catalytic repertoire of nucleic acids. This work suggests that DNAzymes will be capable of catalyzing aldol condensation reactions.
Collapse
Affiliation(s)
- Jonathan P May
- Department of Chemistry, The University of British Columbia, Vancouver, B.C., V6T-1Z1 Canada
| | | | | | | | | | | |
Collapse
|
22
|
Vaish NK, Kossen K, Andrews LE, Pasko C, Seiwert SD. Monitoring protein modification with allosteric ribozymes. Methods 2004; 32:428-36. [PMID: 15003605 DOI: 10.1016/j.ymeth.2003.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2003] [Indexed: 10/26/2022] Open
Abstract
An allosteric ribozyme is an RNA-based enzyme (ribozyme) whose catalytic activity is modulated by molecular recognition of a protein. The direct coupling of a detectable catalytic event to molecular recognition by an allosteric ribozyme enables simple assays for quantitative protein detection. Most significantly, the mode of development and molecular recognition characteristics of allosteric ribozymes are fundamentally different from antibodies, providing them with functional characteristics that complement those of antibodies. Allosteric ribozymes can be developed using native proteins and, therefore, are often sensitive to protein conformation. In contrast, antibodies tend to recognize a series of adjacent amino acids as a consequence of antigen presentation and typically are not sensitive to protein conformation. Unlike antibody development, the development of allosteric ribozymes is a completely in vitro process that allows the specificity of an allosteric ribozyme to be tightly controlled. These significant differences from antibodies allow the pre-programmed development of conformation-state-specific protein detection reagents that can be used to investigate the activation-state of signal transduction components.
Collapse
Affiliation(s)
- Narendra K Vaish
- Sirna Therapeutics, Inc, 2950 Wilderness Place, Boulder, CO 80301, USA.
| | | | | | | | | |
Collapse
|
23
|
Li PTX, Gollnick P. Characterization of a trp RNA-binding Attenuation Protein (TRAP) Mutant with Tryptophan Independent RNA Binding Activity. J Mol Biol 2004; 335:707-22. [PMID: 14687568 DOI: 10.1016/j.jmb.2003.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
TRAP (trp RNA-binding attenuation protein) is an 11 subunit RNA-binding protein that regulates expression of genes involved in tryptophan metabolism (trp) in Bacillus subtilis in response to changes in intracellular tryptophan concentration. When activated by binding up to 11 tryptophan residues, TRAP binds to the mRNAs of several trp genes and down-regulates their expression. Recently, a TRAP mutant was found that binds RNA in the absence of tryptophan. In this mutant protein, Thr30, which is part of the tryptophan-binding site, is replaced with Val (T30V). We have compared the RNA-binding properties of T30V and wild-type (WT) TRAP, as well as of a series of hetero-11-mers containing mixtures of WT and T30V TRAP subunits. The most significant difference between the interaction of T30V and WT TRAP with RNA is that the affinity of T30V TRAP is more dependent on ionic strength. Analysis of the hetero-11-mers allowed us to examine how subunits interact within an 11-mer with regard to binding to tryptophan or RNA. Our data suggest that individual subunits retain properties similar to those observed when they are in homo-11-mers and that individual G/UAG triplets within the RNA can bind to TRAP differently.
Collapse
Affiliation(s)
- Pan T X Li
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260, USA
| | | |
Collapse
|
24
|
Abstract
This review describes some of the contributions of chemistry to the RNA field with a personal bias towards the phosphorothioate modification and the derivatives at the ribose 2'-position. The usefulness of these modifications is discussed and documented with some examples.
Collapse
Affiliation(s)
- F Eckstein
- Max-Planck-Institut für experimentelle Medizin, Hermann-Rein-Str. 3, 37075 Göttingen, Germany.
| |
Collapse
|
25
|
Affiliation(s)
- S Loverix
- Dienst Ultrastructuur, Instituut voor Moleculaire Biologie, Vrije Universiteit Brussel, B-1640 Sint-Genesius-Rode, Belgium
| | | |
Collapse
|
26
|
Rox C, Feltens R, Pfeiffer T, Hartmann RK. Potential contact sites between the protein and RNA subunit in the Bacillus subtilis RNase P holoenzyme. J Mol Biol 2002; 315:551-60. [PMID: 11812129 DOI: 10.1006/jmbi.2001.5261] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have detected by nucleotide analog interference mapping (NAIM) AMPalphaS and IMPalphaS modifications in Bacillus subtilis RNase P RNA that interfere with binding of the homologous protein subunit. Interference as well as some enhancement effects were clustered in two main areas, in P10.1a/L10.1 and P12 of the specificity domain (cluster 1, domain I) and in P2, P3, P15.1, J18/2 and J19/4 of the catalytic domain (cluster 2a, domain II). Minor interferences in P1 and P19 and a strong and weak enhancement effect in P19 represent a third area located in domain II (cluster 2b). Our results suggest that P3, P2-J18/2 and J19/4 are key elements for anchoring of the protein to the catalytic domain close to the scissile phosphodiester in enzyme-substrate complexes. Sites of interference or enhancement in clusters 1 and 2a are located at distances between 65 and 130 A from each other in the current 3D model of a full-length RNase P RNA-substrate complex. Taking into account that the RNase P protein monomer can bridge a maximum distance of about 40 A, simultaneous direct contacts to the two aforementioned potential RNA-binding areas would be incompatible with our current understanding of bacterial RNase P RNA architecture. Our findings suggest that the current 3D model has to be rearranged in order to reduce the distance between clusters 1 and 2a. Alternatively, based on the recent finding that B. subtilis RNase P forms a tetramer consisting of two protein and two RNA subunits, cluster 1 may reflect one protein contact site in domain I, and cluster 2a a separate one in domain II.
Collapse
Affiliation(s)
- Christoph Rox
- Institut für Biochemie, Medizinische Universität zu Lübeck, Ratzeburger Allee 160, Lübeck, D-23538, Germany
| | | | | | | |
Collapse
|
27
|
Recent Advances in Stereocontrolled Synthesis of P-Chiral Analogues of Biophosphates. Top Curr Chem (Cham) 2002. [DOI: 10.1007/3-540-45731-3_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
28
|
Abstract
The interaction between the MS2 bacteriophage coat protein homodimer and its cognate RNA hairpin is facilitated by 21 different RNA-protein contacts. In one of these contacts, the 2'-hydroxyl group at ribose -5 of the RNA acts as a hydrogen bond donor to Glu63 in one subunit of the protein. Previous experiments showed that substitution of ribose -5 with deoxyribose resulted in a 24-fold decrease in binding affinity between RNA and protein. Using a protein where the two MS2 monomers were fused to increase stability, the contribution of this contact to the overall binding affinity was investigated by site-directed mutagenesis. When Glu63 was substituted with glutamine, aspartate, or alanine, the binding affinity of the hairpin for the protein was weakened by 12 to 100-fold, similar to that observed with deoxyribose at position -5. However, the specificity of the three mutant proteins for RNAs with various modifications at the 2'-position of ribose -5 differed dramatically. While the Glu63Asp protein resembled the wild-type protein in preferring the 2'-hydroxyl group over a proton or a bulky 2'-substituent, both the Glu63Ala and Glu63Gln proteins preferred bulky 2'-substituents over the 2'-hydroxyl group by more than 100-fold. These experiments emphasize the ease with which the specificity of a protein-nucleic acid interaction can be changed at thermodynamically important sites.
Collapse
Affiliation(s)
- D Dertinger
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA
| | | | | |
Collapse
|
29
|
Powell AJ, Peabody DS. Asymmetric interactions in the adenosine-binding pockets of the MS2 coat protein dimer. BMC Mol Biol 2001; 2:6. [PMID: 11504563 PMCID: PMC37355 DOI: 10.1186/1471-2199-2-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2001] [Accepted: 07/25/2001] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The X-ray structure of the MS2 coat protein-operator RNA complex reveals the existence of quasi-synmetric interactions of adenosines -4 and -10 in pockets formed on different subunits of the coat protein dimer. Both pockets utilize the same five amino acid residues, namely Val29, Thr45, Ser47, Thr59, and Lys61. We call these sites the adenosine-binding pockets. RESULTS We present here a heterodimer complementation analysis of the contributions of individual A-pocket amino acids to the binding of A-4 and A-10 in different halves of the dimer. Various substitutions of A-pocket residues were introduced into one half of single-chain coat protein heterodimers where they were tested for their abilities to complement Y85H or T91I substitutions (defects in the A-4 and A-10 half-sites, respectively) present in the other dimer half. CONCLUSIONS These experiments provide functional tests of interactions predicted from structural analyses, demonstrating the importance of certain amino acid-nucleotide contacts observed in the crystal structure, and showing that others make little or no contribution to the stability of the complex. In summary, Val29 and Lys61 form important stabilizing interactions with both A-4 and A-10. Meanwhile, Ser47 and Thr59 interact primarily with A-10. The important interactions with Thr45 are restricted to A-4.
Collapse
Affiliation(s)
- Amy J Powell
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131, USA
| | - David S Peabody
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131, USA
| |
Collapse
|
30
|
Mou TC, Gray CW, Terwilliger TC, Gray DM. Ff gene 5 protein has a high binding affinity for single-stranded phosphorothioate DNA. Biochemistry 2001; 40:2267-75. [PMID: 11329296 DOI: 10.1021/bi002136f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The gene 5 protein (g5p) of Ff bacteriophages is a well-studied model ssDNA-binding protein that binds cooperatively to the Ff ssDNA genome and single-stranded polynucleotides. Its affinity, K omega (the intrinsic binding constant times a cooperativity factor), can differ by several orders of magnitude for ssDNAs of different nearest-neighbor base compositions [Mou, T. C., Gray, C. W., and Gray, D. M. (1999) Biophys. J. 76, 1537-1551]. We found that the DNA backbone can also dramatically affect the binding affinity. The K omega for binding phosphorothioate-modified S-d(A)(36) was >300-fold higher than for binding unmodified P-d(A)(36) at 0.2 M NaCl. CD titrations showed that g5p bound phosphorothioate-modified oligomers with the same stoichiometry as unmodified oligomers. The CD spectrum of S-d(A)(36) underwent the same qualitative change upon protein binding as did the spectrum of unmodified DNA, and the phosphorothioate-modified DNA appeared to bind in the normal g5p binding site. Oligomers of d(A)(36) with different proportions of phosphorothioate nucleotides had binding affinities and CD perturbations intermediate to those of the fully modified and unmodified sequences. The influence of phosphorothioation on binding affinity was nearly proportional to the extent of the modification, with a small nearest-neighbor dependence. These and other results using d(ACC)(12) oligomers and mutant proteins indicated that the increased binding affinity of g5p for phosphorothioate DNA was not a polyelectrolyte effect and probably was not an effect due to the altered nucleic acid structure, but was more likely a general effect of the properties of the sulfur in the context of the phosphorothioate group.
Collapse
Affiliation(s)
- T C Mou
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Box 830688, Richardson, Texas 75083-0688, USA
| | | | | | | |
Collapse
|
31
|
Seiwert SD, Stines Nahreini T, Aigner S, Ahn NG, Uhlenbeck OC. RNA aptamers as pathway-specific MAP kinase inhibitors. CHEMISTRY & BIOLOGY 2000; 7:833-43. [PMID: 11094337 DOI: 10.1016/s1074-5521(00)00032-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND In eukaryotic cells, many intracellular signaling pathways have closely related mitogen activated protein kinase (MAPK) paralogs as central components. Although MAPKs are therefore obvious targets to control the cellular responses resulting from the activation of these signaling pathways, the development of inhibitors which target specific cell signaling pathways involving MAPKs has proven difficult. RESULTS We used an RNA combinatorial approach to isolate RNAs that inhibit the in vitro phosphorylation activity of extracellular regulated kinase 2 (ERK2). These inhibitors block phosphorylation by ERK1 and ERK2, but do not inhibit Jun N-terminal kinase or p38 MAPKs. Kinetic analysis indicates these inhibitors function at high picomolar concentrations through the steric exclusion of substrate and ATP binding. In one case, we identified a compact RNA structural domain responsible for inhibition. CONCLUSIONS RNA reagents can selectively recognize and inhibit MAPKs involved in a single signal transduction pathway. The methodology described here is readily generalizable, and can be used to develop inhibitors of MAPKs involved in other signal transduction pathways. Such reagents may be valuable tools to analyze and distinguish homologous effectors which regulate distinct signaling responses.
Collapse
Affiliation(s)
- S D Seiwert
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309-0215, USA.
| | | | | | | | | |
Collapse
|
32
|
Boczkowska M, Guga P, Karwowski B, Maciaszek A. Effect of P-chirality of internucleotide bonds on B-Z conversion of stereodefined self-complementary phosphorothioate oligonucleotides of the [PS]-d(CG)4 and [PS]-d(GC)4 series. Biochemistry 2000; 39:11057-64. [PMID: 10998243 DOI: 10.1021/bi000638n] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Diastereomerically pure, partially modified (in selected positions) or fully modified phosphorothioate oligomers of the [PS]-d(CG)(4) and [PS]-d(GC)(4) series were investigated with respect to their ability to adopt the left-handed conformation at high sodium chloride concentration. NaCl induces the B-Z transition of [All-S(P)R(P)-PS]-d(CG)(4) with a midpoint of transition at ca. 2 M, which is approximately 1 M less than for unmodified d(CG)(4). Also, [All-R(P)S(P)-PS]-d(GC)(4) at 5 M NaCl converts to the Z form to the extent of ca. 55%, while the unmodified d(GC)(4) counterpart does not convert at all. This enhanced ability of stereodefined phosphorothioate oligomers to adopt the Z conformation is discussed in terms of already known structural factors (hydrogen bonding and water bridges) facilitating the B-Z transition, identified for unmodified d(CG)(n) oligonucleotides. By CD spectroscopy, the [All-S(P)-PS]-d(CG)(4) oligomer at a NaCl concentration higher than 0.01 M adopts a unique conformation as assessed from the presence of an additional negative band centered at 282 nm.
Collapse
Affiliation(s)
- M Boczkowska
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 L-ódz, Poland.
| | | | | | | |
Collapse
|