1
|
Valenzuela Nieto G, Jara R, Watterson D, Modhiran N, Amarilla AA, Himelreichs J, Khromykh AA, Salinas-Rebolledo C, Pinto T, Cheuquemilla Y, Margolles Y, López González Del Rey N, Miranda-Chacon Z, Cuevas A, Berking A, Deride C, González-Moraga S, Mancilla H, Maturana D, Langer A, Toledo JP, Müller A, Uberti B, Krall P, Ehrenfeld P, Blesa J, Chana-Cuevas P, Rehren G, Schwefel D, Fernandez LÁ, Rojas-Fernandez A. Potent neutralization of clinical isolates of SARS-CoV-2 D614 and G614 variants by a monomeric, sub-nanomolar affinity nanobody. Sci Rep 2021; 11:3318. [PMID: 33558635 PMCID: PMC7870875 DOI: 10.1038/s41598-021-82833-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Despite unprecedented global efforts to rapidly develop SARS-CoV-2 treatments, in order to reduce the burden placed on health systems, the situation remains critical. Effective diagnosis, treatment, and prophylactic measures are urgently required to meet global demand: recombinant antibodies fulfill these requirements and have marked clinical potential. Here, we describe the fast-tracked development of an alpaca Nanobody specific for the receptor-binding-domain (RBD) of the SARS-CoV-2 Spike protein with potential therapeutic applicability. We present a rapid method for nanobody isolation that includes an optimized immunization regimen coupled with VHH library E. coli surface display, which allows single-step selection of Nanobodies using a simple density gradient centrifugation of the bacterial library. The selected single and monomeric Nanobody, W25, binds to the SARS-CoV-2 S RBD with sub-nanomolar affinity and efficiently competes with ACE-2 receptor binding. Furthermore, W25 potently neutralizes SARS-CoV-2 wild type and the D614G variant with IC50 values in the nanomolar range, demonstrating its potential as antiviral agent.
Collapse
Affiliation(s)
| | - Ronald Jara
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Daniel Watterson
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, Australia
- The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, Australia
- The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Alberto A Amarilla
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Johanna Himelreichs
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Alexander A Khromykh
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | | | - Teresa Pinto
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Yorka Cheuquemilla
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Berking Biotechnology, Valdivia, Chile
| | - Yago Margolles
- Department of Microbial Biotechnology, National Biotechnology Center, Superior Council of Scientific Research, Madrid, Spain
| | | | - Zaray Miranda-Chacon
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Alexei Cuevas
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | | | - Camila Deride
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Institute of Veterinary Clinical Sciences, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | | | - Héctor Mancilla
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Daniel Maturana
- NanoTemper Technologies GmbH, Floessergasse 4, 81369, Munich, Germany
| | - Andreas Langer
- NanoTemper Technologies GmbH, Floessergasse 4, 81369, Munich, Germany
| | - Juan Pablo Toledo
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Ananda Müller
- Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
- Institute of Veterinary Clinical Sciences, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Benjamín Uberti
- Institute of Veterinary Clinical Sciences, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Paola Krall
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Department of Pediatrics and Children's Surgery Oriente, Universidad de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Institute of Anatomy, Histology, and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile
| | - Javier Blesa
- HM CINAC, Hospital Universitario HM Puerta del Sur, Mostoles, 28938, Madrid, Spain
| | - Pedro Chana-Cuevas
- CETRAM & Faculty of Medical Science, Universidad de Santiago de Chile, Santiago, Chile
| | - German Rehren
- Technology Transfer and Licensing Office, Universidad Austral de Chile, Valdivia, Chile
| | - David Schwefel
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Luis Ángel Fernandez
- Department of Microbial Biotechnology, National Biotechnology Center, Superior Council of Scientific Research, Madrid, Spain
| | - Alejandro Rojas-Fernandez
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.
- Berking Biotechnology, Valdivia, Chile.
- Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile.
- Institute of Philosophy and Complexity Sciences, Santiago, Chile.
| |
Collapse
|
2
|
Sindeeva OA, Verkhovskii RA, Sarimollaoglu M, Afanaseva GA, Fedonnikov AS, Osintsev EY, Kurochkina EN, Gorin DA, Deyev SM, Zharov VP, Galanzha EI. New Frontiers in Diagnosis and Therapy of Circulating Tumor Markers in Cerebrospinal Fluid In Vitro and In Vivo. Cells 2019; 8:E1195. [PMID: 31581745 PMCID: PMC6830088 DOI: 10.3390/cells8101195] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/21/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023] Open
Abstract
One of the greatest challenges in neuro-oncology is diagnosis and therapy (theranostics) of leptomeningeal metastasis (LM), brain metastasis (BM) and brain tumors (BT), which are associated with poor prognosis in patients. Retrospective analyses suggest that cerebrospinal fluid (CSF) is one of the promising diagnostic targets because CSF passes through central nervous system, harvests tumor-related markers from brain tissue and, then, delivers them into peripheral parts of the human body where CSF can be sampled using minimally invasive and routine clinical procedure. However, limited sensitivity of the established clinical diagnostic cytology in vitro and MRI in vivo together with minimal therapeutic options do not provide patient care at early, potentially treatable, stages of LM, BM and BT. Novel technologies are in demand. This review outlines the advantages, limitations and clinical utility of emerging liquid biopsy in vitro and photoacoustic flow cytometry (PAFC) in vivo for assessment of CSF markers including circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), microRNA (miRNA), proteins, exosomes and emboli. The integration of in vitro and in vivo methods, PAFC-guided theranostics of single CTCs and targeted drug delivery are discussed as future perspectives.
Collapse
Affiliation(s)
- Olga A. Sindeeva
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
| | - Roman A. Verkhovskii
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
| | - Mustafa Sarimollaoglu
- Arkansas Nanomedicine Center & Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Galina A. Afanaseva
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
- Saratov State Medical University, 112 Bolshaya Kazachia St., 410012 Saratov, Russia
| | - Alexander S. Fedonnikov
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
- Saratov State Medical University, 112 Bolshaya Kazachia St., 410012 Saratov, Russia
| | - Evgeny Yu. Osintsev
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
- Saratov State Medical University, 112 Bolshaya Kazachia St., 410012 Saratov, Russia
| | - Elena N. Kurochkina
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
- Saratov State Medical University, 112 Bolshaya Kazachia St., 410012 Saratov, Russia
| | - Dmitry A. Gorin
- Laboratory of Biophotonics, Skolkovo Institute of Science and Technology, 3 Nobelya Str., 121205 Moscow, Russia;
| | - Sergey M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia;
| | - Vladimir P. Zharov
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
- Arkansas Nanomedicine Center & Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Ekaterina I. Galanzha
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
- Laboratory of Lymphatic Research, Diagnosis and Therapy (LDT), University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
3
|
Heat denaturation of the antibody, a multi-domain protein. Biophys Rev 2017; 10:255-258. [PMID: 29256117 DOI: 10.1007/s12551-017-0361-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/19/2017] [Indexed: 02/03/2023] Open
Abstract
The antibody is one of the most well-studied multi-domain proteins because of its abundance and physiological importance. In this article, we describe the effect of the complex, multi-domain structure of the antibody on its denaturation by heat. Natural antibodies are composed of 6 to 70 immunoglobulin fold domains, and are irreversibly denatured at high temperatures. Although the separated single immunoglobulin fold domain can be refolded after heat denaturation, denaturation of pairs of such domains is irreversible. Each antibody subclass exhibits a distinct heat tolerance, and IgE is especially known to be heat-labile. IgE starts unfolding at a lower temperature compared to other antibodies, because of the low stability of its CH3 domain. Each immunoglobulin domain starts unfolding at different temperatures. For instance, the CH3 domain of IgG unfolds at a higher temperature than its CH2 domain. Thus, the antibody has a mixture of folded and unfolded structures at a certain temperature. Co-existence of these folded and unfolded domains in a single polypeptide chain may increase the tendency to aggregate which causes the inactivation of the antibody.
Collapse
|
4
|
Deyev SM, Lebedenko EN. Targeted Bifunctional Proteins and Hybrid Nanoconstructs for Cancer Diagnostics and Therapies. Mol Biol 2017. [DOI: 10.1134/s002689331706005x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
5
|
Polanovsky OL. Antibody Engineering: From the Idea to Its Implementation. Mol Biol 2017. [DOI: 10.1134/s0026893317060139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Tsybovsky Y, Palczewski K. Expression, purification and structural properties of ABC transporter ABCA4 and its individual domains. Protein Expr Purif 2014; 97:50-60. [PMID: 24583180 DOI: 10.1016/j.pep.2014.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 02/18/2014] [Accepted: 02/19/2014] [Indexed: 12/13/2022]
Abstract
ABCA4 is a member of the A subfamily of ATP-binding cassette transporters that consists of large integral membrane proteins implicated in inherited human diseases. ABCA4 assists in the clearance of N-retinylidene-phosphatidylethanolamine, a potentially toxic by-product of the visual cycle formed in photoreceptor cells during light perception. Structural and functional studies of this protein have been hindered by its large size, membrane association, and domain complexity. Although mammalian, insect and bacterial systems have been used for expression of ABCA4 and its individual domains, the structural relevance of resulting proteins to the native transporter has yet to be established. We produced soluble domains of ABCA4 in Escherichia coli and Saccharomyces cerevisiae and the full-length transporter in HEK293 cells. Electron microscopy and size exclusion chromatography were used to assess the conformational homogeneity and structure of these proteins. We found that isolated ABCA4 domains formed large, heterogeneous oligomers cross-linked with non-specific disulphide bonds. Incomplete folding of cytoplasmic domain 2 was proposed based on fluorescence spectroscopy results. In contrast, full-length human ABCA4 produced in mammalian cells was found structurally equivalent to the native protein obtained from bovine photoreceptors. These findings offer recombinantly expressed full-length ABCA4 as an appropriate object for future detailed structural and functional characterization.
Collapse
Affiliation(s)
- Yaroslav Tsybovsky
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA.
| |
Collapse
|
7
|
An anti-Aβ (amyloid β) single-chain variable fragment prevents amyloid fibril formation and cytotoxicity by withdrawing Aβ oligomers from the amyloid pathway. Biochem J 2011; 437:25-34. [DOI: 10.1042/bj20101712] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aβ (amyloid β) immunotherapy has been revealed as a possible tool in Alzheimer's disease treatment. In contrast with complete antibodies, the administration of scFvs (single-chain variable fragments) produces neither meningoencephalitis nor cerebral haemorrhage. In the present study, the recombinant expression of scFv-h3D6, a derivative of an antibody specific for Aβ oligomers, is presented, as well as the subsequent proof of its capability to recover the toxicity induced by the Aβ1–42 peptide in the SH-SY5Y neuroblastoma cell line. To gain insight into the conformational changes underlying the prevention of Aβ toxicity by this antibody fragment, the conformational landscape of scFv-h3D6 upon temperature perturbation is also described. Heating the native state does not lead to any extent of unfolding, but rather directly to a β-rich intermediate state which initiates an aggregation pathway. This aggregation pathway is not an amyloid fibril pathway, as is that followed by the Aβ peptide, but rather a worm-like fibril pathway which, noticeably, turns out to be non-toxic. On the other hand, this pathway is thermodynamically and kinetically favoured when the scFv-h3D6 and Aβ1–42 oligomers form a complex in native conditions, explaining how the scFv-h3D6 withdraws Aβ1–42 oligomers from the amyloid pathway. To our knowledge, this is the first description of a conformational mechanism by which a scFv prevents Aβ-oligomer cytotoxicity.
Collapse
|
8
|
Dissecting the alternatively folded state of the antibody Fab fragment. J Mol Biol 2010; 399:719-30. [PMID: 20434459 DOI: 10.1016/j.jmb.2010.04.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/26/2010] [Accepted: 04/19/2010] [Indexed: 11/22/2022]
Abstract
Intact antibodies and antigen binding fragments (Fab) have been previously shown to form an alternatively folded state (AFS) at low pH. This state consists primarily of secondary structure interactions, with reduced tertiary structure content. The AFS can be distinguished from the molten globule state by the formation of nonnative structure and, in particular, its high stability. In this study, the isolated domains of the MAK33 (murine monoclonal antibody of the subtype kappa/IgG1) Fab fragment were investigated under conditions that have been reported to induce the AFS. Surprising differences in the ability of individual domains to form the AFS were observed, despite the similarities in their native structures. All Fab domains were able to adopt the AFS, but only for V(H) (variable domain of the heavy chain) could a significant amount of tertiary structure be detected and different conditions were needed to induce the AFS. V(H), the least stable of the domains under physiological conditions, was the most stable in the AFS, yet all domains showed significant stability against thermal and chemical unfolding in their AFS. Formation of the AFS was found to generally proceed via the unfolded state, with similar rates for most of the domains. Taken together, our data reveal striking differences in the biophysical properties of the AFS of individual antibody domains that reflect the variation possible for domains of highly homologous native structures. Furthermore, they allow individual domain contributions to be dissected from specific oligomer effects in the AFS of the antibody Fab fragment.
Collapse
|
9
|
Deev SM, Labedenko EN. [Antibody engineering: barnase-barstar module as a molecular constructor]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2010; 35:761-78. [PMID: 20208576 DOI: 10.1134/s1068162009060041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Today, antibody engineering for clinical applications is a rapidly progressing field of science and a big business. The basic functions of an antibody can be spatially differentiated and attributed to various structural domains of a molecule. Therefore, each of them may be an object for engineering with the aim of using a definite antibody function. In this sense, the potential of antibodies is unique. In this article, recent achievements and current problems of antibody engineering are briefly reviewed. The main attention is focused on a molecular constructor that allows for obtaining, with the help of a versatile barnase-barstar module, mono- and multiva-lent miniantibodies and their derivatives with outlined properties.
Collapse
|
10
|
Shubenok DV, Tsybovsky YI, Stremovskiy OA, Deyev SM, Martsev SP. Fusion of barnase to antiferritin antibody F11 VH domain results in a partially folded functionally active protein. BIOCHEMISTRY (MOSCOW) 2009; 74:672-80. [PMID: 19645673 DOI: 10.1134/s0006297909060121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A chimeric protein, VH-barnase, was obtained by fusing the VH domain of anti-human ferritin monoclonal antibody F11 to barnase, a bacterial RNase from Bacillus amyloliquefaciens. After refolding from inclusion bodies, the fusion protein formed insoluble aggregates. Off-pathway aggregation was significantly reduced by adding either purified GroEL/GroES chaperones or arginine, with 10-12-fold increase in the yield of the soluble protein. The final protein conformation was identical by calorimetric criteria and CD and fluorescence spectroscopy to that obtained without additives, thus suggesting that VH-barnase structure does not depend on folding conditions. Folding of VH-barnase resulted in a single calorimetrically revealed folding unit, the so-called "calorimetric domain", with conformation consistent with a molten globule that possessed well-defined secondary structure and compact tertiary conformation with partial exposure of hydrophobic patches and low thermodynamic stability. The unique feature of VH-barnase is that, despite the partially unfolded conformation and coupling into a single "calorimetric domain", this immunofusion retained both the antigen-binding and RNase activities that belong to the two heterologous domains.
Collapse
Affiliation(s)
- D V Shubenok
- Research and Production Center for Hematology and Transfusiology, Ministry of Health, Minsk, 220053, Belarus.
| | | | | | | | | |
Collapse
|
11
|
Cheng J, Sagan SM, Assem N, Koukiekolo R, Goto NK, Pezacki JP. Stabilized recombinant suppressors of RNA silencing: Functional effects of linking monomers of Carnation Italian Ringspot virus p19. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1528-35. [DOI: 10.1016/j.bbapap.2007.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 09/24/2007] [Accepted: 09/25/2007] [Indexed: 12/24/2022]
|
12
|
Folding of an antibody variable domain in two functional conformations in vitro: calorimetric and spectroscopic study of the anti-ferritin antibody VL domain. Protein Eng Des Sel 2007; 20:481-90. [DOI: 10.1093/protein/gzm034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
13
|
Szynol A, de Soet JJ, Sieben-van Tuyl E, Bos JW, Frenken LG. Bactericidal effects of a fusion protein of llama heavy-chain antibodies coupled to glucose oxidase on oral bacteria. Antimicrob Agents Chemother 2004; 48:3390-5. [PMID: 15328101 PMCID: PMC514777 DOI: 10.1128/aac.48.9.3390-3395.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enzymes such as lactoperoxidase and glucose oxidase (GOx) are used as antimicrobial agents in oral care products. Their low specificities and substantiveness can be reduced by covalent coupling of antimicrobial molecules to antibodies. Variable domains (V(HH)) derived from llama heavy-chain antibodies are particularly suited for such an approach. The antibodies are composed solely of heavy-chain dimers; therefore, production of active fusion proteins by using molecular biology-based techniques is less complicated than production by use of conventional antibodies. In this study, a fusion protein consisting of V(HH) and GOx was constructed and expressed by Saccharomyces cerevisiae. A llama was immunized with Streptococcus mutans strain HG982. Subsequently, B lymphocytes were isolated and cDNA fragments encoding the V(HH) fragments were obtained by reverse transcription-PCR. After construction of a V(HH) library in Escherichia coli and screening of the library against mutans group streptococci and Streptococcus sanguinis strains, we found two V(HH) fragments with high specificities for S. mutans strains. A GOx gene was linked to the two V(HH) genes and cloned into S. cerevisiae yeasts. The yeasts expressed and secreted the recombinant proteins into the growth medium. The test of binding of fusion proteins to oral bacteria through their V(HH) fragments showed that S. mutans had been specifically targeted by GOx-S120, one of the fusion protein constructs. A low concentration of the fusion protein was also able to selectively kill S. mutans within 20 min in the presence of lactoperoxidase and potassium iodide. These findings demonstrate that the fusion protein GOx-V(HH) is potentially valuable in the selective killing of target bacteria such as S. mutans.
Collapse
Affiliation(s)
- A Szynol
- Department of Periodontology, Section Oral Microbiology, Academic Centre for Dentistry, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
14
|
Cortez-Retamozo V, Backmann N, Senter PD, Wernery U, De Baetselier P, Muyldermans S, Revets H. Efficient Cancer Therapy with a Nanobody-Based Conjugate. Cancer Res 2004; 64:2853-7. [PMID: 15087403 DOI: 10.1158/0008-5472.can-03-3935] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nanobodies are the smallest fragments of naturally occurring single-domain antibodies that have evolved to be fully functional in the absence of a light chain. Nanobodies are strictly monomeric, very stable, and highly soluble entities. We identified a nanobody with subnanomolar affinity for the human tumor-associated carcinoembryonic antigen. This nanobody was conjugated to Enterobacter cloacae beta-lactamase, and its site-selective anticancer prodrug activation capacity was evaluated. The conjugate was readily purified in high yields without aggregation or loss of functionality of the constituents. In vitro experiments showed that the nanobody-enzyme conjugate effectively activated the release of phenylenediamine mustard from the cephalosporin nitrogen mustard prodrug 7-(4-carboxybutanamido) cephalosporin mustard at the surface of carcinoembryonic antigen-expressing LS174T cancer cells. In vivo studies demonstrated that the conjugate had an excellent biodistribution profile and induced regressions and cures of established tumor xenografts. The easy generation and manufacturing yield of nanobody-based conjugates together with their potent antitumor activity make nanobodies promising vehicles for new generation cancer therapeutics.
Collapse
Affiliation(s)
- Virna Cortez-Retamozo
- Department of Molecular and Cellular Interactions, Flanders Interuniversity Institute for Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
15
|
Tsybovsky YI, Kedrov AA, Martsev SP. Independent folding and conformational changes of the barnase module in the VL-barnase immunofusion: calorimetric evidence. FEBS Lett 2003; 557:248-52. [PMID: 14741376 DOI: 10.1016/s0014-5793(03)01509-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although stability is critical for in vivo application of immunotoxins, a thermodynamic description of their folding/stability is still lacking. We applied differential scanning calorimetry (DSC) to RNase-based immunofusion comprising barnase, cytotoxic RNase from Bacillus amyloliquefaciens, fused to the light chain variable domain (VL) of anti-human ferritin antibody F11. By analyzing DSC curves recorded with or without preheating and addition of the barnase-stabilizing ligand guanosine 3'-monophosphate, we (i). assigned two well-resolved thermal transitions to the VL and barnase modules of VL-barnase, (ii). demonstrated independent folding of these two modules, and (iii). showed altered stability of the barnase module, which resulted from the dimeric state of VL-barnase.
Collapse
Affiliation(s)
- Yaroslav I Tsybovsky
- Institute of Bio-Organic Chemistry, National Academy of Sciences of Belarus, Minsk 220141, Belarus
| | | | | |
Collapse
|
16
|
Sibler AP, Nordhammer A, Masson M, Martineau P, Travé G, Weiss E. Nucleocytoplasmic shuttling of antigen in mammalian cells conferred by a soluble versus insoluble single-chain antibody fragment equipped with import/export signals. Exp Cell Res 2003; 286:276-87. [PMID: 12749856 DOI: 10.1016/s0014-4827(03)00093-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ectopic expression of antibody fragments within mammalian cells is a challenging approach for interfering with or even blocking the biological function of the intracellular target. For this purpose, single-chain Fv (scFv) fragments are generally preferred. Here, by transfecting several mammalian cell lines, we compared the intracellular behavior of two scFvs (13R4 and 1F4) that strongly differ in their requirement of disulphide bonding for the formation of active molecules in bacteria. The scFv 13R4, which is correctly folded in the bacterial cytoplasm, was solubly expressed in all cell lines tested and was distributed in their cytoplasm and nucleus, as well. In addition, by appending to the 13R4 molecules the SV40 T-antigen nuclear localisation signal (NLS) tag, cytoplasmic-coexpressed antigen was efficiently retargeted to the nucleus. Compared to the scFv 13R4, the scFv 1F4, which needs to be secreted in bacteria for activity, accumulated, even with the NLS tag, as insoluble aggregates within the cytoplasm of the transfected cells, thereby severely disturbing fundamental functions of cell physiology. Furthermore, by replacing the NLS tag with a leucine-rich nuclear export signal (NES), the scFv 13R4 was exclusively located in the cytoplasm, whereas the similarly modified scFv 1F4 still promoted cell death. Coexpression of NES-tagged 13R4 fragments with nuclear antigen promoted its efficient retargeting to the cytoplasm. This dominant effect of the NES tag was also observed after exchange of the nuclear signals between the scFv 13R4 and its antigen. Taken together, the results indicate that scFvs that are active in the cytoplasm of bacteria may behave similarly in mammalian cells and that the requirement of their conserved disulphide bridges for activity is a limiting factor for mediating the nuclear import/export of target in a mammalian cell context. The described shuttling effect of antigen conferred by a soluble scFv may represent the basis of a reliable in vivo assay of effective protein- protein interactions.
Collapse
Affiliation(s)
- Annie-Paule Sibler
- Biotechnologie des Interactions Macromoléculaires, UMR 7100, Ecole Supérieure de Biotechnologie de Strasbourg, boulevard Sébastien Brant, 67400 Illkirch, France
| | | | | | | | | | | |
Collapse
|
17
|
Olsen RJ, Mazlo J, Koepsell SA, McKeithan TW, Hinrichs SH. Minimal structural elements of an inhibitory anti-ATF1/CREB single-chain antibody fragment (scFv41.4). HYBRIDOMA AND HYBRIDOMICS 2003; 22:65-77. [PMID: 12831531 DOI: 10.1089/153685903321947987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Antibody variable domains represent potential structural models for the rational design of therapeutic molecules that bind cellular proteins with high affinity and specificity. The Activating Transcription Factor 1 (ATF1)/Cyclic AMP Response Element Binding Protein (CREB) family of transcription factors are particularly relevant targets due to their strong association with melanoma and clear cell sarcoma. Biochemical and structural investigations were performed to optimize a single-chain antibody fragment (scFv), scFv41.4, that disrupts the binding of ATF1/CREB to cyclic-AMP response elements (CRE) in vitro and inhibits transcriptional activation in cells. Molecular modeling and ligand docking simulations suggested that scFv41.4 could function as a disulfide-deficient single domain scFv. Functional studies verified that deletion of the light chain did not result in reduced inhibitory activity. The isolated heavy chain was predicted to assume a relaxed structural conformation that maintained a functional antigen binding pocket. The minimal structural elements necessary for intracellular function were further analyzed by selective deletion of CDR1 and CDR2. V(H)-CDR1 and V(H)-CDR3 were shown to play a key role in antigen binding activity, but V(H)-CDR2 was dispensable. Thus, scFv41.4 represents a unique molecule with potential for use in the design of peptidomimetic derivatives having therapeutic application to human cancer.
Collapse
Affiliation(s)
- R J Olsen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | | | | | | | | |
Collapse
|
18
|
Nymalm Y, Kravchuk Z, Salminen T, Chumanevich AA, Dubnovitsky AP, Kankare J, Pentikäinen O, Lehtonen J, Arosio P, Martsev S, Johnson MS. Antiferritin VL homodimer binds human spleen ferritin with high specificity. J Struct Biol 2002; 138:171-86. [PMID: 12217656 DOI: 10.1016/s1047-8477(02)00015-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The antiferritin variable light domain (VL) dimer binds human spleen ferritin ( approximately 85% L subunits) but with approximately 50-fold lower affinity, K(a)=4 x 10(7) x M(-1), than the parent F11 antibody (K(a)=2.1 x 10(9) x M(-1)). The VL dimer does not recognize either rL (100% L subunits) or rH (100% H subunits) human ferritin, whereas the parent antibody recognizes rL-ferritin. To help explain the differences in ferritin binding affinities and specificities, the crystal structure of the VL domain (2.8A resolution) was determined by molecular replacement and models of the antiferritin VL-VH dimer were made on the basis of antilysozyme antibody D1.3. The domain interface is smaller in the VL dimer but a larger number of interdomain hydrogen bonds may prevent rearrangement on antigen binding. The antigen binding surface of the VL dimer is flatter, lacking a negatively charged pocket found in the VL-VH models, contributed by the CDR3 loop of the VH domain. Loop CDR2 (VL dimer) is located away from the antigen binding site, while the corresponding loop of the VH domain would be located within the antigen binding site. Together these differences lead to 50-fold lower binding affinity in the VL dimer and to more restricted specificity than is seen for the parent antibody.
Collapse
Affiliation(s)
- Yvonne Nymalm
- Department of Biochemistry and Pharmacy, Abo Akademi University, P.O. Box 66, FIN-20521, Turku, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Martsev SP, Dubnovitsky AP, Stremovsky OA, Chumanevich AA, Tsybovsky YI, Kravchuk ZI, Deyev SM. Partially structured state of the functional VH domain of the mouse anti-ferritin antibody F11. FEBS Lett 2002; 518:177-82. [PMID: 11997042 DOI: 10.1016/s0014-5793(02)02696-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An antibody combining site generally involves the two variable domains, VH from the heavy and VL from the light chain. We expressed the individual VH domain of the mouse anti-human ferritin monoclonal antibody F11. The loss of affinity was not dramatic (K(a)=4.0x10(7) M(-1) versus 8.6x10(8) M(-1) for the parent antibody) and comparable to that previously observed for other VHs. However, the functional VH domain adopted a partially structured state with a significant amount of distorted secondary and compact yet greatly destabilized tertiary structures, as demonstrated by spectroscopic and calorimetric probes. These data provide the first description for a functional antibody domain that meets all the criteria of a partially structured state.
Collapse
Affiliation(s)
- Sergey P Martsev
- Institute of Bio-Organic Chemistry, National Academy of Sciences of Belarus, 220141, Minsk, Byelorussia.
| | | | | | | | | | | | | |
Collapse
|
20
|
Thompson J, Stavrou S, Weetall M, Hexham JM, Digan ME, Wang Z, Woo JH, Yu Y, Mathias A, Liu YY, Ma S, Gordienko I, Lake P, Neville DM. Improved binding of a bivalent single-chain immunotoxin results in increased efficacy for in vivo T-cell depletion. Protein Eng Des Sel 2001; 14:1035-41. [PMID: 11809934 DOI: 10.1093/protein/14.12.1035] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Anti-CD3 immunotoxins exhibit considerable promise for the induction of transplantation tolerance in pre-clinical large animal models. Recently an anti-human anti-CD3epsilon single-chain immunotoxin based on truncated diphtheria toxin has been described that can be expressed in CHO cells that have been mutated to diphtheria toxin resistance. After the two toxin glycosylation sites were removed, the bioactivity of the expressed immunotoxin was nearly equal to that of the chemically conjugated immunotoxin. This immunotoxin, A-dmDT390-sFv, contains diphtheria toxin to residue 390 at the N-terminus followed by VL and VH domains of antibody UCHT1 linked by a (G(4)S)(3) spacer (sFv). Surprisingly, we now report that this immunotoxin is severely compromised in its binding affinity toward CD3(+) cells as compared with the intact parental UCHT1 antibody, the UCHT1 Fab fragment or the engineered UCHT1 sFv domain alone. Binding was increased 7-fold by adding an additional identical sFv domain to the immunotoxin generating a divalent construct, A-dmDT390-bisFv (G(4)S). In vitro potency increased 10-fold over the chemically conjugated immunotoxin, UCHT1-CRM9 and the monovalent A-dmDT390-sFv. The in vivo potency of the genetically engineered immunotoxins was assayed in the transgenic heterozygote mouse, tgepsilon 600, in which the T-cells express human CD3epsilon as well as murine CD3epsilon. T-cell depletion in the spleen and lymph node observed with the divalent construct was increased 9- and 34-fold, respectively, compared with the monovalent construct. The additional sFv domain appears partially to compensate for steric hindrance of immunotoxin binding due to the large N-terminal toxin domain.
Collapse
Affiliation(s)
- J Thompson
- Fenske Laboratory, University Park, PA 16802, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|