Xing G, Garg S, Waite TD. Is Superoxide-Mediated Fe(III) Reduction Important in Sunlit Surface Waters?
ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019;
53:13179-13190. [PMID:
31638396 DOI:
10.1021/acs.est.9b04718]
[Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two major pathways are reported to account for photochemical reduction of Fe(III) in sunlit surface waters, namely, ligand-to-metal charge transfer (LMCT) and superoxide-mediated iron reduction (SMIR). In this study, we investigate the impact of Fe(III) speciation (organically complexed (Fe(III)L versus iron oxyhydroxide (AFO)) on Fe(III) reducibility by photogenerated superoxide (O2•-) and LMCT. To simulate conditions typical of fresh, estuarine, and coastal waters, we have used Suwannee River Fulvic Acid (SRFA) as a representative of the natural organic matter likely to associate with Fe(III). Our results show that the photolabile Fe(III)SRFA complex is reduced rapidly by LMCT, while O2•- does not play a role in reduction of these entities. In contrast, the relatively less photolabile AFO is reduced by both O2•- and LMCT. The reduction of AFO by O2•- occurs following the dissolution of AFO, and hence, the contribution of O2•- to reductive dissolution of AFO is dependent on conditions such as the age of the AFO and initial AFO concentration affecting the rate of dissolution of AFO. Our results further show that while colloidal Fe(III) (in this work, particles >0.025 μm) is reduced by O2•-, there is no involvement of O2•- in dissolved Fe(III) reduction. Overall, our results show that superoxide-mediated iron reduction will be important only in natural waters containing limited concentrations of Fe binding ligands.
Collapse