1
|
Silva G, Tomlinson J, Onkokesung N, Sommer S, Mrisho L, Legg J, Adams IP, Gutierrez-Vazquez Y, Howard TP, Laverick A, Hossain O, Wei Q, Gold KM, Boonham N. Plant pest surveillance: from satellites to molecules. Emerg Top Life Sci 2021; 5:275-287. [PMID: 33720345 PMCID: PMC8166340 DOI: 10.1042/etls20200300] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/18/2022]
Abstract
Plant pests and diseases impact both food security and natural ecosystems, and the impact has been accelerated in recent years due to several confounding factors. The globalisation of trade has moved pests out of natural ranges, creating damaging epidemics in new regions. Climate change has extended the range of pests and the pathogens they vector. Resistance to agrochemicals has made pathogens, pests, and weeds more difficult to control. Early detection is critical to achieve effective control, both from a biosecurity as well as an endemic pest perspective. Molecular diagnostics has revolutionised our ability to identify pests and diseases over the past two decades, but more recent technological innovations are enabling us to achieve better pest surveillance. In this review, we will explore the different technologies that are enabling this advancing capability and discuss the drivers that will shape its future deployment.
Collapse
Affiliation(s)
- Gonçalo Silva
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, U.K
| | - Jenny Tomlinson
- Fera Science Ltd., York Biotech Campus, Sand Hutton, York YO41 1LZ, U.K
| | - Nawaporn Onkokesung
- School of Natural and Environmental Sciences, Agriculture Building, Newcastle University, King's Road, Newcastle upon Tyne NE1 7RU, U.K
| | - Sarah Sommer
- School of Natural and Environmental Sciences, Agriculture Building, Newcastle University, King's Road, Newcastle upon Tyne NE1 7RU, U.K
| | - Latifa Mrisho
- International Institute of Tropical Agriculture, Dar el Salaam, Tanzania
| | - James Legg
- International Institute of Tropical Agriculture, Dar el Salaam, Tanzania
| | - Ian P Adams
- Fera Science Ltd., York Biotech Campus, Sand Hutton, York YO41 1LZ, U.K
| | | | - Thomas P Howard
- School of Natural and Environmental Sciences, Agriculture Building, Newcastle University, King's Road, Newcastle upon Tyne NE1 7RU, U.K
| | - Alex Laverick
- School of Natural and Environmental Sciences, Agriculture Building, Newcastle University, King's Road, Newcastle upon Tyne NE1 7RU, U.K
| | - Oindrila Hossain
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, U.S.A
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, U.S.A
| | - Kaitlin M Gold
- Plant Pathology and Plant Microbe Biology Section, Cornell University, 15 Castle Creek Drive, Geneva, NY 14456, U.S.A
| | - Neil Boonham
- School of Natural and Environmental Sciences, Agriculture Building, Newcastle University, King's Road, Newcastle upon Tyne NE1 7RU, U.K
| |
Collapse
|
2
|
Tholl D, Hossain O, Weinhold A, Röse USR, Wei Q. Trends and applications in plant volatile sampling and analysis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:314-325. [PMID: 33506558 DOI: 10.1111/tpj.15176] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 05/12/2023]
Abstract
Volatile organic compounds (VOCs) released by plants serve as information and defense chemicals in mutualistic and antagonistic interactions and mitigate effects of abiotic stress. Passive and dynamic sampling techniques combined with gas chromatography-mass spectrometry analysis have become routine tools to measure emissions of VOCs and determine their various functions. More recently, knowledge of the roles of plant VOCs in the aboveground environment has led to the exploration of similar functions in the soil and rhizosphere. Moreover, VOC patterns have been recognized as sensitive and time-dependent markers of biotic and abiotic stress. This focused review addresses these developments by presenting recent progress in VOC sampling and analysis. We show advances in the use of small, inexpensive sampling devices and describe methods to monitor plant VOC emissions in the belowground environment. We further address latest trends in real-time measurements of volatilomes in plant phenotyping and most recent developments of small portable devices and VOC sensors for non-invasive VOC fingerprinting of plant disease. These technologies allow for innovative approaches to study plant VOC biology and application in agriculture.
Collapse
Affiliation(s)
- Dorothea Tholl
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Oindrila Hossain
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
- Emerging Plant Disease and Global Food Security Cluster, Norther Carolina State University, Raleigh, NC, 27695, USA
| | - Alexander Weinhold
- Molecular Interaction Ecology, Institute of Biodiversity, Friedrich Schiller University Jena, Jena, 07745, Germany
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
| | - Ursula S R Röse
- School of Biological Sciences, University of New England, Biddeford, ME, 04005, USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
- Emerging Plant Disease and Global Food Security Cluster, Norther Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
3
|
Li Z, Paul R, Ba Tis T, Saville AC, Hansel JC, Yu T, Ristaino JB, Wei Q. Non-invasive plant disease diagnostics enabled by smartphone-based fingerprinting of leaf volatiles. NATURE PLANTS 2019; 5:856-866. [PMID: 31358961 DOI: 10.1038/s41477-019-0476-y] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/13/2019] [Indexed: 05/20/2023]
Abstract
Plant pathogen detection conventionally relies on molecular technology that is complicated, time-consuming and constrained to centralized laboratories. We developed a cost-effective smartphone-based volatile organic compound (VOC) fingerprinting platform that allows non-invasive diagnosis of late blight caused by Phytophthora infestans by monitoring characteristic leaf volatile emissions in the field. This handheld device integrates a disposable colourimetric sensor array consisting of plasmonic nanocolorants and chemo-responsive organic dyes to detect key plant volatiles at the ppm level within 1 min of reaction. We demonstrate the multiplexed detection and classification of ten individual plant volatiles with this field-portable VOC-sensing platform, which allows for early detection of tomato late blight 2 d after inoculation, and differentiation from other pathogens of tomato that lead to similar symptoms on tomato foliage. Furthermore, we demonstrate a detection accuracy of ≥95% in diagnosis of P. infestans in both laboratory-inoculated and field-collected tomato leaves in blind pilot tests. Finally, the sensor platform has been beta-tested for detection of P. infestans in symptomless tomato plants in the greenhouse setting.
Collapse
Affiliation(s)
- Zheng Li
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Rajesh Paul
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Taleb Ba Tis
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA
| | - Amanda C Saville
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Jeana C Hansel
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Tao Yu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Jean B Ristaino
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
- Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, NC, USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
- Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
4
|
Kim DY, Kadam A, Shinde S, Saratale RG, Patra J, Ghodake G. Recent developments in nanotechnology transforming the agricultural sector: a transition replete with opportunities. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:849-864. [PMID: 29065236 DOI: 10.1002/jsfa.8749] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 05/23/2023]
Abstract
The applications and benefits of nanotechnology in the agricultural sector have attracted considerable attention, particularly in the invention of unique nanopesticides and nanofertilisers. The contemporary developments in nanotechnology are acknowledged and the most significant opportunities awaiting the agriculture sector from the recent scientific and technical literature are addressed. This review discusses the significance of recent trends in nanomaterial-based sensors available for the sustainable management of agricultural soil, as well as the role of nanotechnology in detection and protection against plant pathogens, and for food quality and safety. Novel nanosensors have been reported for primary applications in improving crop practices, food quality, and packaging methods, thus will change the agricultural sector for potentially better and healthier food products. Nanotechnology is well-known to play a significant role in the effective management of phytopathogens, nutrient utilisation, controlled release of pesticides, and fertilisers. Research and scientific gaps to be overcome and fundamental questions have been addressed to fuel active development and application of nanotechnology. Together, nanoscience, nanoengineering, and nanotechnology offer a plethora of opportunities, proving a viable alternative in the agriculture and food processing sector, by providing a novel and advanced solutions. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dae-Young Kim
- Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University-Seoul, Gyeonggi-do, Republic of Korea
| | - Avinash Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Gyeonggi-do, Republic of Korea
| | - Surendra Shinde
- Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University-Seoul, Gyeonggi-do, Republic of Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Gyeonggi-do, Republic of Korea
| | - Jayanta Patra
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Gyeonggi-do, Republic of Korea
| | - Gajanan Ghodake
- Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University-Seoul, Gyeonggi-do, Republic of Korea
| |
Collapse
|
5
|
Beck JJ, Smith L, Baig N. An overview of plant volatile metabolomics, sample treatment and reporting considerations with emphasis on mechanical damage and biological control of weeds. PHYTOCHEMICAL ANALYSIS : PCA 2014; 25:331-41. [PMID: 24347157 DOI: 10.1002/pca.2486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/02/2013] [Accepted: 10/06/2013] [Indexed: 05/12/2023]
Abstract
INTRODUCTION The technology for the collection and analysis of plant-emitted volatiles for understanding chemical cues of plant-plant, plant-insect or plant-microbe interactions has increased over the years. Consequently, the in situ collection, analysis and identification of volatiles are considered integral to elucidation of complex plant communications. Due to the complexity and range of emissions the conditions for consistent emission of volatiles are difficult to standardise. OBJECTIVE To discuss: evaluation of emitted volatile metabolites as a means of screening potential target- and non-target weeds/plants for insect biological control agents; plant volatile metabolomics to analyse resultant data; importance of considering volatiles from damaged plants; and use of a database for reporting experimental conditions and results. METHOD Recent literature relating to plant volatiles and plant volatile metabolomics are summarised to provide a basic understanding of how metabolomics can be applied to the study of plant volatiles. RESULTS An overview of plant secondary metabolites, plant volatile metabolomics, analysis of plant volatile metabolomics data and the subsequent input into a database, the roles of plant volatiles, volatile emission as a function of treatment, and the application of plant volatile metabolomics to biological control of invasive weeds. CONCLUSION It is recommended that in addition to a non-damaged treatment, plants be damaged prior to collecting volatiles to provide the greatest diversity of odours. For the model system provided, optimal volatile emission occurred when the leaf was punctured with a needle. Results stored in a database should include basic environmental conditions or treatments.
Collapse
Affiliation(s)
- John J Beck
- Foodborne Toxin Detection and Prevention, Western Regional Research Center, Agricultural Research Service, US Department of Agriculture, Albany, California, USA
| | | | | |
Collapse
|