1
|
Torres-Huerta AL, Antonio-Pérez A, García-Huante Y, Alcázar-Ramírez NJ, Rueda-Silva JC. Biomolecule-Based Optical Metamaterials: Design and Applications. BIOSENSORS 2022; 12:962. [PMID: 36354471 PMCID: PMC9688573 DOI: 10.3390/bios12110962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Metamaterials are broadly defined as artificial, electromagnetically homogeneous structures that exhibit unusual physical properties that are not present in nature. They possess extraordinary capabilities to bend electromagnetic waves. Their size, shape and composition can be engineered to modify their characteristics, such as iridescence, color shift, absorbance at different wavelengths, etc., and harness them as biosensors. Metamaterial construction from biological sources such as carbohydrates, proteins and nucleic acids represents a low-cost alternative, rendering high quantities and yields. In addition, the malleability of these biomaterials makes it possible to fabricate an endless number of structured materials such as composited nanoparticles, biofilms, nanofibers, quantum dots, and many others, with very specific, invaluable and tremendously useful optical characteristics. The intrinsic characteristics observed in biomaterials make them suitable for biomedical applications. This review addresses the optical characteristics of metamaterials obtained from the major macromolecules found in nature: carbohydrates, proteins and DNA, highlighting their biosensor field use, and pointing out their physical properties and production paths.
Collapse
Affiliation(s)
- Ana Laura Torres-Huerta
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Cd. López Mateos, Atizapán de Zaragoza 52926, Mexico
| | - Aurora Antonio-Pérez
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Cd. López Mateos, Atizapán de Zaragoza 52926, Mexico
| | - Yolanda García-Huante
- Departamento de Ciencias Básicas, Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional (UPIITA-IPN), Mexico City 07340, Mexico
| | - Nayelhi Julieta Alcázar-Ramírez
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Cd. López Mateos, Atizapán de Zaragoza 52926, Mexico
| | - Juan Carlos Rueda-Silva
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Cd. López Mateos, Atizapán de Zaragoza 52926, Mexico
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
2
|
Li Z, Li Y, Lin X, Cui Y, Wang T, Dong J, Lu Y. Supramolecular protein assembly in cell-free protein synthesis system. BIORESOUR BIOPROCESS 2022; 9:28. [PMID: 38647573 PMCID: PMC10991650 DOI: 10.1186/s40643-022-00520-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
Protein-based biomaterials have the characteristics of stability and biocompatibility. Based on these advantages, various bionic materials have been manufactured and used in different fields. However, current protein-based biomaterials generally need to form monomers in cells and be purified before being assembled in vitro. The preparation process takes a long time, and the complex cellular environment is challenging to be optimized for producing the target protein product. Here this study proposed technology for in situ synthesis and assembly of the target protein, namely the cell-free protein synthesis (CFPS), which allowed to shorten the synthesis time and increase the flexibility of adding or removing natural or synthetic components. In this study, successful expression and self-assembly of the dihedral symmetric proteins proved the applicability of the CFPS system for biomaterials production. Furthermore, the fusion of different functional proteins to these six scaffold proteins could form active polymers in the CFPS system. Given the flexibility, CFPS is expected to become a powerful tool as the prototyping and manufacturing technology for protein-based biomaterials in the future.
Collapse
Affiliation(s)
- Zhixia Li
- Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yuting Li
- Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiaomei Lin
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yuntao Cui
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ting Wang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jian Dong
- Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
3
|
Veiga A, Castro F, Rocha F, Oliveira AL. An update on hydroxyapatite/collagen composites: What is there left to say about these bioinspired materials? J Biomed Mater Res B Appl Biomater 2021; 110:1192-1205. [PMID: 34860461 DOI: 10.1002/jbm.b.34976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 10/25/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023]
Abstract
Hydroxyapatite (HAp)/collagen-based composite materials have been a constant in the development of bioinspired materials for bone tissue engineering. The most fundamental research works focus on combining HAp, due to its chemical similarity with the mineral component of bones, and collagen, which is the most abundant protein in the body. Modern studies have explored different two-dimensional (2D) and 3D structures, in order to obtain biomaterials with specific physicochemical, mechanical, and biological characteristics that can be applied in distinct biomedical applications. However, as there is already so much work developed with these materials, it is crucial to question: what can still be done? What is the importance of current know-how for the future of bioinspired materials? In this paper we intend to review and update the available methodologies to synthesize HAp/collagen composites, along with their characteristics. In addition, the future of these materials in terms of applications and their potential as a cutting-edge technology is discussed.
Collapse
Affiliation(s)
- Anabela Veiga
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal.,Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Filipa Castro
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Fernando Rocha
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Ana L Oliveira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| |
Collapse
|
4
|
Veiga A, Castro F, Rocha F, Oliveira AL. Protein-Based Hydroxyapatite Materials: Tuning Composition toward Biomedical Applications. ACS APPLIED BIO MATERIALS 2020; 3:3441-3455. [DOI: 10.1021/acsabm.0c00140] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anabela Veiga
- LEPABE − Laboratory for Process Engineering, Environment, Biotechnology & Energy, Department of Chemical Engineering, Faculty of Engineering of Porto, University of Porto, Porto, Portugal
| | - Filipa Castro
- LEPABE − Laboratory for Process Engineering, Environment, Biotechnology & Energy, Department of Chemical Engineering, Faculty of Engineering of Porto, University of Porto, Porto, Portugal
| | - Fernando Rocha
- LEPABE − Laboratory for Process Engineering, Environment, Biotechnology & Energy, Department of Chemical Engineering, Faculty of Engineering of Porto, University of Porto, Porto, Portugal
| | - Ana L. Oliveira
- CBQF - Centro de Biotecnologia e Quı́mica Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| |
Collapse
|
5
|
Peixoto C, Soares AMS, Araújo A, Olsen BD, Machado AV. Non-isocyanate urethane linkage formation using l-lysine residues as amine sources. Amino Acids 2019; 51:1323-1335. [PMID: 31399841 DOI: 10.1007/s00726-019-02770-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/02/2019] [Indexed: 11/29/2022]
Abstract
Bio-based polyurethane materials are broadly applied in medicine as drug delivery systems. Nevertheless, their synthesis comprises the use of petroleum-based toxic amines, isocyanates and polyols, and their biocompatibility or functionalization is limited. Therefore, the use of lysine residues as amine sources to create non-isocyanate urethane (NIU) linkages was investigated. Therefore, a five-membered biscyclic carbonate (BCC) was firstly synthetized and reacted with a protected lysine, a tripeptide and a heptapeptide to confirm the urethane linkage formation with lysine moiety and to optimize reaction conditions. Afterwards, the reactions between BCC and a model protein, elastin-like protein (ELP), and β-Lactoglobulin (BLG) obtained from whey protein, respectively, were performed. The synthesized protein materials were structural, thermally and morphologically characterized to confirm the urethane linkage formation. The results demonstrate that using both simple and more complex source of amines (lysine), urethane linkages were effectively achieved. This pioneering approach opens the possibility of using proteins to develop non-isocyanate polyurethanes (NIPUs) with tailored properties.
Collapse
Affiliation(s)
- Cláudia Peixoto
- Institute of Polymers and Composites/I3N, University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal
| | - Ana M S Soares
- Institute of Polymers and Composites/I3N, University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal.
| | - Andreia Araújo
- Institute of Polymers and Composites/I3N, University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ana V Machado
- Institute of Polymers and Composites/I3N, University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal
| |
Collapse
|
6
|
Choi SM, Chaudhry P, Zo SM, Han SS. Advances in Protein-Based Materials: From Origin to Novel Biomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:161-210. [PMID: 30357624 DOI: 10.1007/978-981-13-0950-2_10] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biomaterials play a very important role in biomedicine and tissue engineering where they directly affect the cellular activities and their microenvironment . Myriad of techniques have been employed to fabricate a vast number natural, artificial and recombinant polymer s in order to harness these biomaterials in tissue regene ration , drug delivery and various other applications. Despite of tremendous efforts made in this field during last few decades, advanced and new generation biomaterials are still lacking. Protein based biomaterials have emerged as an attractive alternatives due to their intrinsic properties like cell to cell interaction , structural support and cellular communications. Several protein based biomaterials like, collagen , keratin , elastin , silk protein and more recently recombinant protein s are being utilized in a number of biomedical and biotechnological processes. These protein-based biomaterials have enormous capabilities, which can completely revolutionize the biomaterial world. In this review, we address an up-to date review on the novel, protein-based biomaterials used for biomedical field including tissue engineering, medical science, regenerative medicine as well as drug delivery. Further, we have also emphasized the novel fabrication techniques associated with protein-based materials and implication of these biomaterials in the domain of biomedical engineering .
Collapse
Affiliation(s)
- Soon Mo Choi
- Regional Research Institute for Fiber&Fashion Materials, Yeungnam University, Gyeongsan, South Korea
| | - Prerna Chaudhry
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Sun Mi Zo
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea.
| |
Collapse
|