1
|
Thakur V, Baghmare P, Verma A, Verma JS, Geed SR. Recent progress in microbial biosurfactants production strategies: Applications, technological bottlenecks, and future outlook. BIORESOURCE TECHNOLOGY 2024; 408:131211. [PMID: 39102966 DOI: 10.1016/j.biortech.2024.131211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Biosurfactants are surface-active compounds produced by numerous microorganisms. They have gained significant attention due to their wide applications in food, pharmaceuticals, cosmetics, agriculture, and environmental remediation. The production efficiency and yield of microbial biosurfactants have improved significantly through the development and optimization of different process parameters. This review aims to provide an in-depth analysis of recent trends and developments in microbial biosurfactant production strategies, including submerged, solid-state, and co-culture fermentation. Additionally, review discusses biosurfactants' applications, challenges, and future perspectives. It highlights their advantages over chemical surfactants, emphasizing their biodegradability, low toxicity, and diverse chemical structures. However, the critical challenges in commercializing include high production costs and low yield. Strategies like genetic engineering, process optimization, and downstream processing, have been employed to address these challenges. The review provides insights into current commercial producers and highlights future perspectives such as novel bioprocesses, efficient microbial strains, and exploring their applications in emerging industries.
Collapse
Affiliation(s)
- Vishal Thakur
- School of Biotechnology, RGPV Bhopal, Madhya Pradesh, 462033, India; CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
| | - Pawan Baghmare
- School of Biotechnology, RGPV Bhopal, Madhya Pradesh, 462033, India; CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
| | - Ashish Verma
- Department of Bioengineering, Integral University, Lucknow 226026, India
| | - Jitendra Singh Verma
- CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India.
| | | |
Collapse
|
2
|
Veeramanoharan A, Kim SC. A comprehensive review on sustainable surfactants from CNSL: chemistry, key applications and research perspectives. RSC Adv 2024; 14:25429-25471. [PMID: 39139242 PMCID: PMC11320967 DOI: 10.1039/d4ra04684f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Surfactants, a group of amphiphilic molecules (i.e. with hydrophobic(water insoluble) as well as hydrophilic(water soluble) properties) can modulate interfacial tension. Currently, the majority of surfactants depend on petrochemical feedstocks (such as oil and gas). However, deployment of these petrochemical surfactants produces high toxicity and also has poor biodegradability which can cause more environmental issues. To address these concerns, the current research is moving toward natural resources to produce sustainable surfactants. Among the available natural resources, Cashew Nut Shell Liquid (CNSL) is the preferred choice for industrial scenarios to meet their goals of sustainability. CNSL is an oil extracted from non-edible cashew nut shells, which doesn't affect the food supply chain. The unique structural properties and diverse range of use cases of CNSL are key to developing eco-friendly surfactants that replace petro-based surfactants. Against this backdrop, this article discusses various state-of-the-art developments in key cardanol-based surfactants such as anionic, cationic, non-ionic, and zwitterionic. In addition to this, the efficiency and characteristics of these surfactants are also analyzed and compared with those of the synthetic surfactants (petro-based). Furthermore, the present paper also focuses on various market aspects and different applications in various industries. Finally, this article describes various future research perspectives including Artificial Intelligence technology which, of late, is having a huge impact on society.
Collapse
Affiliation(s)
- Ashokkumar Veeramanoharan
- Department of Applied Chemistry, College of Science and Technology, Kookmin University 77 Jeongneung-ro, Sungbuk-Gu Seoul 02707 Republic of Korea
| | - Seok-Chan Kim
- Department of Applied Chemistry, College of Science and Technology, Kookmin University 77 Jeongneung-ro, Sungbuk-Gu Seoul 02707 Republic of Korea
| |
Collapse
|
3
|
Das S, Rao KVB. A comprehensive review of biosurfactant production and its uses in the pharmaceutical industry. Arch Microbiol 2024; 206:60. [PMID: 38197951 DOI: 10.1007/s00203-023-03786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 01/11/2024]
Abstract
Biosurfactants are naturally occurring, surface-active chemicals generated by microorganisms and have attracted interest recently because of their numerous industrial uses. Compared to their chemical equivalents, they exhibit qualities that include lower toxic levels, increased biodegradable properties, and unique physiochemical properties. Due to these traits, biosurfactants have become attractive substitutes for synthetic surfactants in the pharmaceutical industry. In-depth research has been done in the last few decades, demonstrating their vast use in various industries. This review article includes a thorough description of the various types of biosurfactants and their production processes. The production process discussed here is from oil-contaminated waste, agro-industrial waste, dairy, and sugar industry waste, and also how biosurfactants can be produced from animal fat. Various purification methods such as ultrafiltration, liquid-liquid extraction, acid precipitation, foam fraction, and adsorption are required to acquire a purified product, which is necessary in the pharmaceutical industry, are also discussed here. Alternative ways for large-scale production of biosurfactants using different statistical experimental designs such as CCD, ANN, and RSM are described here. Several uses of biosurfactants, including drug delivery systems, antibacterial and antifungal agents, wound healing, and cancer therapy, are discussed. Additionally, in this review, the future challenges and aspects of biosurfactant utilization in the pharmaceutical industry and how to overcome them are also discussed.
Collapse
Affiliation(s)
- Sriya Das
- Marine Biotechnology Laboratory, Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632-014, India
| | - K V Bhaskara Rao
- Marine Biotechnology Laboratory, Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632-014, India.
| |
Collapse
|
4
|
Nagtode V, Cardoza C, Yasin HKA, Mali SN, Tambe SM, Roy P, Singh K, Goel A, Amin PD, Thorat BR, Cruz JN, Pratap AP. Green Surfactants (Biosurfactants): A Petroleum-Free Substitute for Sustainability-Comparison, Applications, Market, and Future Prospects. ACS OMEGA 2023; 8:11674-11699. [PMID: 37033812 PMCID: PMC10077441 DOI: 10.1021/acsomega.3c00591] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Surfactants are a group of amphiphilic molecules (i.e., having both hydrophobic and hydrophilic domains) that are a vital part of nearly every contemporary industrial process such as in agriculture, medicine, personal care, food, and petroleum. In general surfactants can be derived from (i) petroleum-based sources or (ii) microbial/plant origins. Petroleum-based surfactants are obvious results from petroleum products, which lead to petroleum pollution and thus pose severe problems to the environment leading to various ecological damages. Thus, newer techniques have been suggested for deriving surfactant molecules and maintaining environmental sustainability. Biosurfactants are surfactants of microbial or plant origins and offer much added advantages such as high biodegradability, lesser toxicity, ease of raw material availability, and easy applicability. Thus, they are also termed "green surfactants". In this regard, this review focused on the advantages of biosurfactants over the synthetic surfactants produced from petroleum-based products along with their potential applications in different industries. We also provided their market aspects and future directions that can be considered with selections of biosurfactants. This would open up new avenues for surfactant research by overcoming the existing bottlenecks in this field.
Collapse
Affiliation(s)
- Vaishnavi
S. Nagtode
- Department
of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Clive Cardoza
- Department
of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Haya Khader Ahmad Yasin
- Department
of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- Center
of Medical and Bio-allied Health Sciences Research, Ajman University, P.O. Box 346, Ajman, United Arab Emirates
| | - Suraj N. Mali
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra 835215, India
| | - Srushti M. Tambe
- Department
of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Pritish Roy
- Department
of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Kartikeya Singh
- Department
of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Antriksh Goel
- Department
of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Purnima D. Amin
- Department
of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Bapu R. Thorat
- Department
of Chemistry, Government College of Arts
and Science, Aurangabad, Maharashtra 431001, India
| | - Jorddy N. Cruz
- Laboratory
of Modeling and Computational Chemistry, Department of Biological
and Health Sciences, Federal University
of Amapá, Macapá 68902-280, Amapá, Brazil
| | - Amit P. Pratap
- Department
of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| |
Collapse
|
5
|
Sarubbo LA, Silva MDGC, Durval IJB, Bezerra KGO, Ribeiro BG, Silva IA, Twigg MS, Banat IM. Biosurfactants: Production, Properties, Applications, Trends, and General Perspectives. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108377] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Ortiz MS, Alvarado JG, Zambrano F, Marquez R. Surfactants produced from carbohydrate derivatives: A review of the biobased building blocks used in their synthesis. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | - Ronald Marquez
- TotalEnergies SE Pôle d'Etudes et de Recherche de Lacq Lacq France
- Laboratoire commun TotalEnergies/ESPCI Paris, Physico‐Chimie des Interfaces Complexes CHEMSTARTUP Lacq France
| |
Collapse
|
7
|
Markande AR, Patel D, Varjani S. A review on biosurfactants: properties, applications and current developments. BIORESOURCE TECHNOLOGY 2021; 330:124963. [PMID: 33744735 DOI: 10.1016/j.biortech.2021.124963] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 05/05/2023]
Abstract
Microbial surfactants are a large number of amphipathic biomolecules with a myriad of biomolecule constituents from various microbial sources that have been studied for their surface tension reduction activities. With unique properties, their applications have been increased in different areas including environment, medicine, healthcare, agriculture and industries. The present review aims to study the biochemistry and biosynthesis of biosurfactants exhibiting varying biomolecular structures which are produced by different microbial sources. It also provides details on roles played by biosurfactants in nature as well as their potential applications in various sectors. Basic biomolecule content of all the biosurfactants studied showed presence of carbohydrates, aminoacids, lipids and fattyacids. The data presented here would help in designing, synthesis and application of tailor-made novel biosurfactants. This would pave a way for perspectives of research on biosurfactants to overcome the existing bottlenecks in this field.
Collapse
Affiliation(s)
- Anoop R Markande
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa - 388 421, Anand, Gujarat, India
| | - Divya Patel
- Multi-disciplinary Research Unit, Surat Municipal Institute of Medical Education & Research, Surat 395010, Gujarat, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India.
| |
Collapse
|