1
|
Jangid AK, Kim K. Phenylboronic acid-functionalized biomaterials for improved cancer immunotherapy via sialic acid targeting. Adv Colloid Interface Sci 2024; 333:103301. [PMID: 39260104 DOI: 10.1016/j.cis.2024.103301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/16/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Phenylboronic acid (PBA) is recognized as one of the most promising cancer cell binding modules attributed to its potential to form reversible and dynamic boronic ester covalent bonds. Exploring the advanced chemical versatility of PBA is crucial for developing new anticancer therapeutics. The presence of a specific Lewis acidic boron atom-based functional group and a Π-ring-connected ring has garnered increasing interest in the field of cancer immunotherapy. PBA-derivatized functional biomaterials can form reversible bonds with diols containing cell surface markers and proteins. This review primarily focuses on the following topics: (1) the importance and versatility of PBA, (2) different PBA derivatives with pKa values, (3) specific key features of PBA-mediated biomaterials, and (4) cell surface activity for cancer immunotherapy applications. Specific key features of PBA-mediated materials, including sensing, bioadhesion, and gelation, along with important synthesis strategies, are highlighted. The utilization of PBA-mediated biomaterials for cancer immunotherapy, especially the role of PBA-based nanoparticles and PBA-mediated cell-based therapeutics, is also discussed. Finally, a perspective on future research based on PBA-biomaterials for immunotherapy applications is presented.
Collapse
Affiliation(s)
- Ashok Kumar Jangid
- Department of Chemical & Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea.
| |
Collapse
|
2
|
Yadav P, Singh S, Jaiswal S, Kumar R. Synthetic and natural polymer hydrogels: A review of 3D spheroids and drug delivery. Int J Biol Macromol 2024; 280:136126. [PMID: 39349080 DOI: 10.1016/j.ijbiomac.2024.136126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
This review centers on the synthesis and characterization of both natural and synthetic hydrogels, highlighting their diverse applications across various fields. We will delve into the evolution of hydrogels, focusing on the importance of polysaccharide-based and synthetic variants, which have been particularly chosen for 3D spheroid development in cancer research and drug delivery. A detailed background on the research and specific methodologies, including the in-situ free radical polymerization used for synthesizing these hydrogels, will be extensively discussed. Additionally, the review will explore various applications of these hydrogels, such as their self-healing properties, swelling ratios, pH responsiveness, and cell viability. A comprehensive literature review will support this investigation. Ultimately, this review aims to clearly outline the objectives and significance of hydrogel synthesis and their applications.
Collapse
Affiliation(s)
- Paramjeet Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Shiwani Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Sheetal Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Rajesh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
3
|
Zhou T, Qiu JM, Han XJ, Zhang X, Wang P, Xie SY, Xie N. The application of nanoparticles in delivering small RNAs for cancer therapy. Discov Oncol 2024; 15:500. [PMID: 39331172 PMCID: PMC11436575 DOI: 10.1007/s12672-024-01341-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Small molecular RNAs, including microRNA (miRNA) and small interfering RNA (siRNA), participate in the regulation of gene expression. As powerful regulators, miRNAs, take part in posttranscriptional regulation of gene expression and play important roles in the diagnosis and treatment of cancer. Meanwhile, siRNA can induce sequence-specific gene silencing, thus being able to inhibit tumorigenesis by suppressing the expression of their targeted proto-oncogenes. Small RNAs (including naked miRNAs and siRNAs) are easily degraded by circulating RNAase, which can be retarded through the package of nanoparticles. Therefore, nanoparticles help tumor therapy by regulating targeted genes of small RNAs. Here, we reviewed the effects of small RNAs on gene expression; the advantages, disadvantages, and targeted modification of nanoparticles as carriers transporting small RNAs; and the application of nanocarriers delivering small RNA for cancer-targeted therapy.
Collapse
Affiliation(s)
- Tong Zhou
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong, 264003, People's Republic of China
- Shandong Laboratory of Advanced Materials and Green Manufacturing (Yantai), Shandong, 264000, People's Republic of China
| | - Jun-Ming Qiu
- Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264000, People's Republic of China
| | - Xue-Jia Han
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong, 264003, People's Republic of China
| | - Xia Zhang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong, 264003, People's Republic of China
| | - Pingyu Wang
- Department of Epidemiology, Binzhou Medical University, YanTai, ShanDong, 264003, People's Republic of China
| | - Shu-Yang Xie
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong, 264003, People's Republic of China.
- Shandong Laboratory of Advanced Materials and Green Manufacturing (Yantai), Shandong, 264000, People's Republic of China.
| | - Ning Xie
- Department of Breast and Thyroid Surgery, Affiliated Yantaishan Hospital of Binzhou Medical University, Yantai, Shandong, 264000, People's Republic of China.
| |
Collapse
|
4
|
Shahrokhtash A, Sutherland DS. Smart Biointerfaces via Click Chemistry-Enabled Nanopatterning of Multiple Bioligands and DNA Force Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21534-21545. [PMID: 38634566 PMCID: PMC11073048 DOI: 10.1021/acsami.4c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/10/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Nanoscale biomolecular placement is crucial for advancing cellular signaling, sensor technology, and molecular interaction studies. Despite this, current methods fall short in enabling large-area nanopatterning of multiple biomolecules while minimizing nonspecific interactions. Using bioorthogonal tags at a submicron scale, we introduce a novel hole-mask colloidal lithography method for arranging up to three distinct proteins, DNA, or peptides on large, fully passivated surfaces. The surfaces are compatible with single-molecule fluorescence microscopy and microplate formats, facilitating versatile applications in cellular and single-molecule assays. We utilize fully passivated and transparent substrates devoid of metals and nanotopographical features to ensure accurate patterning and minimize nonspecific interactions. Surface patterning is achieved using bioorthogonal TCO-tetrazine (inverse electron-demand Diels-Alder, IEDDA) ligation, DBCO-azide (strain-promoted azide-alkyne cycloaddition, SPAAC) click chemistry, and biotin-avidin interactions. These are arranged on surfaces passivated with dense poly(ethylene glycol) PEG brushes crafted through the selective and stepwise removal of sacrificial metallic and polymeric layers, enabling the directed attachment of biospecific tags with nanometric precision. In a proof-of-concept experiment, DNA tension gauge tether (TGT) force sensors, conjugated to cRGD (arginylglycylaspartic acid) in nanoclusters, measured fibroblast integrin tension. This novel application enables the quantification of forces in the piconewton range, which is restricted within the nanopatterned clusters. A second demonstration of the platform to study integrin and epidermal growth factor (EGF) proximal signaling reveals clear mechanotransduction and changes in the cellular morphology. The findings illustrate the platform's potential as a powerful tool for probing complex biochemical pathways involving several molecules arranged with nanometer precision and cellular interactions at the nanoscale.
Collapse
Affiliation(s)
- Ali Shahrokhtash
- Interdisciplinary
Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000Aarhus C, Denmark
- The
Centre for Cellular Signal Patterns (CellPAT), Gustav Wieds Vej 14, 8000 Aarhus C ,Denmark
| | - Duncan S. Sutherland
- Interdisciplinary
Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000Aarhus C, Denmark
- The
Centre for Cellular Signal Patterns (CellPAT), Gustav Wieds Vej 14, 8000 Aarhus C ,Denmark
| |
Collapse
|
5
|
Huang J, Huang H, Wang Y, Xu B, Lin M, Han S, Yuan Y, Wang Y, Shuai X. Retinol-binding protein-hijacking nanopolyplex delivering siRNA to cytoplasm of hepatic stellate cell for liver fibrosis alleviation. Biomaterials 2023; 299:122134. [PMID: 37167895 DOI: 10.1016/j.biomaterials.2023.122134] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023]
Abstract
Activated hepatic stellate cell (aHSC) is mainly responsible for deposition of extracellular collagen matrix that causes liver fibrosis. Although several siRNAs adequately inhibited HSC activation in vitro, they were demonstrated poor RNAi efficiency in vivo. Developing HSC-targeting and cytoplasmic delivery nanocarrier is highly essential to acquire a desirable siRNA therapeutic index for anti-liver fibrosis. Here, we developed a unique crosslinking nanopolyplex (called T-C-siRNA) modified by vitamin A (VA) with the well-designed natures, including the negative charge, retinol-binding protein (RBP) hijacking, and cytoplasmic siRNA release in response to ROS and cis diol molecules. The nanopolyplex was given a yolk-shell-like shape, camouflage ability in blood, and HSC-targeting capability by hijacking the endogenous ligand RBP via surface VA. PDGFR-β siRNA (siPDGFR-β) supplied via T-C-siPDGFR-β nanopolyplex dramatically reduced HSC activation and its production of pro-fibrogenic proteins in vitro and in vivo. Furthermore, T-C-siPDGFR-β nanopolyplex effectively alleviated CCl4-induced liver injury, decreased hepatic collagen sediment, and recovered liver function in mice. This study provides a sophisticated method for HSC-targeting cytoplasmic RNA delivery using endogenous ligand hijacking and dual sensitivity of ROS and cis diol compounds.
Collapse
Affiliation(s)
- Jinsheng Huang
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Huiling Huang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Yiyao Wang
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Bin Xu
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Minzhao Lin
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China; PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shisong Han
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuanyuan Yuan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yong Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China.
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
6
|
Thang NH, Chien TB, Cuong DX. Polymer-Based Hydrogels Applied in Drug Delivery: An Overview. Gels 2023; 9:523. [PMID: 37504402 PMCID: PMC10379988 DOI: 10.3390/gels9070523] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Polymer-based hydrogels are hydrophilic polymer networks with crosslinks widely applied for drug delivery applications because of their ability to hold large amounts of water and biological fluids and control drug release based on their unique physicochemical properties and biocompatibility. Current trends in the development of hydrogel drug delivery systems involve the release of drugs in response to specific triggers such as pH, temperature, or enzymes for targeted drug delivery and to reduce the potential for systemic toxicity. In addition, developing injectable hydrogel formulations that are easily used and sustain drug release during this extended time is a growing interest. Another emerging trend in hydrogel drug delivery is the synthesis of nano hydrogels and other functional substances for improving targeted drug loading and release efficacy. Following these development trends, advanced hydrogels possessing mechanically improved properties, controlled release rates, and biocompatibility is developing as a focus of the field. More complex drug delivery systems such as multi-drug delivery and combination therapies will be developed based on these advancements. In addition, polymer-based hydrogels are gaining increasing attention in personalized medicine because of their ability to be tailored to a specific patient, for example, drug release rates, drug combinations, target-specific drug delivery, improvement of disease treatment effectiveness, and healthcare cost reduction. Overall, hydrogel application is advancing rapidly, towards more efficient and effective drug delivery systems in the future.
Collapse
Affiliation(s)
- Nguyen Hoc Thang
- Faculty of Chemical Technology, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu Distrist, Ho Chi Minh City 700000, Vietnam
| | - Truong Bach Chien
- Faculty of Chemical Technology, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu Distrist, Ho Chi Minh City 700000, Vietnam
| | - Dang Xuan Cuong
- Innovation and Entrepreneurship Center, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu Distrist, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
7
|
Polymer Texture Influences Cell Responses in Osteogenic Microparticles. Cell Mol Bioeng 2022; 15:409-423. [DOI: 10.1007/s12195-022-00729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
|
8
|
Liu H, Liu C, Ye L, Ma D, He X, Tang Q, Zhao X, Zou H, Chen X, Liu P. Nanoassemblies with Effective Serum Tolerance Capability Achieving Robust Gene Silencing Efficacy for Breast Cancer Gene Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003523. [PMID: 33354783 DOI: 10.1002/adma.202003523] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/08/2020] [Indexed: 06/12/2023]
Abstract
The transfection efficiency of siRNA mediated by cationic polymers is limited due to the instability of polymers/siRNA complexes in the presence of serum. Poly(ethylene glycol) (PEG) is usually applied to modify cationic polymers, so as to reduce protein and cell adsorption and then to improve siRNA transfection efficiency. However, the polymers' modification with PEG mostly consumes the free amino of the polymers, which can, in turn, reduce the charge density and limit their siRNA transfection efficacy. Here, a new PEG modification strategy that need not consume the surface aminos of polymers is proposed. Catechol-PEG polymers are coated on the surface of phenylboronic acid (PBA)-modified Generation 5 (G5) poly(amidoamine) dendrimers (G5PBA) via reversible boronate esters to establish PEG-modified dendrimer/siRNA nanoassemblies for efficient siRNA delivery. The PEG/G5PBA/siRNA nanoassemblies have positive charge and show excellent gene silencing efficacy in the absence of serum in vitro. More importantly, the PEG/G5PBA/siRNA nanoassemblies also exhibit excellent serum resistance and gene silencing efficacy in serum-containing medium. Furthermore, the effective antiserum and gene silencing efficacy elicited by these nanoassemblies lead to excellent antitumor effects in vivo. This proposed strategy constitutes an important approach to reach an excellent gene silencing efficacy in the presence of serum.
Collapse
Affiliation(s)
- Hongmei Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 2000127, China
| | - Chongyi Liu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Li Ye
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ding Ma
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaozhen He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 2000127, China
| | - Qianyun Tang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 2000127, China
| | - Xue Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 2000127, China
| | - Hanbing Zou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 2000127, China
| | - Xiaojing Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 2000127, China
| | - Peifeng Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 2000127, China
| |
Collapse
|
9
|
Ryu JH, Lee GJ, Shih YRV, Kim TI, Varghese S. Phenylboronic Acid-polymers for Biomedical Applications. Curr Med Chem 2019; 26:6797-6816. [DOI: 10.2174/0929867325666181008144436] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 02/08/2023]
Abstract
Background:
Phenylboronic acid-polymers (PBA-polymers) have attracted tremendous
attention as potential stimuli-responsive materials with applications in drug-delivery
depots, scaffolds for tissue engineering, HIV barriers, and biomolecule-detecting/sensing platforms.
The unique aspect of PBA-polymers is their interactions with diols, which result in reversible,
covalent bond formation. This very nature of reversible bonding between boronic
acids and diols has been fundamental to their applications in the biomedical area.
Methods:
We have searched peer-reviewed articles including reviews from Scopus, PubMed,
and Google Scholar with a focus on the 1) chemistry of PBA, 2) synthesis of PBA-polymers,
and 3) their biomedical applications.
Results:
We have summarized approximately 179 papers in this review. Most of the applications
described in this review are focused on the unique ability of PBA molecules to interact
with diol molecules and the dynamic nature of the resulting boronate esters. The strong sensitivity
of boronate ester groups towards the surrounding pH also makes these molecules
stimuli-responsive. In addition, we also discuss how the re-arrangement of the dynamic boronate
ester bonds renders PBA-based materials with other unique features such as self-healing
and shear thinning.
Conclusion:
The presence of PBA in the polymer chain can render it with diverse functions/
relativities without changing their intrinsic properties. In this review, we discuss the development
of PBA polymers with diverse functions and their biomedical applications with a
specific focus on the dynamic nature of boronate ester groups.
Collapse
Affiliation(s)
- Ji Hyun Ryu
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, NC 27703, United States
| | - Gyeong Jin Lee
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Yu-Ru V. Shih
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, NC 27703, United States
| | - Tae-il Kim
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Shyni Varghese
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, NC 27703, United States
| |
Collapse
|
10
|
Zhou Y, Kang L, Yue Z, Liu X, Wallace GG. Composite Tissue Adhesive Containing Catechol-Modified Hyaluronic Acid and Poly-l-lysine. ACS APPLIED BIO MATERIALS 2019; 3:628-638. [DOI: 10.1021/acsabm.9b01003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ying Zhou
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Lingzhi Kang
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Zhilian Yue
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Xiao Liu
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Gordon G. Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
11
|
Baraniak MK, Lalancette RA, Jäkle F. Electron‐Deficient Borinic Acid Polymers: Synthesis, Supramolecular Assembly, and Examination as Catalysts in Amide Bond Formation. Chemistry 2019; 25:13799-13810. [DOI: 10.1002/chem.201903196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/10/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Monika K. Baraniak
- Department of ChemistryRutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Roger A. Lalancette
- Department of ChemistryRutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Frieder Jäkle
- Department of ChemistryRutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
12
|
Guo Q, Zhang X. Synthesized of glucose-responsive nanogels labeled with fluorescence molecule based on phenylboronic acid by RAFT polymerization. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:815-831. [PMID: 31044656 DOI: 10.1080/09205063.2019.1603065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We reported on the fabrication of sugar-responsive nanogels covalently incorporated with 3-acrylamidophenylboronic acid (AAPBA) as glucose-recognizing moiety, 2-(acrylamido)glucopyranose (AGA) as biocompatible moiety, and boron dipyrromethene (BODIPYMA) as fluorescence donor molecule. The p(AAPBA-AGA-BODIPYMA) nanogels were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization in the mixture solvents of H2O/ethanol. Nanogels could respond to glucose and size of nanogels increased after treating with 3 mg/mL glucose medium. The fluorescent intensity of nanogels varied dependent on different glucose concentrations. Besides, insulin, a model drug, can be encapsulated into nanogels with the loading amount up to 8.2%. The drug release was dependent on the content of AAPBA moieties in nanogels and glucose concentrations in release medium. The investigation on the cytotoxicity of nanogels revealed that nanogels had good compatibility. Such glucose-responsive nanogels have potential in detection and treatment of diabetes.
Collapse
Affiliation(s)
- Qianqian Guo
- a Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry , Nankai University , Tianjin , China
| | - Xinge Zhang
- a Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry , Nankai University , Tianjin , China
| |
Collapse
|
13
|
Cell membrane engineering with synthetic materials: Applications in cell spheroids, cellular glues and microtissue formation. Acta Biomater 2019; 90:21-36. [PMID: 30986529 DOI: 10.1016/j.actbio.2019.04.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/26/2019] [Accepted: 04/03/2019] [Indexed: 12/16/2022]
Abstract
Biologically inspired materials with tunable bio- and physicochemical properties provide an essential framework to actively control and support cellular behavior. Cell membrane remodeling approaches benefit from the advances in polymer science and bioconjugation methods, which allow for the installation of un-/natural molecules and particles on the cells' surface. Synthetically remodeled cells have superior properties and are under intense investigation in various therapeutic scenarios as cell delivery systems, bio-sensing platforms, injectable biomaterials and bioinks for 3D bioprinting applications. In this review article, recent advances in the field of cell surface remodeling via bio-chemical means and the potential biomedical applications of these emerging cell hybrids are discussed. STATEMENT OF SIGNIFICANCE: Recent advances in bioconjugation methods, controlled/living polymerizations, microfabrication techniques and 3D printing technologies have enabled researchers to probe specific cellular functions and cues for therapeutic and research purposes through the formation of cell spheroids and polymer-cell chimeras. This review article highlights recent non-genetic cell membrane engineering strategies towards the fabrication of cellular ensembles and microtissues with interest in 3D in vitro modeling, cell therapeutics and tissue engineering. From a wider perspective, these approaches may provide a roadmap for future advances in cell therapies which will expedite the clinical use of cells, thereby improving the quality and accessibility of disease treatments.
Collapse
|
14
|
António JPM, Russo R, Carvalho CP, Cal PMSD, Gois PMP. Boronic acids as building blocks for the construction of therapeutically useful bioconjugates. Chem Soc Rev 2019; 48:3513-3536. [DOI: 10.1039/c9cs00184k] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review summarizes boronic acid's contribution to the development of bioconjugates with a particular focus on the molecular mechanisms underlying its role in the construction and function of the bioconjugate, namely as a bioconjugation warhead, as a payload and as part of a bioconjugate linker.
Collapse
Affiliation(s)
- João P. M. António
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisbon
- Portugal
| | - Roberto Russo
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisbon
- Portugal
| | - Cátia Parente Carvalho
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisbon
- Portugal
| | - Pedro M. S. D. Cal
- Instituto de Medicina Molecular
- Faculty of Medicine
- Universidade de Lisboa
- Lisbon
- Portugal
| | - Pedro M. P. Gois
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisbon
- Portugal
| |
Collapse
|
15
|
Quirós J, Amaral AJ, Pasparakis G, Williams GR, Rosal R. Electrospun boronic acid-containing polymer membranes as fluorescent sensors for bacteria detection. REACT FUNCT POLYM 2017. [DOI: 10.1016/j.reactfunctpolym.2017.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Sun Q, Liu G, Wu H, Xue H, Zhao Y, Wang Z, Wei Y, Wang Z, Tao L. Fluorescent Cell-Conjugation by a Multifunctional Polymer: A New Application of the Hantzsch Reaction. ACS Macro Lett 2017; 6:550-555. [PMID: 35610883 DOI: 10.1021/acsmacrolett.7b00220] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multicomponent reactions (MCRs) can form unique structures with interesting functions, therefore, multifunctional polymers might be simply prepared using MCRs as coupling tools to simultaneously link and generate different functional groups. To verify this concept, a new fluorescent polymer containing phenylboronic acid has been facilely prepared via a one pot method by combining the Hantzsch reaction with reversible addition-fragmentation chain transfer (RAFT) polymerization. The Hantzsch-RAFT system has been found robust to smoothly achieve predesigned multifunctional polymer, which can be used for cell conjugation through the interaction between phenylboronic acid and glycoprotein on cell membrane. The conjugated cells could be directly observed due to the fluorescent Hantzsch moiety in the polymer chain, demonstrating a new application of the old Hantzsch reaction (>130 years) outside organic chemistry. Meanwhile, the conjugated cells remained excellent dispersity in the presence of coagulation protein (lectin), implying that multifunctional polymer a possible anticoagulant for cell separation. We believe that the current research paves a new way to exploit new applications of MCRs in interdisciplinary fields and might prompt the development of other multifunctional polymers based on different MCRs.
Collapse
Affiliation(s)
- Qiang Sun
- The
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Guoqiang Liu
- The
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Haibo Wu
- The
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
- College
of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, People’s Republic of China
| | - Haodong Xue
- The
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
- College
of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, People’s Republic of China
| | - Yuan Zhao
- The
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Zilin Wang
- The
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Yen Wei
- The
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Zhiming Wang
- College
of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, People’s Republic of China
| | - Lei Tao
- The
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
17
|
Gennari A, Gujral C, Hohn E, Lallana E, Cellesi F, Tirelli N. Revisiting Boronate/Diol Complexation as a Double Stimulus-Responsive Bioconjugation. Bioconjug Chem 2017; 28:1391-1402. [DOI: 10.1021/acs.bioconjchem.7b00080] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arianna Gennari
- NorthWest
Centre of Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Chirag Gujral
- NorthWest
Centre of Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Erwin Hohn
- NorthWest
Centre of Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Enrique Lallana
- NorthWest
Centre of Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Francesco Cellesi
- Dipartimento
di Chimica, Materiali ed Ingegneria Chimica “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
- Fondazione CEN - European Centre for Nanomedicine, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Nicola Tirelli
- NorthWest
Centre of Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
18
|
|
19
|
Negri GE, Deming TJ. Protein Complexation and pH Dependent Release Using Boronic Acid Containing PEG-Polypeptide Copolymers. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 05/18/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Graciela E. Negri
- Department of Chemistry and Biochemistry; University of California; Los Angeles 607 Charles E Young Dr. E, Los Angeles CA 90095-1600 USA
| | - Timothy J. Deming
- Department of Chemistry and Biochemistry; University of California; Los Angeles 607 Charles E Young Dr. E, Los Angeles CA 90095-1600 USA
- Department of Bioengineering; University of California; Los Angeles 5121 Engineering 5, Los Angeles CA 90095-1600 USA
| |
Collapse
|
20
|
Chai Z, Ma L, Wang Y, Ren X. Phenylboronic acid as a glucose-responsive trigger to tune the insulin release of glycopolymer nanoparticles. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:599-610. [DOI: 10.1080/09205063.2016.1140503] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
21
|
Brooks WLA, Sumerlin BS. Synthesis and Applications of Boronic Acid-Containing Polymers: From Materials to Medicine. Chem Rev 2015; 116:1375-97. [DOI: 10.1021/acs.chemrev.5b00300] [Citation(s) in RCA: 552] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- William L. A. Brooks
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
22
|
Wang Y, Chai Z, Wang N, Sun Y, Yan Y, Gao L. Multiple Sensitivity Study of Boronic Acid-Functionalized Nanoparticles Based on the Complexation of Poly (3-methacrylamido phenylboronic acid) and Dextran. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2015. [DOI: 10.1080/10601325.2015.1007271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Wang Y, Zhang X, Cheng C, Li C. Mucoadhesive and enzymatic inhibitory nanoparticles for transnasal insulin delivery. Nanomedicine (Lond) 2014; 9:451-64. [PMID: 24910876 DOI: 10.2217/nnm.13.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
AIM To develop a novel nanocarrier with mucoadhesion and enzymatic inhibition for transnasal insulin delivery. METHODS & METHODS: The physicochemical characterization of the nanoparticles included size and morphology, as well as mucoadhesion and enzymatic inhibition. The in vitro release of insulin from the nanoparticles was evaluated in 3 mg/ml glucose medium. The cytocompatibility of the nanoparticles was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The interactions of the nanoparticles with Caco-2 cells and nasal epithelia, and the effect of the nanoparticles on transnasal insulin delivery were estimated. RESULTS The nanoparticles were spherical in shape, with an average size of 100 nm, and presented strong enzymatic inhibitory activity and high mucin adsorption ability. The insulinloaded nanoparticles showed the rapid insulin release in 3 mg/ml glucose medium. The nanoparticles were noncytotoxic to Caco-2 cells. Furthermore, the insulin-loaded nanoparticles overcame mucosal barriers and significantly decreased plasma glucose levels.
Collapse
|
24
|
Wang Y, Chai Z, Ma L, Shi C, Shen T, Song J. Fabrication of boronic acid-functionalized nanoparticles via boronic acid–diol complexation for drug delivery. RSC Adv 2014. [DOI: 10.1039/c4ra05034g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
25
|
Mair LO, Superfine R. Single particle tracking reveals biphasic transport during nanorod magnetophoresis through extracellular matrix. SOFT MATTER 2014; 10:4118-25. [PMID: 24744160 PMCID: PMC4265469 DOI: 10.1039/c4sm00611a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Magnetic drug targeting has been proposed as a means of efficiently targeting drugs to tumors. However, the extracellular matrix (ECM) remains a significant barrier to long-range magnetophoretic transport through the tumor volume. While ensemble measurements of nanoparticle magnetophoresis have been reported, a single particle level understanding of magnetophoretic transport remains at large. We quantify nanorod magnetophoresis through ECM based on single particle observations. We find that smaller diameter particles achieve larger velocities through ECM despite experiencing smaller magnetic forces. Additionally, two interesting dynamics are elucidated. First, 18 nm diameter nanorods experience bimodal stick-slip motion through ECM during static field magnetophoresis, while similar bimodal transport is not observed for 55 nm nor 200 nm diameter nanorods. Second, smaller particles experience larger deviations in their orientation angle with respect to the magnetic field. This work elucidates important dynamics of nanoparticle transport through complex, porous biomaterials that may go unnoticed during ensemble measurements.
Collapse
Affiliation(s)
- L O Mair
- Curriculum in Applied Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
26
|
Haridas V, Sadanandan S, Collart-Dutilleul PY, Gronthos S, Voelcker NH. Lysine-appended polydiacetylene scaffolds for human mesenchymal stem cells. Biomacromolecules 2014; 15:582-90. [PMID: 24364714 DOI: 10.1021/bm4015655] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We report on the self-assembly based fabrication of fibrous polymers for tissue engineering applications. Directed self-assembly followed by polymerization of lysine-appended diacetylenes generated a variety of polymers (P1-P5) with distinct chemical properties. The self-assembly along with the conjugated double and triple bonds and rigid geometry of diacetylene backbone imposed a nanofibrous morphology on the resulting polymers. Chemical properties including wettability of the polymers were tuned by using lysine (Lys) with orthogonal protecting groups (Boc and Fmoc). These Lys-appended polydiacetylene scaffolds were compared in terms of their efficiency toward human mesenchymal stem cells adhesion and spreading. Interestingly, polymer P4 containing Lys N(α)-NH2 and Lys N(ε)-Boc with balanced wettability supported cell adhesion better than the more hydrophobic polymer P2 with N(ε)-Boc and N(α)-Fmoc or more hydrophilic polymer P5 containing free N(ε) and N(α) amino groups. The molecular level control in the fabrication of nanofibrous polymers compared with other existing methods for the generation of fibrous polymers is the hallmark of this work.
Collapse
Affiliation(s)
- V Haridas
- Department of Chemistry, Indian Institute of Technology Delhi , New Delhi-110016, India
| | | | | | | | | |
Collapse
|
27
|
Audebeau E, Oikonomou EK, Norvez S, Iliopoulos I. One-pot synthesis and gelation by borax of glycopolymers in water. Polym Chem 2014. [DOI: 10.1039/c3py01266b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Ma J, Luan S, Jin J, Song L, Yuan S, Zheng W, Yin J. Surface modification of cycloolefin polymer via surface-initiated photoiniferter-mediated polymerization for suppressing bioadhesion. RSC Adv 2014. [DOI: 10.1039/c4ra02619e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cycloolefin polymer was modified via surface-initiated photoiniferter-mediated polymerization for suppressing bioadhesion.
Collapse
Affiliation(s)
- Jiao Ma
- State Key Laboratory of Polymer and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, People's Republic of China
- University of Chinese Academy of Sciences
| | - Shifang Luan
- State Key Laboratory of Polymer and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, People's Republic of China
| | - Jing Jin
- State Key Laboratory of Polymer and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, People's Republic of China
| | - Lingjie Song
- State Key Laboratory of Polymer and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, People's Republic of China
- University of Chinese Academy of Sciences
| | - Shuaishuai Yuan
- State Key Laboratory of Polymer and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, People's Republic of China
- University of Chinese Academy of Sciences
| | - Wanling Zheng
- State Key Laboratory of Polymer and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, People's Republic of China
| | - Jinghua Yin
- State Key Laboratory of Polymer and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, People's Republic of China
| |
Collapse
|
29
|
Hartmann M, Zubkov MV, Scanlan DJ, Lepère C. In situ interactions between photosynthetic picoeukaryotes and bacterioplankton in the Atlantic Ocean: evidence for mixotrophy. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:835-40. [PMID: 24249292 DOI: 10.1111/1758-2229.12084] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 06/20/2013] [Accepted: 06/22/2013] [Indexed: 05/25/2023]
Abstract
Heterotrophic bacterioplankton, cyanobacteria and phototrophic picoeukaryotes (< 5 μm in size) numerically dominate planktonic oceanic communities. While feeding on bacterioplankton is often attributed to aplastidic protists, recent evidence suggests that phototrophic picoeukaryotes could be important bacterivores. Here, we present direct visual evidence from the surface mixed layer of the Atlantic Ocean that bacterioplankton are internalized by phototrophic picoeukaryotes. In situ interactions of phototrophic picoeukaryotes and bacterioplankton (specifically Prochlorococcus cyanobacteria and the SAR11 clade) were investigated using a combination of flow cytometric cell sorting and dual tyramide signal amplification fluorescence in situ hybridization. Using this method, we observed plastidic Prymnesiophyceae and Chrysophyceae cells containing Prochlorococcus, and to a lesser extent SAR11 cells. These microscopic observations of in situ microbial trophic interactions demonstrate the frequency and likely selectivity of phototrophic picoeukaryote bacterivory in the surface mixed layer of both the North and South Atlantic subtropical gyres and adjacent equatorial region, broadening our views on the ecological role of the smallest oceanic plastidic protists.
Collapse
Affiliation(s)
- Manuela Hartmann
- Ocean Biogeochemistry and Ecosystems Research Group, National Oceanography Centre, Southampton, SO14 3ZH, UK
| | | | | | | |
Collapse
|
30
|
Ameringer T, Ercole F, Tsang KM, Coad BR, Hou X, Rodda A, Nisbet DR, Thissen H, Evans RA, Meagher L, Forsythe JS. Surface grafting of electrospun fibers using ATRP and RAFT for the control of biointerfacial interactions. Biointerphases 2013; 8:16. [DOI: 10.1186/1559-4106-8-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 06/20/2013] [Indexed: 11/10/2022] Open
|
31
|
Zhang X, Wang Y, Zheng C, Li C. Phenylboronic acid-functionalized glycopolymeric nanoparticles for biomacromolecules delivery across nasal respiratory. Eur J Pharm Biopharm 2012; 82:76-84. [PMID: 22659236 DOI: 10.1016/j.ejpb.2012.05.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 11/29/2022]
Abstract
The aim of this study was to explore the potential of the mucoadhesive and enzyme-inhibitory phenylboronic acid-functionalized glycopolymeric nanoparticles as carriers for the nasal delivery of biomacromolecules. The glycopolymers were prepared by the random copolymerization of 3-acrylamidophenylboronic acid and N-acetyl glucosamine. Insulin, as a model, was encapsulated within self-assembled glypolymeric nanoparticles. Nanoparticle size, insulin loading, and insulin release were characterized. In vitro cytotoxicity experiment showed the glycopolymers were cytocompatible (≥ 80% cell viability). Adhesiveness was determined from the absorption amount of mucin, reaching up to 1180 μg/mL. Moreover, the results obtained from in vivo administration of insulin-loaded p(AAPBA-r-MAGA) nanoparticles to rats evidenced that the nanoparticles enhanced insulin absorption across the nasal mucosal barrier and did not induce irritation of nasal mucosa. Thus, insulin-loaded nanoparticles were able to significantly decrease plasma glucose levels (more than 35% reduction). These results suggest that p(AAPBA-r-MAGA) nanoparticles have potential application for the nasal delivery of biomacromolecules.
Collapse
Affiliation(s)
- Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, Nankai University, Tianjin, China.
| | | | | | | |
Collapse
|
32
|
Yao Y, Zhao L, Yang J, Yang J. Glucose-Responsive Vehicles Containing Phenylborate Ester for Controlled Insulin Release at Neutral pH. Biomacromolecules 2012; 13:1837-44. [DOI: 10.1021/bm3003286] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuan Yao
- State Key Laboratory of Chemical
Resource, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liyuan Zhao
- State Key Laboratory of Chemical
Resource, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junjiao Yang
- College of Science, Beijing University of Chemical Technology, Beijing
100029, China
| | - Jing Yang
- State Key Laboratory of Chemical
Resource, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
33
|
Jung IK, Bae JW, Choi WS, Choi JH, Park KD. Surface Graft Polymerization of Poly(ethylene glycol) Methacrylate onto Polyurethane via Thiol–Ene Reaction: Preparation and Characterizations. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 20:1473-82. [PMID: 19622283 DOI: 10.1163/092050609x12457419024109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- In Kwon Jung
- a Department of Molecular Science and Technology, Ajou University, 5 Wonchon, Yeoungtong, Suwon 443-749, South Korea
| | - Jin Woo Bae
- b Department of Molecular Science and Technology, Ajou University, 5 Wonchon, Yeoungtong, Suwon 443-749, South Korea
| | - Won Sup Choi
- c Department of Molecular Science and Technology, Ajou University, 5 Wonchon, Yeoungtong, Suwon 443-749, South Korea
| | - Jong Hoon Choi
- d Department of Molecular Science and Technology, Ajou University, 5 Wonchon, Yeoungtong, Suwon 443-749, South Korea
| | - Ki Dong Park
- e Department of Molecular Science and Technology, Ajou University, 5 Wonchon, Yeoungtong, Suwon 443-749, South Korea
| |
Collapse
|
34
|
Xu Y, Chen X, Chen H, Xu S, Liu H, Hu Y. Density functional theory for the selective adsorption of small molecules on a surface modified with polymer brushes. MOLECULAR SIMULATION 2012. [DOI: 10.1080/08927022.2011.616892] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
35
|
pH- and glucose-sensitive glycopolymer nanoparticles based on phenylboronic acid for triggered release of insulin. Carbohydr Polym 2012; 89:124-31. [PMID: 24750613 DOI: 10.1016/j.carbpol.2012.02.060] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/03/2011] [Accepted: 02/21/2012] [Indexed: 11/20/2022]
Abstract
Amphiphilic poly(acrylic acid-co-acrylamidophenylboronic acid)-block-poly(2-acryloxyethyl galactose)-block-poly(acrylic acid-co-acrylamidophenylboronic acid) (((PAA-co-PAAPBA)-b-)₂PAEG) copolymer was fabricated: The poly(2-acryloyloxyethyl pentaacetylgalactoside) (PAEAcG) with narrow molecular weight distributions (Mw/Mn≤1.22) was prepared by atom transfer radical polymerization (ATRP) using dibromo-p-xylene (DBX) as initiator. Then the well-defined triblock copolymer poly(t-butyl acrylate)-b-poly(2-acryloyloxyethyl pentaacetylgalactoside)-b-poly(t-butyl acrylate) (PtBA-b-PAEAcG-b-PtBA) was synthesized by ATRP of tBA using PAEAcG homopolymer with dibromo end groups as macroinitiator. After hydrolysis of t-butyl acrylate block, amide linkage and deacetylation, the final copolymer ((PAA-co-PAAPBA)-b-)₂PAEG was obtained. Because of characteristics of three different segments, amphiphilic ((PAA-co-PAAPBA)-b-)₂PAEG can self-assemble into pH- and glucose-responsive nanoparticles studied by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Furthermore, the in vitro release profiles of insulin also revealed obvious pH- and glucose-sensitivity of the nanoparticles. The analysis of cell viability suggested that the copolymer nanoparticles had good cytocompatibility.
Collapse
|
36
|
Özçam AE, Roskov KE, Spontak RJ, Genzer J. Generation of functional PET microfibers through surface-initiated polymerization. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm16017j] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
37
|
Nimesh S, Gupta N, Chandra R. Strategies and advances in nanomedicine for targeted siRNA delivery. Nanomedicine (Lond) 2011; 6:729-46. [PMID: 21718181 DOI: 10.2217/nnm.11.15] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
siRNA are a rapidly emerging class of new therapeutic molecules for the treatment of inherited and acquired diseases. However, poor cellular uptake and instability in physiological conditions limits its therapeutic potential, hence a need to develop a delivery system that can protect and efficiently transport siRNA to the target cells has arisen. Nanoparticles have been proposed as suitable delivery vectors with reduced cytotoxicity and enhanced efficacy. These delivery vectors form condensed complexes with siRNA which, in turn, provides protection to siRNA against enzymatic degradation and further leads to tissue and cellular targeting. Nanoparticles derived from polymers, such as chitosan and polyethylenimine have found numerous applications owing to ease of manipulation, high stability, low cost and high gene carrying capability. This article focuses on various aspects of nanomedicine based siRNA delivery with emphasis on targeted delivery to tumors.
Collapse
Affiliation(s)
- Surendra Nimesh
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
38
|
Mahalingam A, Geonnotti AR, Balzarini J, Kiser PF. Activity and safety of synthetic lectins based on benzoboroxole-functionalized polymers for inhibition of HIV entry. Mol Pharm 2011; 8:2465-75. [PMID: 21879735 DOI: 10.1021/mp2002957] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lectins derived from plant and microbial sources constitute a vital class of entry inhibitors that target the oligomannose residues on the HIV envelope gp120. Despite their potency and specificity, success of lectin-based entry inhibitors may be impeded by high manufacturing costs, formulation and potential mitogenicity. Therefore, there exists a gap in the HIV microbicides pipeline that underscores the need for mass producible, synthetic, broad-spectrum, and biocomptabile inhibitors of HIV entry. Here, we present the development of a polymeric synthetic lectin, based on benzoboroxole (BzB), which exhibits weak affinity (∼25 M(-1)) for nonreducing sugars, similar to those found on the HIV envelope. High molecular weight BzB-functionalized polymers demonstrated antiviral activity that increased with an increase in ligand density and molecular weight of the polymer construct, revealing that polyvalency improves activity. Polymers showed significant increase in activity from 25 to 75 mol % BzB functionalization with EC(50) of 15 μM and 15 nM, respectively. A further increase in mole functionalization to 90% resulted in an increase of the EC(50) (59 ± 5 nM). An increase in molecular weight of the polymer at 50 mol % BzB functionalization showed a gradual but significant increase in antiviral activity, with the highest activity seen with the 382 kDa polymer (EC(50) of 1.1 ± 0.5 nM in CEM cells and 11 ± 3 nM in TZM-bl cells). Supplementing the polymer backbone with 10 mol % sulfonic acid not only increased the aqueous solubility of the polymers by at least 50-fold but also demonstrated a synergistic increase in anti-HIV activity (4.0 ± 1.5 nM in TZM-bl cells), possibly due to electrostatic interactions between the negatively charged polymer backbone and the positively charged V3-loop in the gp120. The benzoboroxole-sulfonic acid copolymers showed no decrease in activity in the presence of a seminal concentration of fructose (p > 0.05). Additionally, the copolymers exhibit minimal, if any, effect on the cellular viability, barrier properties, or cytokine levels in human reconstructed ectocervical tissue after 3 days of repeated exposure and did not show pronounced activity against a variety of other RNA and DNA viruses.
Collapse
Affiliation(s)
- Alamelu Mahalingam
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112-5820, United States
| | | | | | | |
Collapse
|
39
|
|
40
|
Lin W, Ma X, Qian J, Abdelrahman AI, Halupa A, Baranov V, Pich A, Winnik MA. Synthesis and mass cytometric analysis of lanthanide-encoded polyelectrolyte microgels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:7265-7275. [PMID: 21561077 DOI: 10.1021/la201013v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This article describes the synthesis and characterization of two series of functional polyelectrolyte copolymer microgels intended for bioassays based upon mass cytometry, a technique that detects metals by inductively coupled plasma mass spectrometry (ICP-MS). The microgels were loaded with Eu(III) ions, which were then converted in situ to EuF(3) nanoparticles (NPs). Both types of microgels are based upon copolymers of N-isopropylacrylamide (NIPAm) and methacrylic acid (MAA), poly(NIPAm/VCL/MAA) (VCL = N-vinylcaprolactam, V series), and poly(NIPAm/MAA/PEGMA) (PEGMA = poly(ethylene glycol)methacrylate, PG series). Very specific conditions (full neutralization of the MAA groups) were required to confine the EuF(3) NPs to the core of the microgels. We used mass cytometry to measure the number and the particle-to-particle variation of Eu ions per microgel. By controlling the amount of EuCl(3) added to the neutralized microgels. we could vary the atomic content of individual microgels from ca. 10(6) to 10(7) Eu atoms, either in the form of Eu(3+) ions or EuF(3) NPs. Leaching profiles of Eu ions from the hybrid microgels were measured by traditional ICP-MS.
Collapse
Affiliation(s)
- Wanjuan Lin
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Huang Y, Liu M, Wang L, Gao C, Xi S. A novel triple-responsive poly(3-acrylamidephenylboronic acid-co-2-(dimethylamino) ethyl methacrylate)/(β-cyclodextrin-epichlorohydrin)hydrogels: Synthesis and controlled drug delivery. REACT FUNCT POLYM 2011. [DOI: 10.1016/j.reactfunctpolym.2011.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Wang L, Liu M, Gao C, Ma L, Cui D. A pH-, thermo-, and glucose-, triple-responsive hydrogels: Synthesis and controlled drug delivery. REACT FUNCT POLYM 2010. [DOI: 10.1016/j.reactfunctpolym.2009.11.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Pathak A, Patnaik S, Gupta KC. Recent trends in non-viral vector-mediated gene delivery. Biotechnol J 2010; 4:1559-72. [PMID: 19844918 DOI: 10.1002/biot.200900161] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nucleic acids-based next generation biopharmaceuticals (i.e., pDNA, oligonucleotides, short interfering RNA) are potential pioneering materials to cope with various incurable diseases. However, several biological barriers present a challenge for efficient gene delivery. On the other hand, developments in nanotechnology now offer numerous non-viral vectors that have been fabricated and found capable of transmitting the biopharmaceuticals into the cell and even into specific subcellular compartments like mitochondria. This overview illustrates cellular barriers and current status of non-viral gene vectors, i.e., lipoplexes, liposomes, polyplexes, and nanoparticles, to relocate therapeutic DNA-based nanomedicine into the target cell. Despite the awesome impact of physical methods (i.e., ultrasound, electroporation), chemical methods have been shown to accomplish high-level and safe transgene expression. Further comprehension of barriers and the mechanism of cellular uptake will facilitate development of nucleic acids-based nanotherapy for alleviation of various disorders.
Collapse
Affiliation(s)
- Atul Pathak
- Institute of Genomics and Integrative Biology, Delhi University Campus, Delhi, India
| | | | | |
Collapse
|
44
|
Xu X, Cao D. Density functional theory for adsorption of colloids on the polymer-tethered surfaces: Effect of polymer chain architecture. J Chem Phys 2009; 130:164901. [DOI: 10.1063/1.3119311] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
45
|
Nagase K, Kobayashi J, Okano T. Temperature-responsive intelligent interfaces for biomolecular separation and cell sheet engineering. J R Soc Interface 2009; 6 Suppl 3:S293-309. [PMID: 19324682 DOI: 10.1098/rsif.2008.0499.focus] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Temperature-responsive intelligent surfaces, prepared by the modification of an interface with poly(N-isopropylacrylamide) and its derivatives, have been used for biomedical applications. Such surfaces exhibit temperature-responsive hydrophilic/hydrophobic alterations with external temperature changes, which, in turn, result in thermally modulated interactions with biomolecules and cells. In this review, we focus on the application of these intelligent surfaces to chromatographic separation and cell cultures. Chromatographic separations using several types of intelligent surfaces are mentioned briefly, and various effects related to the separation of bioactive compounds are discussed, including wettability, copolymer composition and graft polymer architecture. Similarly, we also summarize temperature-responsive cell culture substrates that allow the recovery of confluent cell monolayers as contiguous living cell sheets for tissue-engineering applications. The key factors in temperature-dependent cell adhesion/detachment control are discussed from the viewpoint of grafting temperature-responsive polymers, and new methodologies for effective cell sheet culturing and the construction of thick tissues are summarized.
Collapse
Affiliation(s)
- Kenichi Nagase
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | | | | |
Collapse
|
46
|
Chen W, Pelton R, Leung V. Solution Properties of Polyvinylamine Derivatized with Phenylboronic Acid. Macromolecules 2009. [DOI: 10.1021/ma802402z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wei Chen
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7
| | - Robert Pelton
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7
| | - Vincent Leung
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7
| |
Collapse
|
47
|
Lee SH, Bae KH, Kim SH, Lee KR, Park TG. Amine-functionalized gold nanoparticles as non-cytotoxic and efficient intracellular siRNA delivery carriers. Int J Pharm 2008; 364:94-101. [DOI: 10.1016/j.ijpharm.2008.07.027] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 07/04/2008] [Accepted: 07/27/2008] [Indexed: 10/21/2022]
|
48
|
Roberts MC, Mahalingam A, Hanson MC, Kiser PF. Chemorheology of phenylboronate-salicylhydroxamate crosslinked hydrogel networks with a sulfonated polymer backbone. Macromolecules 2008; 41:8832-8840. [PMID: 23132956 DOI: 10.1021/ma8012674] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogel networks crosslinked with polymer-bound phenylboronic acid (PBA) and salicylhydroxamic acid (SHA) demonstrate pH-reversible gel behavior due to the pH-dependent equilibrium of the crosslinking moieties that form the gel network. Furthermore, the pH at which gels behave dynamically can be controlled by use of a polyelectrolyte backbone. Here we report on the frequency-dependent chemorheological characterization of PBA-SHA crosslinked hydrogel networks with a sulfonated polymer backbone. Our results suggest that the anionic nature of the polymers allows reversible crosslinking at neutral pH that an otherwise neutral-backboned PBA-SHA crosslinked network cannot, and that these charge-induced dynamics can be effectively screened by ions in solution. Moreover, moduli-frequency data can effectively be reduced into a single master curve with a neutral-backboned PBA-SHA gel data set as the reference condition.
Collapse
Affiliation(s)
- Meredith C Roberts
- University of Utah, Department of Bioengineering and Department of Pharmaceutics and Pharmaceutical Chemistry, 20 S 2030 E Room 108, Salt Lake City, Utah 84112
| | | | | | | |
Collapse
|
49
|
Bermudez O, Forciniti D. Distribution of Cells between Solid/Liquid and Liquid/Liquid Interfaces. Biotechnol Prog 2008; 20:289-98. [PMID: 14763855 DOI: 10.1021/bp0201253] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The use of aqueous two-phase systems (ATPSs) and each system's individual phase-forming species to prevent Streptococcus sanguis attachment onto hydroxyapatite discs was explored. The strategy that we followed was to attach the cells to a solid surface in the presence of an additional interface. Conditions under which, simultaneously, the phase-forming species form two phases and the cells proliferate were identified. Growth curves were constructed in the presence of various polymers and salts commonly used to prepare ATPSs. Several aqueous two-phase systems were selected such that bacterial growth was comparable to that observed in pure medium. Cells were allowed to attach to hydroxyapatite discs for 7 days in the presence of varying concentrations of media, media with polymer, media with salt, and media with ATPS. Streptococcus sanguis attachment to the disks was evaluated by scanning electron microscopy. The addition of a PEG/Na(2)SO(4) ATPS to high concentrations of yeast-tryptone (YT) media (>65%) and of a PEG/MgSO(4) ATPS to nutrient-limited media reduces surface coverage of S. sanguis to less than 10%. Comparison of the attachment levels for the systems containing PEG/Na(2)SO(4) to media containing the individual phase-forming species and to the YT reference systems indicated that nutrient availability did not affect attachment.
Collapse
Affiliation(s)
- Ondrea Bermudez
- Chemical Engineering Department, University of Missouri-Rolla, Rolla, Missouri 65409, USA
| | | |
Collapse
|
50
|
Yao C, Li X, Neoh K, Shi Z, Kang E. Surface modification and antibacterial activity of electrospun polyurethane fibrous membranes with quaternary ammonium moieties. J Memb Sci 2008. [DOI: 10.1016/j.memsci.2008.04.012] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|